Archive of SID ! "#$ (SAGD) %$ + KI +A R+9 %$ + %$ *+ 6,/ % FG 9 $ (SAGD) "#$ % &'( ) * % %$ +!

Σχετικά έγγραφα
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

Οδηγοί εξοικονόμησης ενέργειας στη βιομηχανία


!"!# ""$ %%"" %$" &" %" "!'! " #$!

High order interpolation function for surface contact problem

! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+

APPENDIX A. Summary of the English Engineering (EE) System of Units

PETROSKILLS COPYRIGHT

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

PETROSKILLS COPYRIGHT

DuPont Suva 95 Refrigerant

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Design Method of Ball Mill by Discrete Element Method

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

Το άτομο του Υδρογόνου

Department of Mechanical Engineering, University of Tabriz, Iran Department of Mechanical Engineering, University of Tabriz, Iran

M p f(p, q) = (p + q) O(1)

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Applying Markov Decision Processes to Role-playing Game

Conductivity Logging for Thermal Spring Well

/&25*+* 24.&6,2(2**02)' 24


Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

A A O B C C A A. A0 = A 45 A 1 = B Q Ak 2. Ak 1

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards


DuPont Suva 95 Refrigerant

Erkki Mäkinen ja Timo Poranen Algoritmit

Florida State University Libraries

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΑΠΟ ΤΗΝ ΟΙΚΙΑΚΗ ΧΡΗΣΗ ΙΑΦΟΡΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

a,b a f a = , , r = = r = T

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Journal of the Institute of Science and Engineering. Chuo University

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

PETROSKILLS COPYRIGHT

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

ER-Tree (Extended R*-Tree)

STEAM TABLES. Mollier Diagram

Προσαρμογή περιοχικών υδρολογικών σχέσεων στις Ελληνικές λεκάνες

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

A research on the influence of dummy activity on float in an AOA network and its amendments

Ministry of Energy and Mineral Resources (MEMR), The Republic of Indonesia. Study on The Optimal Electric Power Development and Operation in Indonesia

MICROMASTER Vector MIDIMASTER Vector

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

-! " #!$ %& ' %( #! )! ' 2003

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

College of Life Science, Dalian Nationalities University, Dalian , PR China.

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

Dynamic Stability Analysis of Cylindrical Grinding Machine under Self Excited Chatter Vibration

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ


E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

; +302 ; +313; +320,.

1. Από την αρχική σελίδα του web site του ΙΚΑ επιλέγετε την ελληνική σημαία για να εισέλθετε στην κεντρική σελίδα του ΙΚΑ.

Japanese Fuzzy String Matching in Cooking Recipes

:JEL. F 15, F 13, C 51, C 33, C 13

Buried Markov Model Pairwise

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

Industrial Furnace , ; 2. :A : 蛳 0001 蛳 08. Simulations of Gas Flow and Heat Transfer in Blast Furnace

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

CorV CVAC. CorV TU317. 1

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16


P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

!! " # $%&'() * & +(&( 2010

E62-TAB AC Series Features

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

)# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/ :8;434(

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Η Διδακτική Ενότητα «Γνωρίζω τον Υπολογιστή», στα πλαίσια των Προγραμμάτων Σπουδών της Πληροφορικής: μια Μελέτη Περίπτωσης.

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

! " #$% & '()()*+.,/0.

A/m

)))*+,-!-)#..!""-#)/..+-$-*..-!--+ -*

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Transcript:

(SAGD)! "#$ + *! " #$ %! &"' #( )* 7 8 (SAGD) 2 -. + 345 6 "1 0+,! -. +&1 + * 7 Coats 7 >?@. #! < * MATLAB )9 Coats " F& A 0 0+,! "E. C D +< A (" B5 "1 LM. #! JK SAGD "1 @"! GH <I - &. #! #& )2 0 N! AA +. " ) +K&.! 0+,! * AA. A A B 7 O +" 4 - "E.! AA IMPES (SAGD) 2 -. + 345 6 0 +,! KEY WORDS Simulation, Steam-assisted gravity drainage (SAGD), IMPES, Preheating. %$ + KI +A 4@ R+9 %$ + %$ *+ 6, % FG 9 $ %! + KI '9 0 R+9 4 6 4@ %$,<+9 2 " % " < 8 =., +1S % #9 T+ 9, #P9 4. %, *= #6 % 41 UV.[],+ X-,<+9 2 %!+ +A %,<2 W@ Saskatchewan Alberta SAGD, G9 '+ 6"P9 19, *P!J %. $,$9 ] ^!O +FJ JI,<+9 [ \G9 G3 6<@ SAGD, 6%F _&` FO K9 6%F R+9-60, *K.+ + % %. + CMG (STARS) + E-mail pishvaie@sharif.edu ( Q) Steam flooding () (SAGD) "#$ % &'( ) * % %$ +! ' 2 SAGD 0+#1, "., %!- 9 8 2.,+ 3 4 56 7+ % 4$ *= +> %.+,<+9 2 DBC9 %$ +A % + 9 4@ =?6$ % % FG!H <2 &E % %!? J 2 # % $3,.,! 4I % %$ +C % 5!G %,6 = K?= ( 03 %3 %$ LM + F'9,$ $3,6 PH9 ( "O9) NF,. ( P) 3A "#$ % &'( ), %1+9 Q,6 B,*$ #* $

% &'(,&$ 6!,19 %,E 0, G3 j#6., %J [e] 4P#6 Barillas akkg 0 +I 4@ #6 J9 %$ #6 4 " 9.,@ (c) % CMG (STARS) *! + \* G (d9 +#E 9 %$,, %I+! 64@!H T 5$ k v k h FG %$ 6. 2 (d9 = ' 9 > 6!.,,6+- 4 l ( j#6 64@., %J.,$ MATLAB * "#$ % %F " l3 $., %!-, %F 71<M % UV,,<+9., @ >? %S- +A %,! 3 )., I? =? 4, SAGD,,! T9 FG > 4 9&#E 6! G3 <@ T2 +#E %&S T 9 H T = *,$ 6 m9 6(., *K %!+ _l 2 N1., nc 6! NF % 4, 9,+9 SAGD, %$ K@ J 6! o$ m9 T,$,<+9,#O T03 p.,p6+- +I GP p 4p (h) G $ % FG 4 4+2 G3 p<@. G ^!O,' #E p$ qc< %p$ p9,$ "#$ p %p,p!g6 SAGD,p p p!j p6%p= ^!O.5$ 0? =?, *K $ J9 9,#E SAGD, " Kovscek Elliot R+9 bbb +6? =? +.[g], *K %62 "9.!H 6 71<M % %62 0+#1 SAGD, P&#E %G' K., *K? =? 4,? =?.,6 4H? =? 7&#E *K 7l %G'? =? 7! 7, % FG, P&#E j#6., Oil reservoi Steam injection well Steam flows to interface and.sagd -., "! bbc [a] 4P#6 Kamath = > 4 #6 %$,E,1 0, <@., *K SAGD, G3 <@ " %< W@ NF T&M 9 T&9 6! FG (d9 () T $ T T4 D 9 TBC! (a) & \ T,<+9 9 2 %&S T' 2 0+A.,K % <3 " % FG 62 FI %&S 6! % FG,S %1<M D 9 SAGD, P&#E.,+,, 8 FG T& \ +F T BC! %< W@ NF T8 62 %J +#E %&S ' % +#E 9,<+9 62 FI %&S., +FJ #H2 +A %. D=(9 ] #E %< 64 JH %1<M bbe [c] Yeung Kisman FG ( %$ % <3,1,E 0, "! T = T4I \+ T =, 6+!$., *K $ fh 2 4P 0+&C = TFG 9 '#E %1<M [h] 4P#6 Nasr bbg 0,E 6H @! SAGD, <@ JI SAGD 2%#H2 %F 9 (d9 64@., *K D= `@ %&3 #6 %1<M.,$.,6 4H, %$,? `@, 4 7, 9?6$. &'( ), $ 9 #6,6 4H ( Q) injectivity ( S) Barrier ( T) Shale barrier ( U) SOR (Steam Oil Ratoi) *+ Heated oil flows to well Production well oil and condensate era drained )

... -.50.'34 50 12 = J %I _G3 4@ %$ [] Tikhomirov R+9 %<1. Btu hr.ft. F _G3., JH [a] Farouq Ali R+9 %, 7+S % H % W@ <2!G ρ ρ i i,ref 1 = + ζ (p p ) β (T T ) i ref i ref (rr) 0,I 6 V<!@ <2 %FC,! 1 9279 10 00255 53 14 201 96 4 s exp( T) T ρ = < 0 5 10 201 96 11 4 2694 ρ = T T s 9469 85 87 2545 0 299668 2 H = + T T + s 5 4361 10 5 46484 10 2 88759 10 6 28068 10 4 3 7 4 T T + 10 5 14 6 T T (rs) (c) (rv)., P %I _G3 T Btu lbm _G3 H.,%!= > M- 19 ] % FG 9 %FC [c] Stone I 0,.,! 6 %M % 5!G,#O NF S om.,! [h] Matthews Fayers R+9, %} %$, 4H,$ %? @ 6 64@ Stone II 0, 8 ), %FC S om Stone I 0, 6 V<!@ %FC.[e h] CI! V<!@ ] P + 9 %M W@ 7+S % H 7m9 % &9!G.,.[g], %!= > φ = φ exp[c (p p )] φ [ + c (p p )] 0 R 0 0 R 0 1 (e) T % &9 TH % 78 =!G ()!G6 ( 2 56 H % FG 9!G., > QS NF %M T 0,I 6!., #9 H _G3 36 87 112 21 008854 25 T = ln(p) + p < ( Q) Hysteresis (g) &' %! ( *I %+ 781,9FE % 5$3 6%<1 0 E.((a) %<1 ) ] %+ ( %<1 ) 6.+ I ((c) %<1 ) %<1 %<1 J2 ( φρ is i ).( ρ iu i ) ρ iq = i t.(ak H T) +.( ρ whwuw + ρ ohouo + ρ ghgu g ) + qh + ql = Vb t [( 1 φ) ρ U + φ(s ρ U + S ρ U + S ρ U )] u i kk = µ R R w w w o o o g g g i ri o w g.[p ρ g] i,+ S + S + S =1 p = p p = f (s ) cow o w w p = p p = f (s ) cog g o g i 0! FI 781 j#6 P#$ 781 8 &S 6 %<1 E %<1.+! 0 y z+- 19!= >.,! = %FC [{] Walther log[log( µ o + a)] = b + c log(t + 460) ({) _G3 = J %I _G3 %$ I., cp.[ Tb], % Yao R+9 W@ = (T ) 1 562 µ = 0 6612 229 0 ( ) w [k] + %FC %M = 0 546807 3 83050 10 104938 10 1 42291 10 9 49798 10 2 49747 10 3 s T 5 2 8 3 T + T 12 4 15 5 T + T µ = +., cp _G3 = R _G3 4@ %$, = _l #9 JI %M.+! 8 788 0 6 62 4 0 6 460 k = exp ( ρ + S )(T + ) 055 H R w (r) (s) (t) (v) (w) (x) (b) (k)

% &'( % +H e? P9,19 %$ 9+S j#6, ^ %&3 4#6 *=,,H #6 +6 ) %$ K@.+ %FC %&3 4@ 0#E % %,, 6m9 %$ T, IMPES G 6*= % X!3 +, % + %>C< <,<+9 `@ 8+#1,, 6m9.5 "2+.+,6H,@ +I % % %$ = 9,<+9,? 6.,! [ ] Coats R+9, %} #l,! 0, F!E,9 [b] m.+,6h c P M9., @ % +- M9 +I *,E +I P %$ $, 79, m 4, _I+ = Q9., = Q9 c P.+ *K 9 %K! %! > = Q9 %$ %F 6%K!.,$?!H,- + )*' +#E = k,1 0, " p 4 0, %F R+9 cft ft B+&, ' = e, @ 0,I 4 7S+^-., I 0 " 60,I, )= FG 9 6 j#6. 4 D= "O9, +C.,! c a., 4H a P 4 2! +*1 0 '. k 9 m9. {ge x k y %< FG 6m9 (.+, a %,' +#E +#E 9?., 4H e h 6P 9,<+9 2 ƒf9 JI *8 4?6$ ne N 9,<+9, *= 9\ %K!.+!H 94@ +#E ƒf9 &E % j#6.+.+ % FG? ne %$,,<+9 NF. ce{ae cp %< = k e % =,' m9., g c cp %,'., I % T,' e ( Q) Tolerance 185 48 2 7005 00198 8 10 7 4 1 10 p 25 p 195 T = + p p + p T = ln(p) < p < 2 5 3 94 472 12016 195 600 5 2 404 44 01562 2 10 600 T = + p p p ({) ( ) (b) H J %I _G3 6%<1., psi _G3 2 0, ' 2 0, =,j?6$ 6+C %$ %+= %,! Peaceman +#E \O., ' 2 # 9 +,-2 %I bk.[{],+ KI z y 6+C [ ] 4P#6 Coats ) %,! 3 ) T 1O % 0,p p!h P JI 03 p., %<1 +?= 7FE Coats 0, Q-, _l j#6,, qc< ] %+ %!= > W@ NF Ty <2 19 4+E % p(,',p? Coats %p$ <p3., ),<+9 &S *P %$,$ %I+9. %!= > ' %<1?= 4+9# T?= SAGD 3 ) +!H 7EA.$ >QS ] ) *= 0!$.,$ %1I [b] \I %., %} %&3 6 *8 P9,19 % 0!$ 6%F o$, %!= $ % 0+#1 ) m! " 7m9 o$,3,c 0#E T *= = %$ +A %., *= 6 (NF %I 8+#1 ) %!?6$ *= T$ m9 K 7m9? m! ).[{] + I %!#$ *=,! 4 6= *#9 NF %I Q!- 4$ "2 %! 7+S %$ J,. *= 6 4 9FC 4 % %F ~ ) %$ 9+S. *= W! 19 4, JI *8 P9,19 %G' % J9, %} () U<+9, 7+S % ). #6 % #6 JI P9 c 9 a % H, W! + c? #6 JI *8 P9,19 =..+ I ^ *=,1 %&3 T, #6 W+I %

... -.50.'34 50 12 Y Y < = >? @ A B C <? < = >? @ A B C <??? > > Gas Saturation after h{ days > Gas Saturation after ee days > = x >. J %I hea hcc _99 % 6H =., 4H b 6P 6%K! &E % 5$ H 9 T, %!, #6 2 %$,6 4H b P 0o. CI SOR?6$ 6H,<+9 4,S hk. cek psi H e a _99 % hck psi c k psi 98!H T,!H 9 H %26 &E %!H >!.+ 4 %! +I?!H =!H?6$. G 98 9 H T,J W+&M +I., 4, 56 (b P) 56+-!H SOR 56. *8!H ] +V#$ R+9 98 H % %J ^!O 0, " % %J 9 H fh9. ^!O Q,6 \9 = = = x < < < < > = = < <? > > = = < < < = >? @ A B C <?. SAGD - 9! 78.6, *+ Y Y < = >? @ A B C <? Gas Saturation after ek days = = x Gas Saturation after gk days?6$.,, 4H { g 6P 6%K! %K! + DBC9? ne = %$,6 4H { P.+!H 9\,<+9!H T ^H,'?6$.+,<+9!H = %$ 9 %K! T+,<+9 9\ 9 3 T=.+ K "O9 PH9 JI!H %K!,# 4!H + ne 6 SOR 6,' Q!-.,?6$,<+9 SOR.!#$ 79 %< 64 %$ <3 T!H 8?? > > > > = = x 4#3 +*1 0 '. %F. c k psi % <3 9 H., I hck psi cek psi 9 6H <3 < < < <? > > = = < <? > > = = < < "

% &'( <? SOR vs Time A Comparison between Experimental and Simulated Results <= @ SOR (lbmlbm) < B @?? > = = < < = = >..3 9! N. 10L M, *% A @? > = < < vs Time < = =.1& 1!. 1&.O M, @ *% Kxky = < Kxky = < <A@ Kxky = >?,!#$ %&S %2 6 T,? N+#K SOR 2.+ J 2 9\ 6%K!, m9 k ac ft k e ft % k cc ft 2 N1,!H 2 N1 %2 6.,, 4H a P S3,+9!H +!H #9 LM.+ 4.+,6+-!H,<+9!= N1,<+9 2 j#6 03. 4H N+l+ %F 6%K! SOR %>3 O m9 2 N1 m9., }I G <3 % 79, =,_@ 4, 2 4 %F T% <3 = Viscosity = (base case) Viscosity = base case Viscosity = < (base case) > >? < < Pore Volume Produced.JK I( ( G5H. E! F!4,> *%..50.1& 1!. 10L M,? *% %&S DP g ft 9,<+9 2 % <3 6%K!., I { ft h ft ' %F., 2 %&S %2 6.,, 4H k 6P %K! + O 9\ 2 ƒf9,!#$ %$,6 4H k P.+ N 9,<+9 4 H3 Q!-, `@ %$ +A4#6 03. +I 2 7! 6%&S J T <3 % 6, Ll+9?.,@ % 4 J,' GP F'9 64 4+9,<+9 % FG 2 %&S ( %&S?6$ p %$,p6 4H p!., P < A @? > = < < vs Time < = = Simulated Exprimental > = Kxky = = Kxky = < <A@ Kxky = > =? $

... -.50.'34 50 12 A @? > = vs Time Wells interval =? ft Wells interval = @ ft Wells interval = A ft SOR (lbmlbm) <= < B @? vs Time Viscosity = (base case) Viscosity = base case Viscosity = < (base case) < = SOR (lbmlbm) < < = = >.1& 1!. T.U.RS- M, <B <@ <? <= < B @? =.9! 3 N. T.URS- M, A @? > = < < Produced SOR vs Wells interval = Wells interval =? ft h Wells interval = @ ft Wells interval = Wells interval = A ft g = rw = => ft rw = >> ft rw = ft < >? vs Time < > ) *+ @ *+ A?.9! 3 N. 1&.O M,Q *+.1& 1!. 9! FN - M, # *+ = = > >? SOR (lbmlbm) A @? > = < = <B <@ <? <= < B @? = < < = Pinj = > psi Pinj = >B psi Pinj =?> psi Pinj = > Pinj = >B Pinj =?> < = >? vs Time < = = SOR vs >? > @ > @ A? A.1& 1!. T V' M, *+.9! 3 N. 9! FN - M, *+

% &'( SOR (lbmlbm) <= < B @? Produced SOR vs skin factor = > no damage skin factor = > A @? > = skin factor = > no damage skin factor = > vs Time = < < = >? @ A.9! 3 N. K XY M, $ *%.1& 1!. K XY M,,'! &S &E (g P) 4 % '9,' kc c %!+ _l %F 4#6 UV., *K 0+A?? =? 3.,6 4H %J 6P 6%K!.+ 2 QA _@ (d9 9, I %2 6. 8 4 H,9 %? =? 7,,<+9 62 QA _@ K., @ h c %&3 +,6+- 98 H +!H 0+A.+ N 9 %K!.,?6$ 9 H % 4@ 4, H?6$!H 4,<+9.+,<+9 J 2!H?. SAGD, JI _ 9&#E!H < 7+S %? =? 7, 0+A 2 6 %5%1 =,',6 4H g P %$ +A 4#6.+# 4,C 7, %!+ +A %? = p?? e 9? =? 4? 4 % '9.+ O 2 ƒf9 9 + 9 4 % 2 6.,?6$ 4@,1 SAGD, 4@,1 T,?,3 9 H ˆ#&G.+, 9&#E H 4#6 % H,9 % 5 )*'? =? %&3 4 PH9 H? < % SAGD, P&#E? JI = %F " #6 SAGD,.,? T G P# %,! 3 )., %!- MATLAB *? =? 7! 64 %!+? =? 1O %!H P JI 9m9 0#E Coats 0,!P2+$, c < 60,I S+^-?= + ( 4$ qc< 7m9.,., %G',P 6%K!, I (7+ k ae)., m! =?! ] %<1 e 9? =? 4? %$,6 4H e P O 4 %$,6 4H Willman 0, %G' J +# 4@ U., +FJ J., 9, +-!FG? % 0+A T 7FE %.,! &FO 6+# 9 %$,6 4H %F R+9, *K G3 <@., %J,' " J? =?!J ƒf9 ne,$!h DBC9 %$ & E 6 A %$, > % #!C %$ %< %I+9? 4 + 9,<+9 2 9\ +!#$ = + 4!H = %2 6 9 FG?6p$ SAGD, J p.,6 0+A %26 A,,6+-!H,<+9 %K! T 9 H? T=?6$ T+#E % ' +#.+ `@ 9 4,!H < < = = > >? " *% W

... -.50.'34 50 12 k cc ek kkk cc g c k ce{ ae gk g e k k kkkh c k g k kkkhb a b{ k e ckk k k ag k {h c e k k cc g chk c k hh kb.n9 [S\2,< Z( %< &9 mdarcy T+#E 9 mdarcy T' 9 c Btuft. F Ty = psi T4 y ƒgf _l T %< =.5O, 1& G -.5-0L.," Z( So kg Krog Pcog t r w Š Š t v ršw Šr Š s w Šw Šv Š sr x Šr rsw Š rx ŠŠr Š t Š rs t Š Š Š rr ft cp c bmft T %< <2 psi T D 5$9 F T H 56 ƒgf _l psi TW@ D 5$9 F TW@ H 56 ƒgf _l API %I Btulbm. F T = Btulbm. F TW@ = x y psi F T%< H T%< W@ %< NF %< NF x, ft y, ft! =,19! =,19 ft T2 N1 T9,<+9 2 +#E %&S psi psi F c lbmft T,<+9 2 H T9 2 H T9 Ty <2.]H, 1& G -.5-0L., Z( Sw kw Krow Pcow rsx Š Š s s t ŠŠr v w r v Šrw Š rœw Š w Šw rss Š ws x rrw Š w Š t sšw Š Š st Q

% &'( Cumulative Steam Injection (lbm) Cumulative Gas Injection Comparison various Preheating Periods < <? < > < = < < < < b< < < = = > ark9.5.,! 'J,^N 9!,^, W *%.`O ` T %!+ 9? =? 9 4 7, T7,?., %J,' ".+ 4!H? =? 4p J9 9 H 4,= %! 8 4 H 7, P# T *8 p!h 4p 9&#E H %p p!#$ p J!? =? p!h 4p 7, p.+ 4 QSZZ S QZ 6\ V* QSZ[ QY QU 1 V* > No Preheating Q )???? > > = = < < Comparison for various Preheating Periods = = > SAGD,- _ N9 5 1! N.L^, *%.`O ` [&.5.! %<? T9,<+9 2 +#E %&S?6$,<+9,'.,? %!+ _l?6$ 4 T=? T+#E % ' 9 FG?6$,,<+9 2 +#E %&S?6$ T 9 H? (d9 2 N1.,? %!+ _l?6$ 9.,<+9 % FG 4 2 SAGD,pp pp&#e %p$ p6 pj#6 7p&#E %p$,6 4pH,p *pk? =?. 4 E #H2 (d9? =? [1] Butler R.M., "Thermal of Oil and Bitumen", Prentice-Hall 529, New Jersey, (1991). [2] Kamath V.A., Sandeep Sinha and Hatzignatiou, D.G., Simulation Study of Steam-Assisted Gravity Drainage Process in Ugnu Tar Sand Reservoir, SPE 26075, (1993). [3] Kisman K.E., Yeung K.C., Numerical Study of SAGD Process in the Burnt Lake Oil Sands Lease, SPE 30276, (1995). [4] Nasr T.N., Golbeck H., Lorimer S., Analysis of the Steam Assisted Gravity Drainage (SAGD) Process Using ExperimentalNumerical Tools, SPE 37116, (1996). [5] Barillas J.L.M., Dutra Jr. T.V. and Mata W., Reservoir and Operational Parameters Influence in SAGD Process, J. of Petroleum Science and Engineering, 54, (2006). [6] Elliot K.T., Kovscek A.R., A Numerical Analysis of Single-Well Steam Assisted Gravity Drainage Process (SW-SAGD), 20 th Annual Workshop and Symposium on Enhanced Oil International Energy Agency, (1999). No Preheating Q ) < < >?? 78 #

... -.50.'34 50 12 [7] Farouq Ali S.M., "Practical Heavy Oil ", Draft of a Book Under Finalization, (2007). [8] Yao S.C., "Fluid Mechanics and Heat Transfer in Steam Injection Wells, M.S. Thesis, The University of Tulsa, (1986). [9] Partha Sarathi, "Thermal Numerical Simulator for Laboratory Evaluation of Steamflood Oil ", Prepared as a Report to National Institute for Petroleum and Energy Research, (1991). [10] Tortike W.S. and Farouq Ali S. M., Saturated Steam Property Functional Correlations for Fully Implicit Thermal Reservoir Simulation, SPE Reservoir Eng., 4 (4), p. 471 (1989). [11] Tikhomirov V.M., Thermal Conductivity of Rock Samples and Its Relation to Liquid Saturation, Density, and Temperature, (In Russian), Neftyanoe Khozaistvo, 46 (4), (1968). [12] Farouq Ali S.M., Oil by Steam Injection, Producers Publishing Company, Bradford, PA, p. 34 (1970). [13] Stone H. L., Probability Model for Estimating Three-Phase Relative Permeability, Journal of Petroleum Technology, 22, p. 214 (1970). [14] Fayers F.J. and Matthews J. D., Evaluation of Normalized Stone s Methods for Estimating Three-phase Relative Permeabilities, SPE Journal, 20, p. 224 (1984). [15] Martin J. Blunt, An Empirical Model for Three-Phase Relative Permeability, SPE 56474, (1999). [16] CMG User Guide, Version (2006). [17] Turgay Ertekin, Abou-Kassem J.H., King G.R., Basic Applied Reservoir Simulation, Society of Petroleum Engineers, Richardson, Texas, (2001). [18] Coats K.H., George W.D., Marcum B.E., Three-Dimensional Simulation of Steamflooding, SPE paper 4500, (1974). [19] Mahshid Jafarpour, Simulator Development for Thermal Operation (Pre-Heating) of SAGD, Ms Thesis, Sharif University of Technology, Dec (2008). [20] Coats K.H., A Highly Implicit Steamflood Model, SPE paper 6105, (1978).