ECON 381 SC ASSIGNMENT 2

Σχετικά έγγραφα
Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

C.S. 430 Assignment 6, Sample Solutions

EE512: Error Control Coding

2 Composition. Invertible Mappings

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

The Simply Typed Lambda Calculus

( ) 2 and compare to M.

( y) Partial Differential Equations

Areas and Lengths in Polar Coordinates

Section 7.6 Double and Half Angle Formulas

Finite Field Problems: Solutions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Srednicki Chapter 55

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Areas and Lengths in Polar Coordinates

Matrices and Determinants

ST5224: Advanced Statistical Theory II

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Notes on the Open Economy

4.2 Differential Equations in Polar Coordinates

CRASH COURSE IN PRECALCULUS

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem Set 3: Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Instruction Execution Times

Inverse trigonometric functions & General Solution of Trigonometric Equations

Every set of first-order formulas is equivalent to an independent set

Variational Wavefunction for the Helium Atom

PARTIAL NOTES for 6.1 Trigonometric Identities

Homework 8 Model Solution Section

A Note on Intuitionistic Fuzzy. Equivalence Relation

Trigonometry 1.TRIGONOMETRIC RATIOS

Other Test Constructions: Likelihood Ratio & Bayes Tests

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Solutions to Exercise Sheet 5

Numerical Analysis FMN011

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

derivation of the Laplacian from rectangular to spherical coordinates

SOLVING CUBICS AND QUARTICS BY RADICALS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Second Order RLC Filters

Concrete Mathematics Exercises from 30 September 2016

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Tridiagonal matrices. Gérard MEURANT. October, 2008

CE 530 Molecular Simulation

Partial Trace and Partial Transpose

w o = R 1 p. (1) R = p =. = 1

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Parametrized Surfaces

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

D Alembert s Solution to the Wave Equation

Statistical Inference I Locally most powerful tests

LESSON 16 (ΜΑΘΗΜΑ ΔΕΚΑΕΞΙ) REF : 102/018/16-BEG. 4 March 2014

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Second Order Partial Differential Equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

On a four-dimensional hyperbolic manifold with finite volume

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Lecture 26: Circular domains

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

Higher Derivative Gravity Theories

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

1 String with massive end-points

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Strain gauge and rosettes

Lecture 2. Soundness and completeness of propositional logic

Math221: HW# 1 solutions

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Differentiation exercise show differential equation

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Approximation of distance between locations on earth given by latitude and longitude

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ

Lifting Entry (continued)

Transcript:

ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes be x l and the price of good l be p l Sppose that the consmer s preferences are described by the tility fnction ) ) 2) ) Set p the tility maximisation problem and write down the Lagrangian The maximisation problem is And the Lagrangian is max x 2 sbject to + w L λ w) + λw ) 2) Write down the first der necessary conditions f an interi maximm The first der conditions are λ 0 ) λ 0 ) λ w 0 ) Solve the first der conditions to obtain the Marshallian ncompensated) demand fnctions There are many ways to solve these eqations I ll give one From eqations and 2 we obtain 4) 5) λ ) λ λ ) x λ Sbstitting eqations 4 and 5 into eqation we obtain w + ) x λ 0 6) λ x 2 w Date: Second Semester 2002

2 JOHN HILLAS UNIVERSITY OF AUCKLAND and sbstitting sbstitting this vale back into into 4 and 5 we obtain w w )w )w w )w Ths the Marshallian demands are w) w/ and w) )w/ Now sppose that there are three goods which we shall call with eqal lack of imagination goods 2 and Let the amont of good l that the consmer consmes be x l and the price of good l be p l Sppose that the consmer s preferences are described by the tility fnction where + + ) x2 x 4) Again set p the tility maximisation problem and write down the Lagrangian write down the first der necessary conditions f an interi maximm and solve the first der conditions to obtain the Marshallian ncompensated) demand fnctions The idea was that yo se the two good case as a model to solve the three good problem The problem is not really that mch me difficlt It is a bit me difficlt to keep the notation straight if yo jmp straight into the three good problem In this case the maximisation problem is max x2 x And the Lagrangian is sbject to + + p w L λ w) x2 x + λw p p ) The first der conditions and the soltion follow exactly the model of the two good case The first der conditions are 7) 8) 9) 0) x λ p 0 x2 λ p2 0 x2 x λ p 0 λ w p 0

ECON 8 SC ASSIGNMENT 2 From eqations 7) 8) and 9) we obtain x2 x λ p x2 x λ p2 x2 x λ p ) 2) ) λ x2 x p λ x2 x p2 λ x2 2x p Sbstitting eqations ) 2) and ) into eqation 0) we obtain w + + ) x2 x λ 0 4) λ w and sbstitting this vale back into eqations ) 2) and ) we obtain x2 x w x2 x w x2 x w p w w w p Ths the Marshallian demands are w) w/ w) w/ and w) w/p 5) Consider the expenditre minimisation problem min + + p sbject to: x2 x Write down the Lagrangian f this problem The Lagrangian is L λ ) p + λ x2 x ) 6) Write down the first der necessary conditions f an interi minimm

4 JOHN HILLAS UNIVERSITY OF AUCKLAND 5) 6) 7) The first der conditions are λ x 0 λ x2 0 p λ x2 x 0 8) λ x2 2x 0 7) Solve the first der conditions to obtain the Hicksian compensated) demand fnctions From eqations 5) 6) and 7) we obtain 9) 20) 2) and from eqation 8) λ x2 x λ x2 x p λ x2 x 22) x2 x 2) 24) 25) Sbstitting eqation 22) into eqations 9) 20) and 2) gives λ λ p λ λ λ λ p Sbstitting these back into eqation 22) we obtain λ) + + p p p2 p λ And sbstitting this back into eqations 2) 24) and 25) we obtain 26) 27) 28) p p2 p h ) p p2 p h 2 ) p p2 h ) ) p

ECON 8 SC ASSIGNMENT 2 5 Problem 2 Take the Hicksian demand fnctions that yo fond in the first problem which we shall label h l ) and sbstitte them back into the objective fnction + + p to obtain the expenditre fnction e ) h ) + h 2 ) + p h ) ) Differentiate the fnction e that yo ve fond with respect to and confirm that this vale is eqal to the vale f h ) that yo fond in the previos problem First we find e ) e ) Ths e l p l l p l l ) ll p ) p p p2 p p p2 p l p p2 p p p2 p p2 p p which is what we fond in the previos qestion 2) Sbstitte v w) f and se the dal relationship p2 p e v w)) w to find the indirect tility fnction v w) F or particlar expenditre fnction the previos eqation is p p2 p v w) w which we solve to find v w) w p ) Rewrite the indirect tility fnction as a fnction ṽ of and where q i p i /w First we note that w w w + + w w w Ths v w) w w w ) w ) w w ṽ ) ) p p

6 JOHN HILLAS UNIVERSITY OF AUCKLAND 4) Consider the problem min ṽq ) sbject to: + + and write ot the Lagrangian and the first der conditions f minimisation The Lagrangian is L λ ) λ q x + + ) 29) 0) ) The first der conditions are ) + + λx 0 ) + + λx2 0 ) + + λx 0 2) λ + + 0 5) Solve the first der conditions to find q q2 and q as fnctions of x x2 and Sbstitte these vales back into ṽ ) to obtain a tility fnction giving tility as a fnction of and and confirm that this is the tility fnction that yo started with in part 4) of the previos problem From eqations 29) 0) and ) we obtain ) 4) 5) λ λ λ and sbstitting these into eqation 2) we obtain + + λ 6) λ Sbstitting eqation 6) back into eqations ) 4) and 5) and solving we obtain ) 7) ) x ) ) 8) 9) ) x ) ) 2 ) x ) )

ECON 8 SC ASSIGNMENT 2 7 Now sbstitting eqations 7) 8) and 9) back into the fmla f ṽ we obtain the minimised tility fnction ũ ) ṽ ) ) )) / / / x x 2 x which is the tility fnction that we started with