Approximations to Piecewise Continuous Functions

Σχετικά έγγραφα
FOURIER Series. This worksheet is concerned with FOURIER series. Some examples are discussed using MAPLE V, Release 10.

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Areas and Lengths in Polar Coordinates

Section 8.2 Graphs of Polar Equations

Solutions to Exercise Sheet 5

Homework 8 Model Solution Section

SPECIAL FUNCTIONS and POLYNOMIALS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

2 Composition. Invertible Mappings

Inverse trigonometric functions & General Solution of Trigonometric Equations

Uniform Convergence of Fourier Series Michael Taylor

Example Sheet 3 Solutions

derivation of the Laplacian from rectangular to spherical coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Math221: HW# 1 solutions

Homework 3 Solutions

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Partial Differential Equations in Biology The boundary element method. March 26, 2013

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Statistical Inference I Locally most powerful tests

CRASH COURSE IN PRECALCULUS

Solution Series 9. i=1 x i and i=1 x i.

Trigonometric Formula Sheet

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΤΗΣ ΕΛΙΑΣ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Other Test Constructions: Likelihood Ratio & Bayes Tests

(Biomass utilization for electric energy production)

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

PARTIAL NOTES for 6.1 Trigonometric Identities

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Solution to Review Problems for Midterm III

Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ

Numerical Analysis FMN011

Differentiation exercise show differential equation

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Η πρώιμη παρέμβαση σε παιδιά με διαταραχές όρασης και πρόσθετες αναπηρίες στην Ελλάδα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

ECE 468: Digital Image Processing. Lecture 8

ΑΚΑΓΗΜΙΑ ΔΜΠΟΡΙΚΟΤ ΝΑΤΣΙΚΟΤ ΜΑΚΔΓΟΝΙΑ ΥΟΛΗ ΜΗΥΑΝΙΚΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ

Srednicki Chapter 55

Spherical Coordinates

CYPRUS UNIVERSITY OF TECHNOLOGY. Faculty of Engineering and Technology. Department of Civil Engineering and Geomatics. Dissertation Thesis

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Ζ ΔΠΗΓΡΑΖ ΣΩΝ ΑΝΟΗΓΜΑΣΩΝ ΣΟ ΦΤΗΚΟ ΦΩΣΗΜΟ ΘΑΛΑΜΟΤ ΝΟΖΛΔΗΑ

Introduction to Time Series Analysis. Lecture 16.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Exercises to Statistics of Material Fatigue No. 5

Reminders: linear functions

CORDIC Background (4A)

Second Order Partial Differential Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

If we restrict the domain of y = sin x to [ π 2, π 2

C.S. 430 Assignment 6, Sample Solutions

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

CYLINDRICAL & SPHERICAL COORDINATES

Answer sheet: Third Midterm for Math 2339

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΔΟΥΚΑ ΒΙΟΛΕΤΤΑ - ΔΕΣΠΟΙΝΑ. Η Τέχνη της Πώλησης στη Φαρμακευτική Αγορά

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

D Alembert s Solution to the Wave Equation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Assalamu `alaikum wr. wb.

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

1 String with massive end-points

CORDIC Background (2A)

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

ηελ αδεξθή κνπ, Εσή Δαλακούρα Γεωργία, ΑΕΜ: 235 Σελίδα 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Finite difference method for 2-D heat equation

Second Order RLC Filters

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

5.4 The Poisson Distribution.

Approximation of distance between locations on earth given by latitude and longitude

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

MathCity.org Merging man and maths

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Commutative Monoids in Intuitionistic Fuzzy Sets

Section 8.3 Trigonometric Equations

ΠΕΡΙ ΑΠΕΙΛΟΥΜΕΝΩΝ ΖΩΩΝ...ΑΝΘΡΩΠΩΝ ΕΡΓΑ.

Πτυχιακή Εργασία ΓΝΩΣΕΙΣ KAI ΣΤΑΣΕΙΣ ΤΩΝ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΥΓΕΙΑΣ ΓΙΑ ΤΗΝ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΕΚΘΕΣΗ ΣΤΟΝ HIV. Στυλιανού Στυλιανή

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

EE512: Error Control Coding

Transcript:

Approximations to Piecewise Continuous Functions Univ.-Prof. Dr.-Ing. habil. Josef BETTEN RWTH Aachen University Templergraben 55 D-52056 A a c h e n, Germany betten@mmw.rwth-aachen.de Abstract This worsheet is concerned with approximations to piecewise continuous functions. It has been illustrated that Maplesoft furnishes powerful tools in finding best approximations to several functions. Some examples are discussed in more detail. Keywords: step functions; HEAVISIDE functions; FOURIER approximation; L-two norm FOURIER Approximation restart: FOURIER_series(x a[0]/2+sum(a[]*cos(*x+b[]*sin(*x,=..infinity; FOURIER_series( x + 2 a 0 ( a cos( x + b sin( x = a[](/pi*int(f(x*cos(*x,x=0..2*pi; a a[0]simplify(subs(=0,%; 0 2 a 0 f( x cos( x 0 2 f( x b[](/pi*int(f(x*sin(*x,x=0..2*pi; 2 b f( x sin( x 0

Unit Step Function or HEAVISIDE Unit Function F(xpiecewise(x0 and x<pi,,xpi and x<2*pi,-,x2*pi,; 0 < x and x < F( x - < x and x < 2 2 < x plot(%,x=0..2.*pi,labels=[x,f],color=blac; Alternatively, the piecewise continuous function F(x can be represented as a HEAVISIDE function: alias(h=heaviside: HEAVISIDE[F]convert(F(x,H; HEAVISIDE F H( x 2 H ( x + 2 H( 2 + x plot(%,x=0..2.*pi,color=blac, title="heaviside unit step function"; A[0]value(subs(f(x=F(x,a[0]; A 0 0 A[]simplify(value(subs(f(x=F(x,a[]; A 2 sin( ( + cos( A[]subs(sin(*Pi=0,%; A 0 B[]simplify(value(subs(f(x=F(x,b[]; 2 cos( ( + cos( B B[]simplify(subs(cos(*Pi=(-^,%; 2( (- ( + + (- ( 2 B for i in [,3,5] do y(x,n=isum(b[]*sin(*x,=..i od; 2

4 sin( x y ( x, n = 4 sin( x 4 sin( 3 x y ( x, n = 3 + 3 4 sin( x 4 sin( 3 x 4 sin( 5 x y ( x, n = 5 + + 3 5 plot({y(x,n=,y(x,n=3,y(x,n=5},x=0..3.5*pi, labels=[x,y],color=blac, title="approximations with n = [, 3, 5]"; for i in [,3,99] do y(x,n=isum(b[]*sin(*x,=..i od: plot({y(x,n=,y(x,n=3,y(x,n=99},x=0..3.5*pi, labels=[x,y],color=blac, title="approximations with n = [, 3, 99]"; L_zwei[n]sqrt((/Pi*Int((F(x_-y(x,n^2,x=0..Pi; L_zwei n ( F( x_ y ( x, n 2 0 for i in [,3,5,99] do L_zwei[n=i] evalf(sqrt((/pi*int((f(x-y(x,n=i^2,x=0.05..0.95*pi,4 od; L_zwei n = 0.3658 L_zwei n = 3 0.2293 L_zwei n = 5 0.658 L_zwei n = 99 0.0289 Example: h(x 3

h(xpiecewise(x0 and x<pi,pi,xpi and x<2*pi,x-pi, x2*pi and x<3*pi,pi; h( x 0 < x and x < x < x and x < 2 2 < x and x < 3 plot(%,x=0..3*pi,color=blac,labels=[x,h]; alias(h=heaviside: HEAVISIDE[h]convert(h(x,H; HEAVISIDE h H( x 2 H ( x + x H ( x x H( 2 + x + 2 H( 2 + x H( 3 + x plot(%,x=0..3*pi,color=blac, title="heaviside Function for h(x"; A[0]value(subs(f(x=h(x,a[0]; 3 A 0 2 A[]simplify(value(subs(f(x=h(x,a[]: A[]subs({sin(*Pi=0,cos(*Pi=(-^,(cos(*Pi^2=},%; (- A 2 B[]simplify(value(subs(f(x=h(x,b[]: B[]subs({sin(*Pi=0,cos(*Pi=(-^,(cos(*Pi^2=},%; B (- y(x,na[0]/2+sum(a[]*cos(*x+b[]*sin(*x,=..n; n 3 y ( x, n + 4 ( (- cos( x (- sin( x = 2 4

for i in [,2,3] do y(x,n=ia[0]/2+sum(a[]*cos(*x+b[]*sin(*x,=..i od; 3 2 cos( x y ( x, n = + + sin( x 4 3 2 cos( x y ( x, n = 2 + + sin( x sin( 2 x 4 2 3 2 cos( x 2 cos( 3 x y ( x, n = 3 + + sin( x sin( 2 x + + sin( 3 x 4 2 9 3 alias(h=heaviside,co=color: p[]plot({y(x,n=,y(x,n=2,y(x,n=3},x=0..3*pi,co=blac: p[2]plot(.72*h(x-3*pi,x=0..3.0*pi,co=blac: p[3]plot(h(x,x=0..3*pi, title="approximations with n = [, 2, 3]" : plots[display]({seq(p[],=..3}; for i in [,2,50] do y(x,n=ia[0]/2+sum(a[]*cos(*x+b[]*sin(*x,=..i od: p[4]plot({y(x,n=,y(x,n=2,y(x,n=50},x=0..3*pi,co=blac: p[5]plot(.72*h(x-3*pi,x=0..3.0*pi,co=blac, title="approximations with n = [, 2, 50]": plots[display]({p[4],p[5]}; Smoothing of the FOURIER-Series y(x, n=3: g(,nsin(pi*/n/(pi*/n; # smoothing factor 5

sin N N g (, N G(x,n,NA[0]/2+ sum(g(appa,nu*(a[appa]*cos(appa*x+b[appa]*sin(appa*x, appa=..n; # smoothing function n 3 G ( x, n, N + 4 g ( κ, Ν ( A κ cos( κ x + B κ sin( κ x κ = g(,4subs(n=4,g(,n; # N n + 4 sin 4 g (, 4 G(x,n=3,N=4subs({n=3,Nu=4,appa=,g(appa,Nu=g(,4, A[appa]=A[],B[appa]=B[]},G(x,n,N; 3 4 sin ( (- cos( x ( 3 4 G ( x, n = 3, N = 4 + 4 2 = alias(h=heaviside,co=color: p[6]plot({y(x,n=3,g(x,n=3,n=4},x=0..3*pi,co=blac: p[7]plot(.72*h(x-3*pi,x=0..3.0*pi,co=blac: p[8]plot(h(x,x=0..3*pi, title="approximation with n = 3 and its Smoothing": plots[display](seq(p[],=6..8; - sin( x Smoothing of the FOURIER-Series y(x, n = 2: g(,3subs(n=3,g(,n; 3 sin 3 g (, 3 G(x,n=2,N=3evalf(A[0]/2+ sum(g(,3*(a[]*cos(*x+b[]*sin(*x,=..2,4; G ( x, n = 2, N = 3 2.356 + 0.5264 cos( x + 0.8268 sin( x 0.2067 sin( 2. x 6

alias(h=heaviside,co=color: p[9]plot({h(x,y(x,n=2,g(x,n=2,n=3},x=0..3*pi,co=blac, title="approximation with n = 2 and its Smoothing": plots[display]({p[7],p[9]}; The above Figures illustrate the good approximations to the given function h(x. Example: K(x K(xpiecewise(x-Pi and x<0,3,x0 and x</2,0, x/2 and x<pi,/x; 3 < x and x < 0 K( x 0 0 < x and x < 2 < x and x < x 2 plot(%,x=-pi..pi,color=blac,labels=[x,k]; alpha[0](/pi*int(f(x,x=-pi..pi; α 0 f( x alpha[](/pi*int(f(x*cos(*x,x=-pi..pi; α f( x cos( x beta[](/pi*int(f(x*sin(*x,x=-pi..pi; β f( x sin( x 7

Alpha[0]value(subs(f(x=K(x,alpha[0]; 3 + ln( 2 + ln( Α 0 Alpha[]simplify(value(subs(f(x=K(x,alpha[]; 3 sin( + Ci 2 Ci( Α A[]subs(sin(*Pi=0,%; Ci 2 Ci( A BETA[]simplify(value(subs(f(x=K(x,beta[]; 3 cos( 3 Si + 2 Si( BETA BETA[]subs(cos(*Pi=(-^,%; 3( - 3 Si + 2 Si( BETA y(x,nalpha[0]/2+ sum(alpha[]*cos(*x+beta[]*sin(*x,=..n: y(x,nsubs(sin(*pi=0,%; 3 + ln( 2 + ln( y ( x, n 2 n Ci 2 Ci( ( cos x 3( - 3 Si + 2 Si( sin ( x + + = y(x,subs(n=,y(x,n: Y(x,evalf(%,4; Y ( x,.792 + 0.07998 cos( x.477 sin( x y(x,3subs(n=3,y(x,n: Y(x,3evalf(%,4; Y ( x, 3.792 + 0.07998 cos( x.477 sin( x 0.46 cos( 2. x + 0.502 sin( 2. x 0.464 cos( 3. x 0.5249 sin( 3. x y(x,49subs(n=49,y(x,n: Y(x,49evalf(%: plot({y(x,,y(x,3,y(x,49},x=-pi..pi,co=blac, title="approximations with n = [, 3, 49]"; 8

L_two[n]sqrt((/2/Pi*Int((K(x_-Y(x,n^2,x=-Pi..Pi; L_two n 2 2 ( K( x_ Y ( x, n 2 for i in [,3,49] do L_two[n=i]evalf(sqrt((/2/Pi*int((K(x-Y(x,i^2,x=-3..3,4 od; L_two n = 0.6257 L_two n = 3 0.4876 L_two n = 49 0.06635 Example: M(x restart: M(xpiecewise(-Pi<x and x<0,, x0 and x</2,2, x/2 and x<pi,/x; < x and x < 0 M( x 2 0 < x and x < 2 < x and x < x 2 plot(%,x=-pi..pi,color=blac,labels=[x,m]; 9

a[0](/pi*int(f(x,x=-pi..pi; a 0 f( x a[](/pi*int(f(x*cos(*x,x=-pi..pi; a f( x cos( x b[](/pi*int(f(x*sin(*x,x=-pi..pi; b f( x sin( x A[0]value(subs(f(x=M(x,a[0]; + + ln( 2 + ln( A 0 A[]simplify(value(subs(f(x=M(x,a[]; sin( 2 sin + Ci 2 2 Ci( A A[]subs(sin(Pi*=0,%; 2 sin + Ci 2 2 Ci( A B[]simplify(value(subs(f(x=M(x,b[]; cos( + 2 cos Si + 2 2 Si( B B[]subs(cos(Pi*=(-^,%; (- + 2 cos Si + 2 2 Si( B for i in [,2,3,0] do y(x,n=ievalf(a[0]/2+ sum(a[]*cos(*x+b[]*sin(*x,=..i,4 od; y ( x, n = 0.955 + 0.3854 cos( x 0.260 sin( x y ( x, n = 2 0.955 + 0.3854 cos( x 0.260 sin( x + 0.532 cos( 2. x + 0.2964 sin( 2. x y ( x, n = 3 0.955 + 0.3854 cos( x 0.260 sin( x + 0.532 cos( 2. x + 0.2964 sin( 2. x + 0.06529 cos( 3. x + 0.09642 sin( 3. x y ( x, n = 0 0.955 + 0.3854 cos( x 0.260 sin( x + 0.532 cos( 2. x + 0.2964 sin( 2. x + 0.06529 cos( 3. x + 0.09642 sin( 3. x + 0.008250 cos( 4. x + 0.894 sin( 4. x 0.036 cos( 5. x + 0.05582 sin( 5. x 0.02397 cos( 6. x + 0.060 sin( 6. x 0.020 cos( 7. x + 0.0592 sin( 7. x 0.0576 cos( 8. x + 0.05968 sin( 8. x 0.00799 cos( 9. x 0.0007072 sin( 9. x 0.0008523 cos( 0. x + 0.0420 sin( 0. x 0

alias(h=heaviside,th=thicness,co=color: p[]plot({seq(y(x,n=i,i=..3},x=-pi..pi,co=blac: p[2]plot(m(x,x=-pi..pi,th=2,co=blac: p[3]plot(0.79*h(x+pi,x=-.00*pi..-0.999*pi,co=blac: p[4]plot(0.796*h(x-pi,x=0.999*pi...00*pi,co=blac, title="approximations with n = [, 2, 3]": plots[display]({seq(p[],=..4}; y(x,n=99evalf(a[0]/2+ sum(a[]*cos(*x+b[]*sin(*x,=..99,4: plot({m(x,y(x,n=99},x=-pi..pi,color=blac, title="m(x and y(x, n = 99"; L_two[n]sqrt((/2/Pi*Int((M(x_-y(x,n^2,x=-Pi..Pi; L_two n 2 2 ( M( x_ y ( x, n 2 for i in [,2,3,99] do L_two[n=i]evalf(sqrt((/2/Pi*int((M(x-y(x,n=i^2, x=-3..3,4 od; L_two n = 0.3048 L_two n = 2 0.963

L_two n = 3 0.770 L_two n = 99 0.02278 Smoothing of the FOURIER-Series y(x, n = 3: g(,nn*sin(*pi/n//pi; N sin N g (, N g(,4subs(n=4,%; 4 sin 4 g (, 4 G(x,n=3,N=4evalf(A[0]/2+ sum(g(,4*(a[]*cos(*x+b[]*sin(*x,=..3,4; G ( x, n = 3, N = 4 0.955 + 0.3468 cos( x 0.34 sin( x + 0.09752 cos( 2. x + 0.887 sin( 2. x + 0.0959 cos( 3. x + 0.02893 sin( 3. x plot({m(x,y(x,n=3,g(x,n=3,n=4},x=-pi..pi,color=blac, title="smoothing of the FOURIER-Series y(x, n = 3"; g(,subs(n=,g(,n; sin g (, G(x,n=0,N=evalf(A[0]/2+ sum(g(,*(a[]*cos(*x+b[]*sin(*x,=..0,4; G ( x, n = 0, N = 0.955 + 0.3800 cos( x 0.243 sin( x + 0.450 cos( 2. x + 0.2806 sin( 2. x + 0.05757 cos( 3. x + 0.08504 sin( 3. x + 0.006567 cos( 4. x 2

+ 0.508 sin( 4. x 0.00943 cos( 5. x + 0.03868 sin( 5. x 0.0384 cos( 6. x + 0.0620 sin( 6. x 0.009555 cos( 7. x + 0.00724 sin( 7. x 0.0052 cos( 8. x + 0.0973 sin( 8. x 0.0054 cos( 9. x 0.000487 sin( 9. x 0.00008406 cos( 0. x + 0.00444 sin( 0. x plot({m(x,y(x,n=0,g(x,n=0,n=},x=-pi..pi,color=blac, title="fourier-series y(x, n = 0 and its Smoothing"; Résumé In this worsheet it has been illustrated that Maplesoft furnishes powerful tools in finding best approximations to several piecewise continuous functions. 3