Section 9: Quantum Electrodynamics

Σχετικά έγγραφα
Quantum Electrodynamics

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Dirac Trace Techniques

8.324 Relativistic Quantum Field Theory II

T fi = 2πiδ(E f E i ) [< f V i > + 1 E i E n. < f V n > E i H 0 164/389

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Higher Derivative Gravity Theories

Particle Physics Formula Sheet

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

Example Sheet 3 Solutions

Space-Time Symmetries

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 3 Solutions

Math221: HW# 1 solutions

2 Composition. Invertible Mappings

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Statistical Inference I Locally most powerful tests

1 Bhabha scattering (1936)

Srednicki Chapter 55

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Geodesic Equations for the Wormhole Metric

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

C.S. 430 Assignment 6, Sample Solutions

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Uniform Convergence of Fourier Series Michael Taylor

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Orbital angular momentum and the spherical harmonics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Particle Physics: Introduction to the Standard Model

Partial Differential Equations in Biology The boundary element method. March 26, 2013

1 String with massive end-points

Chapter 3: Ordinal Numbers

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Three coupled amplitudes for the πη, K K and πη channels without data

Lecture 2. Soundness and completeness of propositional logic

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Other Test Constructions: Likelihood Ratio & Bayes Tests

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Non-Abelian Gauge Fields

Second Order RLC Filters

4.6 Autoregressive Moving Average Model ARMA(1,1)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Finite Field Problems: Solutions

Numerical Analysis FMN011

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Durbin-Levinson recursive method

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

PARTIAL NOTES for 6.1 Trigonometric Identities

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

dim(u) = n 1 and {v j } j i

Reminders: linear functions

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

( ) 2 and compare to M.

CRASH COURSE IN PRECALCULUS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

D Alembert s Solution to the Wave Equation

Math 6 SL Probability Distributions Practice Test Mark Scheme

Lecture 26: Circular domains

Lecture 21: Scattering and FGR

Now, suppose the electron field Ψ(x) satisfies the covariant Dirac equation (i D m)ψ = 0.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

6.3 Forecasting ARMA processes

Spherical Coordinates

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Fractional Colorings and Zykov Products of graphs

Areas and Lengths in Polar Coordinates

Dirac Matrices and Lorentz Spinors

6.4 Superposition of Linear Plane Progressive Waves

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

Every set of first-order formulas is equivalent to an independent set

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Partial Trace and Partial Transpose

O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions

ECE 468: Digital Image Processing. Lecture 8

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants

Matrices and Determinants

SOLVING CUBICS AND QUARTICS BY RADICALS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

MA 342N Assignment 1 Due 24 February 2016

Solutions to Exercise Sheet 5

derivation of the Laplacian from rectangular to spherical coordinates

Second Order Partial Differential Equations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

Problem Set 3: Solutions

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Areas and Lengths in Polar Coordinates

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

The Feynman-Vernon Influence Functional Approach in QED

Transcript:

Physics 8.33 Section 9: Quantum Electrodynamics May c W. Taylor 8.33 Section 9: QED / 6

9. Feynman rules for QED Field content: A µ(x) gauge field, ψ(x) Dirac spinor Action Z» S = d x ψ(iγ µ D µ m)ψ Z F =» d x ψ(i/ m)ψ ea µ ψγ µ ψ FµνFµν Feynman rules: Fermion propagator Photon propagator EM coupling vertex p k µ ν i a b µ i /p m + iε k + iε ieγ µ ab (gµν ( ξ) kµkν k ) (Feyn. gauge ξ = ) Incoming photon: ɛ µ, outgoing photon: (ɛ µ ) Incoming fermion/antifermion: u s (p)/ v s (p) Outgoing fermion/antifermion: ū s (p)/v s (p) c W. Taylor 8.33 Section 9: QED / 6

Comments on QED Feynman rules (momentum) arrows on external edges: incoming/outgoing p conserved at vertices R over undetermined momenta signs: must fix order of in/out fermions loops contribute (-) factor! Example: a ( ψψ)( ψψ)a + (note: ( ψψ) commutes) Fermion loop: ( ψψ)( ψψ)( ψψ) Can now compute general diagrams, e.g. e e e e : e- e- e- + e- e + e e + e, e + e γγ : homework e- e- e- e- c W. Taylor 8.33 Section 9: QED 3 / 6

Example: e + e µ + µ Basic reaction in e + e colliders used to calibrate. m µ 5.7MeV m e e, µ, τ 3 generations of leptons. Z S = [ ψ e(i /D m e)ψ e + ψ µ(i /D m µ)ψ µ FµνFµν ] same Feynman rules, fermions are e ± or µ ±. µ - k, r p, s e - µ + k, r q = p + p p, s e + im = [ v s (p )( ieγ µ )u s (p)][ igµν ][ū r (k)( ieγ ν )v r (k )] q Using ( vγ µ u) = u γ µ+ γ v = u γ γ µ v = ūγ µ v M = e ` v(p )γ µ u(p)ū(p)γ ν v(p ) `ū(k)γ µv(k ) v(k )γ νu(k) q average over initial s, s, sum over final r, r X M(s, s r, r ) = e q Tr[( /p m e)γ µ (/p + m e)γ ν ]Tr[(/k + m µ)γ µ(/k m µ)γ ν] s,s,r,r c W. Taylor 8.33 Section 9: QED / 6

X Me + e µ + µ = e q Tr[( /p m e)γ µ (/p + m e)γ ν ]Tr[(/k + m µ)γ µ(/k m µ)γ ν] Need Tr γ µ γ ν, Tr γ µ γ ν γ λ,... Tr(γ µ... γ µ k+ ) = Tr(γ 5 γ 5 γ µ... γ µ k+ ) = Tr(γ µ γ ν ) = Tr(γµ γ ν + γ ν γ µ ) = Tr (a)(g µν ) = g µν Tr(γ µ γ ν γ λ γ σ ) = (g µν g λσ g µλ g νσ + g µσ g νλ ) Tr[(/p m)γ µ (/p + m)γ ν ] = [ g µν (p p + m ) + p µ p ν + p ν p µ ] So (k k )(p p ) terms cancel and X h M = e (k p)(k p ) + (k p )(k i p) + m µ(p p ) + m e(k k ) + m em q µ spins = e s [(m e + m µ) + (m e + m µ)(s t u) + (t + u )] (s = (p + p ), t = (p k), u = (p k ) ; k k = s m µ, p k = t m e m µ,...) c W. Taylor 8.33 Section 9: QED 5 / 6

X spins M eē µ µ = e q h (k p)(k p ) + (k p )(k i p) + m µ(p p ) + m e(k k ) + m em µ Assume E m e, set m e ; OK since me M µ ; write m = mµ Kinematics in center of mass (COM) frame p = (E, Eẑ) k = (E, k) p = (E, Eẑ) k = (E, k) where k + m = E, k z = k cos θ. q = (p + p ) = E (= s) p p = E p k = p k = E E k cos θ p k = p k = E + E k cos θ X spins M = e E [m E + (E E k cos θ) + (E + E k cos θ) ] = e [( + m m ) + ( E E ) cos θ] c W. Taylor 8.33 Section 9: QED 6 / 6

For E m e, e + e µ + µ matrix element X M = e [( + m m ) + ( E E ) cos θ] spins Thus ( dσ dω )cm = E (v) k π (E ( X M ) cm) = r α»( m + m m ) + ( 6E E E E ) cos θ [v, E cm E] Using R dω = R π sin θdθ R π, R cos θ π/3, r σ tot = πα m m ( + 3Ecm E E ) For E m, dσ dω cm α E cm ( + cos θ) σ tot πα 3E cm [Note: Couplings + dim. analysis σ α E ; just need π 3 ] c W. Taylor 8.33 Section 9: QED 7 / 6

q σ tot = πα m ( + m ) p (E m)/m for E = m + ɛ 3Ecm E E Compare with tau particle production: σ(e + e τ + τ )/σ(e + e µ + µ ) Experimentally measured τ + τ production, fit gives m τ 78 ± 7 MeV [P & S] c W. Taylor 8.33 Section 9: QED 8 / 6

Helicity structure Take ultrarelativistic limit m e, m µ (E m e, m µ) ξl Helicities separate. Compute, e.g. σ(e R e+ L µ R µ+ L ) ξ R + γ 5 ξ η Write (in general spinor representation) γ 5 = γ 5 = η ξ η = ξ P ± = ± γ5 P ± = P ± P ±P = projection ops. P ±u(p) R L spinor R L fermion P±v(p) L R antifermion To select e R/L, insert v(p )γ µ ± γ 5 u(p) = v (p ) e R/L annihilates only with e+ L/R (photon is spin ) ± γ 5 γ γ µ u(p) c W. Taylor 8.33 Section 9: QED 9 / 6

Example: e R e+ L M = X µ R µ+ L e s,s,r,r q ` v(p )γ µ P +u(p)ū(p)γ ν P +v(p ) `ū(k)γ µp +v(k ) v(k )γ νp +u(k) Tr[/p γ µ P ±/pγ ν P ±] = Tr[/p γ µ /pγ ν ± γ 5 So M = e q Similarly, So as promised i ] = h g µν (p p ) + p µ p ν + p ν p µ iε αµβν p αp β h (p k)(p k ) + (p k )(p k) + ε αµβν ε ρµσνp αp β k ρ k σi = 6e q (p k )(p k) = e ( + cos θ) dσ dω (e R e + L µ R µ + L ) = α ( + cos θ) Ecm e L e + R µ L µ + R : e R e + L µ L µ + R, e L e + R µ R µ + L : α Ecm α Ecm X α ( + cos θ) Ecm ( + cos θ) ( cos θ) c W. Taylor 8.33 Section 9: QED / 6

NR limit E m µ (E still m e) Choose e R e+ L, p = Eẑ u(p) = EB @ v(p )γ µ u(p) = E ( ) C A σ µ σ µ v(p ) = E B @ B Photon has J z =, ε + = (ˆx + iŷ); how about ū(k)γ µ v(k )? u(k) = ξ m ξ v(k ) = ξ m ξ M(e R e + L µ µ + ) = e q ( 8mEξ» M = e Tr ξξ θ indep., need J z = ξ = ξ ξ, ξ = @ C A C A = E(,, i, ) j ū(k)γ µ v(k, µ = ) = mξ σ i ξ, µ = i ξ ) = e ξ = e dσ dω Spin avg.: ξ α (erē L µµ) = k Ecm E dσ dω = α E cm c W. Taylor 8.33 Section 9: QED / 6 k E

9.3 Recall scalar QED: p p µ ie(p + p ) µ B -p B Consider A + φ B, A φ + B vs. p φ A A im(a + φ(p) B) = im(a B + φ( p)) [as function of p] Only of p >, p > only one physical process. Related by analytic continuation. Same for fermions, if choose phases cleverly. With PS conventions, P u(p)ū(p) = /p + m = ( /p m) = P v( p) v( p) so ( ) for each crossing : = c W. Taylor 8.33 Section 9: QED / 6

Example: e µ e µ µ X spins - A k, r p, s e - µ + k, r q = p + p p, s e + M B = e q Tr `(/p + m e)γ µ (/p + m e)γ ν Tr = ( ) X MA(p = p, k = k ) e - B p e - p q = p - p µ - k k µ - (/k + m µ)γ µ(/k + m µ)γ ν For E m µ, X MA = e s (t + u ) crossing: s t, t u, u s X MB = e t (s + u ) Note: kinematics very different. dσ α = dω Ecm( cos θ) ( + ( + cos θ) ) as θ θ cm (cp. Rutherford cross-section) c W. Taylor 8.33 Section 9: QED 3 / 6

9.3 : e γ e γ p p + k k k p + p - k p p k k im = ( ie )ε µ ε ν `ū(p )γ µ (/p + /k + m)γ ν u(p) + ( ie )ε s m u m Note: (/p + m)γ µ u(p) = p µ u(p) γ µ (/p m)u(p) µ ε ν» im = ie ε µ ε νū(p γ µ /kγ ν + γ µ p ν ) + γν /k γ µ + γ ν p µ u(p) p k p k Gauge invariance (Ward Id.) [prove in general later] ff ε µ ε µ + ak µ ε µ ε µ + ak µ im = (as for scalar Compton) Need to sum Σε µε ν; Assume k µ = (k,,, k) Σε µε ν = B @ `ū(p )γ ν (/p /k + m)γ µ u(p) C A c W. Taylor 8.33 Section 9: QED / 6

Write M = M µ ε µ M = Σε v M v M µ ε µ Ward Identity M + M 3 = M = M 3 M = Σg µνm µ M ν = M + M + M + M 3 Valid for all k so Σε µε ν g µν Matrix element for e γ e γ» im = ie ε µ ε νū(p γ µ /kγ ν + γ µ p ν ) + γν /k γ µ + γ ν p µ u(p) p k p k Σ spins M G µνρσ AA = = e High energy: E m e» Tr + G µνρσ BA (/p + m) γµ /kγ ν + γ µ p ν gµρgνσ [Gµνρσ AA p k + G µνρσ AB + G µνρσ BB ] (/p + m) γσ /kγ ρ + γ σ p ρ p k Σ = e s Tr ˆγ µ /p γ µ(/p + /k)γ ν /pγ ν(/p + /k) + AB + BA + BB,... c W. Taylor 8.33 Section 9: QED 5 / 6

Compute AA contribution with γ µ /pγ µ = /p: Σ M = e s Tr ˆγ µ /p γ µ(/p + /k)γ ν /pγ ν(/p + /k) = e s Tr `/p (/p + /k)/p(/p + /k) = e s Tr `/p /k/p/k = 8e s (p k)(p k) = e u s AB = BA = BB e s/u exchange s and u (Recall: in COM frame, Σ M = e u s + s u dσ d cos θ = πα s u s s u dσ dσ = π = πα d cos θ dω s Full cross-section in lab frame (p = ): Klein-Nishina M e ) (COM frame) dσ d cos θ = πα ω» ω m ω ω + ω ω sin θ (notation: /ω /ω = ( cos θ)/m, k = (ω,,, ω), k = (ω, ω sin θ,, ω cos θ)) Observe sin θ correction to ultrarelativistic calculation; Cp. problem 5 3: For ω, [ ] ( + cos θ) (same for φ) c W. Taylor 8.33 Section 9: QED 6 / 6