The Feynman-Vernon Influence Functional Approach in QED

Σχετικά έγγραφα
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solutions - Chapter 4

Higher Derivative Gravity Theories

Derivation of Optical-Bloch Equations

8.324 Relativistic Quantum Field Theory II

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Spherical Coordinates

Space-Time Symmetries

Srednicki Chapter 55

The Simply Typed Lambda Calculus

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Variational Wavefunction for the Helium Atom

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homework 3 Solutions

Second Order RLC Filters

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Constitutive Relations in Chiral Media

The Spiral of Theodorus, Numerical Analysis, and Special Functions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Optical Feedback Cooling in Optomechanical Systems

Lecture 21: Scattering and FGR

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Distances in Sierpiński Triangle Graphs

[1] P Q. Fig. 3.1

Dr. D. Dinev, Department of Structural Mechanics, UACEG

D Alembert s Solution to the Wave Equation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Local Approximation with Kernels

Relativistic particle dynamics and deformed symmetry

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Statistical Inference I Locally most powerful tests

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Partial Trace and Partial Transpose

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Geodesic Equations for the Wormhole Metric

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Reminders: linear functions

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

6.003: Signals and Systems. Modulation

Example Sheet 3 Solutions

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Section 8.3 Trigonometric Equations

Dark matter from Dark Energy-Baryonic Matter Couplings

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

3+1 Splitting of the Generalized Harmonic Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Graded Refractive-Index

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solutions to Exercise Sheet 5

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

EE512: Error Control Coding

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

1 String with massive end-points

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lectures on Quantum sine-gordon Models

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Forced Pendulum Numerical approach

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Matrices and Determinants

SPECIAL FUNCTIONS and POLYNOMIALS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Non-Gaussianity from Lifshitz Scalar

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Second Order Partial Differential Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Math221: HW# 1 solutions

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

An Inventory of Continuous Distributions

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

w o = R 1 p. (1) R = p =. = 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Quantum Electrodynamics

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Note: Please use the actual date you accessed this material in your citation.

( y) Partial Differential Equations

CRASH COURSE IN PRECALCULUS

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Transcript:

The Feynman-Vernon Influence Functional Approach in QED Mark Shleenkov, Alexander Biryukov Samara State University General and Theoretical Physics Department The XXII International Workshop High Energy Physics and Quantum Field Theory June 24 July 1, 2015 Samara, Russia

The Feynman-Vernon Influence Functional approach R.P. Feynman, F.L. Vernon, Jr. The Theory of a General Quantum System Interacting with a Linear Dissipative System, Annals of Physics 24, 118 173. «... It is shown that the effect of the external systems in such a formalism [paths integral formalism] can always be included in a general class of functionals (influence functionals) of the coordinates of the system only...»

Quantum electrodynamics QED Lagrangian where L(x) = ψ(x)(ıγ µ µ m)ψ(x) 1 4 F µν(x)f µν (x) ej µ (x)a µ (x) (1) F µν (x) = µ A µ (x) ν A µ (x) (2) j µ (x) = ψ(x)γ µ ψ(x) (3)

Quantum electrodynamics ˆψ(x, t) = ˆ ψ(x, t) = p,σ=1,2 p,σ=1,2 Â µ (x, t) = 1 2V ω p (f) 1 2V ω (f) p k,λ=1,2 (ˆbpσ u σ (p)e ıpx + ĉ pσu σ ( p)e ıpx ), (4) (ˆb pσ u σ (p)e ıpx + ĉ pσ u σ ( p)e ıpx ), (5) ĵ µ (x, t) = ˆψ(x, t)γ µ ˆψ(x, t) (6) 1 ) ε µ 2V ω (b) λ (â kλ e ıkx + â kλ e ıkx (7) k

Quantum electrodynamics Second quantization where Ĥ full = p,σ=1,2 +e ĵ µ + (k, t) = k,λ=1,2 ω (f) p (ˆb pσˆbpσ + ĉ pσĉ pσ ) + ı 2ω (b) k V k,λ=1,2 ω (b) k â kλâkλ+ ( ) ε µ λĵ+ µ (k, t)â kλ + ε µ λ ĵ µ (k, t)â kλ ĵ µ (x, t)e ıkx dx, ĵµ (k, t) = (8) ĵ µ (x, t)e ıkx dx (9)

Evolution equation for statistical operator Evolution equation for statistical operator ˆρ(t f ) ˆρ(t f ) = Û(t f, t in )ˆρ(t in )Û (t f, t in ) (10) where ˆρ(t in ) is statistical operator, describing initial state at moment t in, Û(t f, t in ) evolution operator. where Ĥfull: Û(t f, t in ) = ˆT exp[ ı tf t in Ĥ full (τ)dτ]. (11) Ĥ full = Ĥsys + Ĥfield + Ĥint (12)

Holomorphic representation Evolution equation for density matrix in holomorphic representation θ pλ, α kλ = θ pλ α kλ The density matrix: The kernel of evolution operator: The evolution equation: ρ(α f, θ f, α f, θ f; t f ) = θ f, α f ˆρ(t f ) θ f, α f (13) U(α f, θ f, t f α in, θ in, t in ) = θ f, α f Û(t f, t in ) θ in, α in (14) ρ(α f, θ f, α f, θ f; t f ) = d 2 α in d 2 θ in d 2 α in d 2 θ in U(α f, θ f, t f α in, θ in, t in )ρ(α in, θ in, α in, θ in; t in )U (α f, θ f, t f α in, θ in; t in ) (15)

Holomorphic representation Coherent states for electromagetic field â kλ α kλ = α kλ α kλ, α kλ â kλ = α kλ α kλ, (16) where α kλ complex value, which describe states k mode of quantum electromagnetic field. These states ( α ) are non-orthogonal: { α k λ α kλ = δ k kδ λ λ exp 1 ( α 2 k λ 2 + α kλ 2 2α k λ α ) } kλ. (17) There is resolution of the identity operator: α kλ α kλ d2 α kλ = ˆ1. (18)

Holomorphic representation Grassman states for Dirac field ˆbp,σ θ p,σ = θ p,σ θ p,σ, θ p,σ ˆb p,σ = θ p,σ θ p,σ, (19) where θ p,σ grassman variable. These states ( θ ) are non-orthogonal: { θ p σ θ pσ = δ p pδ σ σ exp 1 ( θ p 2 σ θ p σ + θ pσθ pσ 2θ p σ pσ) } θ. (20) There is resolution of the identity operator: θ pσ θ pσ d2 θ pσ = ˆ1. (21)

The kernel of evolution operator as a path integral The kernel of evolution operator U(αf, θ f, t f α f, θ f, t in ) = Dα (τ)dα(τ)dθ(τ)dθ(τ) exp { ıs full [ α (τ), α(τ), θ(τ), θ(τ) ]}, (22) where action S full [ α (τ), α(τ), θ(τ), θ(τ) ] = = S f [ θ(τ), θ(τ) ] + Sb [α (τ), α(τ)] + S int [ α (τ), α(τ), θ(τ), θ(τ) ]. (23)

The kernel of evolution operator as a path integral Action of fermionic field: ( ) [ ] tf θ(τ)θ(τ) θ(τ) θ(τ) S f θ(τ), θ(τ) = ω (f) θ(τ)θ(τ) dτ (24) 2ı Action of bosonic field: S b [α (τ), α(τ)] = Action of interaction part: tf t in t in S int [ α (τ), α(τ), θ(τ), θ(τ) ] = ( α (τ)α(τ) α (τ) α(τ) tf 2ı ) ω (b) α (τ)α(τ) dτ (25) t in ej µ (θ(τ), θ(τ))(ε µα (τ) + ε µ α(τ))]dτ; (26)

The Feynman-Vernon influence functional Evolution of density matrix in paths integral formulation We have ρ(α f, θ f, α f, θ f; t f ) = d 2 α in d 2 θ in d 2 α in d 2 θ in ρ(α in, θ in, α in, θ in; t in ) Dα (τ)dα(τ)dθ(τ)dθ(τ)dα (τ)dα (τ)dθ (τ)dθ (τ) { [ exp ı (S full α (τ), α(τ), θ(τ), θ(τ) ] [ ])} S full α (τ), α (τ), θ (τ), θ (τ), (27)

The Feynman-Vernon influence functional Fermionic density matrix and influence functional ρ(θ f, θ f ; t f ) = Sp αf =α ρ(α f f, θ f, θ f, α f ; t f ) = dθ f dθ f Dθ(τ)Dθ(τ)Dθ (τ)dθ (τ)dθ indθ in { ( )} exp ı S f [θ(τ), θ(τ)] S f [θ (τ), θ (τ)] F [θ(τ), θ (τ)] (28) where F [θ(τ), θ (τ)] is influence functional of electromagnetic field on fermionic subsystems. F [θ(τ), θ (τ)] = Sp αf =α Dα (τ)dα(τ)dα (τ)dα (τ) d2 α in d 2 α in f ρ(α in, θ in, α in, θ in; t in) { exp ı (S b [α [ (τ), α(τ)] + S int α (τ), α(τ), θ(τ), θ(τ) ] [ S b α (τ), α (τ) ] [ ])} S int α (τ), α (τ), θ (τ), θ (τ) In many cases, we can choose at initial moment t in ρ(α in, θ in, α in, θ in; t in ) = ρ f (θ in, θ in; t in ) ρ b (α in, α in; t in ) (30) (29)

where S infl [ α (τ), α(τ), θ(τ), θ(τ) ] = S b [α (τ), α(τ)] + S int [ α (τ), α(τ), θ(τ), θ(τ) ]. In general, influence functional (26) describes the influence (action) of electromagnetic field on fermionic field. The Feynman-Vernon Influence Functional Approach in QED The Feynman-Vernon influence functional Influence functional of electromagnetic field F [θ(τ), θ (τ)] = Sp αf =α f d 2 α in d 2 α in U infl (α f, θ f, t f α in, θ in, t in )ρ(α in, θ in, α in, θ in; t in )U infl(α f, θ f, t f α in, θ in; t in ) (31) where U infl (αf, θ f, t f α in, θ in, t in ) is electromagnetic field transition amplitude from initial state α in to final state αf inducing by external source j: U infl (αf, θ f, t f α in, θ in, t in ) = Dα (τ)dα(τ) exp {ıs infl [α (τ), α(τ), x(τ)]} (32)

The Feynman-Vernon influence functional Functional integration over electromagnetic field paths U infl (αf, θ f, t f α in, θ in, t in ) = exp e ıω(t f t in) αf α in e 2 ıα in e For multimode field without interaction between modes t f t in t f τ t in t in ε µ j + µ (τ)e ıω(τ tin) dτ ıα f e ε µ j µ + (τ)ε ν jν (τ )e ıω(τ τ ) dτdτ t f t in ε µ jµ (τ)e ıω(tf τ) dτ (33) U infl = k U (k) infl (34)

The Feynman-Vernon influence functional = k,λ=1,2 ıα (in) kλ exp e ıω k(t f t in) α (f) kλ α(in) kλ e2 2ω k V e 2ωk V k,λ t f t in t f τ t in t in ε µ λ j+ µ (k, τ)e ıωk(τ tin) dτ ıα (f) kλ = exp e ıω k(t f t in) αf α in e2 2ω k V e ıα in 2ωk V t f t in t f τ t in t in U infl (α f, θ f, t f α in, θ in, t in ) = ε µ λ j+ µ (k, τ)ε ν λ j ν (k, τ )e ıω k(τ τ ) dτdτ e 2ωk V ε µ λ j+ µ (k, τ)e ıωk(τ tin) dτ ıαf e 2ωk V t f t in ε µ λ j µ (k, τ)e ıω k(t f τ) dτ = ε µ λ j+ µ (k, τ)ε ν λ j ν (k, τ )e ıω k(τ τ ) dτdτ t f t in ε µ λ j µ (k, τ)e ıω k(t f τ) dτ (35)

Influence functional of electromagnetic field vacuum Vacuum influence functional For the case when initial and final states of electromagnetic field are vacuum: φ in (α in ) = α in 0 = exp { 12 } α in 2, φ f(α f ) = 0 α f = exp { 12 } α f 2. (36) We define influence functional of electromagnetic vacuum = exp k,λ e 2 2ω k V t in t in F vac vac [θ(τ), θ (τ)] = d 2 α f d 2 α f d 2 α in d 2 α in ρ f (θ in, θ in; t in) φ f (α f )U infl (αf, θ f, t f α in, θ in, t in)φ in(α in)φ in(α in)u infl(α f, θ f, t f α in, θ in; t in)φ f (α f ) = t f τ ( ε µ λ j+ µ (k, τ)ε ν λ jν (k, τ )e ıω k(τ τ ) dτdτ + ε µ λ j + µ (k, τ)ε ν λ j ν (k, τ )e ıω k(τ τ ) dτdτ ) (37)

From sum over k to integral: V (2) dk 3 k = e2 4ı = e2 (2) 3 t f τ t in t in = e2 (2) 3 t f τ t in t in k t f τ t in t in 1 2ω k [ λ e 2 2ω k V 1 2ω k ε µ λ ε ν λ t f τ t in t in [ ] λ [ λ ε µ λ ε ν λ ] ε µ λ εnu λ [ ( ) ] 1 2ıdk (2) 3 ε µ λ ω ε ν λ e ık(x x ) e ıω(τ τ ) dk k λ }{{} D µν (x x,τ τ ) where D µν (x x, τ τ ) is photon propagator 1. 1 V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii Quantum Electrodynamics ] j + µ (k, τ)j ν (k, τ )e ıω k(τ τ ) dτdτ = j + µ (k, τ)j ν (k, τ )e ıω(τ τ ) dxdx dkdτdτ = j µ (x, τ)j ν (x, τ )e ık(x x ) e ıω(τ τ ) dxdx dkdτdτ = j µ (x, τ)j ν (x, τ )dxdx dτdτ

Influence functional of electromagnetic field vacuum F vac vac [θ(τ), θ (τ)] = exp e2 4ı e2 4ı t f τ t in t in t f τ t in t in j µ (x, τ)d µν (x x, τ τ )j ν (x, τ )dxdx dτdτ j µ(x, τ)d µν (x x, τ τ )j ν(x, τ )dxdx dτdτ (38) For t f, t in we have relativistic invariant influence functional of electromagnetic vacuum: F vac vac [θ(τ), θ (τ)] = exp { e2 4ı (jµ (x)d µν (x x )j ν (x ) + j µ(x)d µν (x x )j ν(x ) ) d 4 xd 4 x } (39)

Influence functional of electromagnetic field vacuum So we have effective non-local Lagrangian L = ψ(x)(ıγ µ µ m)ψ(x) + e2 4 j µ(x) D µν (x x )j ν (x )dx (40)

Thanks for your attention!