Ψηφιακή Βιβλιοθήκη Θεόφραστος - Τμήμα Γεωλογίας. Α.Π.Θ.

Σχετικά έγγραφα
Focal Mechanism Solutions of Micro- and Small Earthquakes Occurred in the Western Kanagawa Area Situated in the Izu Collision Zone

Strain gauge and rosettes

Homework 3 Solutions

2 Composition. Invertible Mappings

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

4.6 Autoregressive Moving Average Model ARMA(1,1)

Chapter 7 Transformations of Stress and Strain

Approximation of distance between locations on earth given by latitude and longitude

[1] P Q. Fig. 3.1

Αναερόβια Φυσική Κατάσταση

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Section 8.3 Trigonometric Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

EE512: Error Control Coding

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Distribution of the Metropolitan Seismic Observation network

the total number of electrons passing through the lamp.

; +302 ; +313; +320,.

Capacitors - Capacitance, Charge and Potential Difference

On a four-dimensional hyperbolic manifold with finite volume

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Second Order Partial Differential Equations

Ευθύμης ΛΕΚΚΑΣ 1. 3 o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας 5 7 Νοεμβρίου, 2008 Άρθρο 2109

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Other Test Constructions: Likelihood Ratio & Bayes Tests

5.4 The Poisson Distribution.

ΠΑΡΟΥΣΙΑΣΗ ΣΤΟ ΝΟΤΙΟ ΔΥΤΙΚΟ ΑΙΓΑΙΟ ΑΠΟ ΤΟΥΣ ΣΕΙΣΜΟΥΣ ΤΗΣ 21/09/2012 ΣΤΗ ΘΑΛΑΣΣΙΑ ΠΕΡΙΟΧΗ ΤΟΥ ΝΔ ΑΙΓΑΙΟΥ

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Assalamu `alaikum wr. wb.

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Homework 8 Model Solution Section

6.3 Forecasting ARMA processes

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Areas and Lengths in Polar Coordinates

1 String with massive end-points

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Second Order RLC Filters

Η ΕΡΕΥΝΑ ΤΗΣ ΓΛΩΣΣΙΚΗΣ ΑΛΛΑΓΗΣ ΣΤΑ ΚΕΙΜΕΝΑ ΤΗΣ ΜΕΣΑΙΩΝΙΚΗΣ ΕΛΛΗΝΙΚΗΣ: ΜΕΘΟΔΟΛΟΓΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ

Finite Field Problems: Solutions

The Simply Typed Lambda Calculus

ΖητΗματα υποδοχης και προσληψης του Franz Kafka στην ΕλλΑδα

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ"

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ

Areas and Lengths in Polar Coordinates

Math221: HW# 1 solutions

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Démographie spatiale/spatial Demography

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ST5224: Advanced Statistical Theory II

Instruction Execution Times

Example Sheet 3 Solutions

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΓΕΩΦΥΣΙΚΑ ΘΕΜΑΤΑ SUBDUCTION ZONES ΖΩΝΕΣ ΚΑΤΑΔΥΣΗΣ ΚΟΥΡΟΥΚΛΑΣ ΧΡΗΣΤΟΣ

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Matrices and Determinants

High-density Seismic Array Observations Across the Northern Focal Area of the,**2 Iwate-Miyagi Nairiku Earthquake

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΟΙΚΟΝΟΜΟΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΕΝΟΣ ΕΝΕΡΓΕΙΑΚΑ ΑΥΤΟΝΟΜΟΥ ΝΗΣΙΟΥ ΜΕ Α.Π.Ε

Περί γκρίζων ζωνών και άλλων καινών δαιμονίων: Η οριοθέτηση στον Κόλπο της Βεγγάλης Μαρία Γαβουνέλη

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

w o = R 1 p. (1) R = p =. = 1

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Calculating the propagation delay of coaxial cable

Solutions to Exercise Sheet 5

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Ο σεισμός των Κυθήρων στις 8 Ιανουαρίου 2008 και η μετασεισμική του ακολουθία The 8 January 2006 Mw=6.7 Kythira Earthquake and its Aftershocks

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΟΛΙΣΘΗΡΟΤΗΤΑ ΚΑΙ ΜΑΚΡΟΥΦΗ ΤΩΝ ΟΔΟΔΤΡΩΜΑΤΩΝ ΚΥΚΛΟΦΟΡΙΑΣ

EE101: Resonance in RLC circuits

C.S. 430 Assignment 6, Sample Solutions

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

Copernicus for Local and Regional Authorities

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΑΚΗΣ ΠΑΡΑΚΤΙΑΣ ΑΝΑΒΛΥΣΗΣ ΣΤΟ Β.Α. ΑΙΓΑΙΟ. Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο Αιγαίου 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Transcript:

Α COMPARATIVE STUDY ΟΝ ΤΗΕ DEFORMATION OF ΤΗΕ MEDITERRANEAN SUBDUCTION ZONES: ΤΗΕ HELLENIC ARC, ΤΗΕ CALABRIAN ARC AND VRANCEA Kiratzi,A. Geophysical Laboratory, University of Thessaloniki, GR 540-06, Greece. Α Β S Τ R Α C Τ The distribution of stresses derived from fault plane solutions and the geometry of deformation, based οη previous work, combined with seismicity data, showed that: Ιn the Hellenic arc the subducting lithosphere is in a state of down dip extension performed at a rate of 8mm/yr. However, considerable horizontal shortening, at a rate of 21 mm/yr, occurs parallel to the trend of the arc. Ιη the Calabrian arc, οη the contrary, the descending slab is undergoing down dip compression at a rate of about 2 mm/yr. Ιη the Vrancea area, in Rumania, the westward subduction of the Carpathian trench has terminated, leaving continental lithosphere at present at the arc. The slab is descending, due to negative buoyancy, and is in a state of nearly vertical down dip tension, at a rate of about 2 cm/yr. ΜΕΛΕΤΗ ΠΑΡΑΜΟΡΦΩΣΗΣ ΣΕ ΤΡΕΙΣ ΠΕΡΙΟΧΕΣ ΚΑΤΑΔΥΣΗΣ ΤΗΣ ΜΕΣΟΓΕΙΟΥ: ΤΟ ΕΛΛΗΝΙΚΟ ΤΟΞΟ, ΤΟ ΤΟΞΟ ΤΗΣ ΚΑΛΑΒΡΙΑΣ (ΙΤΑΛΙΑ) ΚΑΙ ΤΟ ΤΟΞΟ ΤΗΣ ΒΡΑΝΤΣΙΑΣ (ΡΟΥΜΑΝΙΑ) Κυρατζή,Α. Π Ε Ρ Ι Λ Η Ψ Η Η ~ατανoμή των τάσεων ~αι της παραμόρφωσης καθώς ~αι σεισμολογικές παρατηρήσεις σε τρείς περιοχές ~ατάδυσης της Μεσογείου έδειξαν ότι: στο Ελληνικό τόξο η καταδυόμενη πλάκα υφίσταται εφελ~υσμό ~ατά μή~oς της διεύθυνσης της βύθισης, με ταχύτητα παραμόρφωσης 8 mm/yr. Ομως, υπάρχει ~αι μία συνιστώσα οριζόντιας συμπίεσης με ταχύτητα 21 mm/yr. Στο τόξο της καλαβρίας (Ιταλία), η βυθιζόμενη πλάκα υφίσταται συμπίεση κατά τη διεύθυνση ~ατάδυσης με ταχύτητα 2 mm/yr. Στην περιοχή της Βράντσιας (Ρουμανία), η προς τα δυτι~ά βύθιση της τάφρου των καρπαθίων έχει τερματισθεί ~αι σήμερα υπάρχει ηπειρωτι~ή λιθόσφαιρα στο τόξο. Η πλάκα βυθίζεται ~υρίως λόγω του βάρους της, και βρίσκεται σε ~ατάσταση εφελκυσμού ~ατά τη διεύθυνση ~ατάδυσης με ταχύτητα 2 cm/yr. 439

INTRODUCTION Seismology may provide very adequate information about the internal deformations of descending lithospheric slabs. This can be done by mapping earthquake moment release and source mechanisms, which measure the rate of strain occurring within slabs οη the time scale over which the events were recorded. Ιη a sequence of papers, using this approach, the seismic deformation at the subduction zones of the Mediterranean area has been studied (Kiratzi and Papazachos, 1992; Kiratzi, 1993a, b). Ιη the present study, a comparative study of the distribution of stress and of the pattern of deformation in the Hellenic arc, in the Calabrian arc (Italy) and in Vrancea (Rumania) is attempted. The methodology followed in order to constrain the seismic strain rate release and the seismic velocities has been published in Papazachos and Kiratzi (1992) and will not be repeated here. The data used in the present study are seismicity parameters and fau1t p1ane solutions listed in Kiratzi and Papazachos (1992) and Kiratzi (1993a, b). GEOMETRY ΟΡ ΤΗΕ SUBDUCTION ZONES The Hellenic arc The African plate is subducting under the Aegean lithosphere along the Hellenic arc in an amphitheatre-like shape which is outlined by earthquake hypocenters (Papazachos and Comninakis, 1969;1971, McKenzie, 1978; LePichon and Angelier, 1979). Thus, intensive seismic activity in the Aegean area and especially in the southern part is observed. Earthquake activity reaches depths υρ to 183 Km (Comninakis and Papazachos, 1980; Hatzfeld and Martin, 1992) and the magnitudes can be as high as 7.8 (Papazachos, 1990). Even though the activity is significant there are not many large intermediate depth earthquakes that occurred during the last six decades. Figure (1) shows the intermediate depth earthquakes that occurred in the southern Aegean area (from Kiratzi and Papazachos, 1992) and the three seismogenic source volumes identified by Papazachos (1990). The Benioff zone has a shallow dip (14 ) for depths in the range 40-100 Km. Then, as we go further away from the trench, its dip steepens to reach a mean value of 35 (Papazachos et al., 1991). The thickness of the seismogenic volume is estimated to be 30 Km from the distribution of the best depth contsrained events (Kiratzi and Papazachos, 1992). The Calabrian arc Ιη the Calabrian arc, the intermediate depth seismicity, shown in figure (2), appears to be characteristic of a subduction zone although it is not known if subduction is presently occurring there. There is evidence, however, that support the idea of a terminated subduction process. Earthquake hypocentres reach a depth of about 500 Km which suggests that subduction took place over a long period of time. The slab is descending NW at a high angle (700) above 250 Km which changes to a more gentle dip (45 ) at greater depths. The thickness of the seismogenic layer is 50 Km (Andersou and Jackson, 1987). 440

,.,. -"---'" ο' "~ο,,',,'.j1".,,' Di), c Α ο ".ι ~,..o.~ J'a,.~,,' Ι ~~.!,..ι.,,am;:;~~~o(rl_... Μ.:>6-0 Δ O<M.<6,C ~ -=::;... ~ " ---,,',.' 11.._--;-:-~ Ό-- ~ l'>~ -- Κ,',.,. Fig.1. oistribution of the intermediate depth seismicity along the southern Aegean, for the period 1900-1990 (Kiratzi and Papazachos, 1992)..''1.,.ιs 3"...' ~.' <:::1 /t!..., ->ι.;.:. YYFl:RHENIAN :' Δ S~A /, Δ Δ <' Δ r ~ (r ", '. ι ~oo\> 11,.1<:.s~", Δ M~7,O Δ Μ;;'6.0 Δ M~:ΙO "',::> Ι Δ, ~ >4.~~ ι,ο',,',i 13',.',',ι,σc 17',.. Fig.2. oistribution of the intermediate depth seismicity along the Calabrian arc, Italy, for the period 1900-1990 (Kiratzi, 1993a). 441

The Vrancea region, Rumania The vrancea-carpathian region of the SE Carpathian Arc Bend, is an area where intense seismic activity ls observed with earthquakes that extend to depths up to 200 Km and have magnitudes as great as 7.5., " Ο,'ν1~70 ~ Μ ~GO ο Μ ~50,, "'\ d ;,' Ι Ι \ ι 27' 2Β' 29' Fig.3. Distribution of the intermediate depth seismicity in Vrancea, Rumania, for the period 1900-1991. (Kiratzi, 1993b). Figure (3) shows the distribution of the intermediate depth earthquakes in the Vrancea region. One characteristic of these intermediate depth events is that spatia11y occur in a very limited area. The slab is dipping to the NW at a high angle 750 and the thickness of the seismogenic layer is 30 Km (Trifu, 1990) ORIENTATION ΟΡ ΤΗΕ PRINCIPAL STRESS AXES,Figure (4) shows the fault plane solutions of the intermediate depth earthquakes for each area of study. Α lower hemisphere equal area projection is used where the black quadrants denote compression while the white ones denote dilatation. Figure (5) shows a lower hemisphere equal area projection of the T-axes (open circles) and of the Ρ axes (filled circles) of these focal mechanisms. For the Hellenic arc the projection of the slip vectors is also shown οη the plots (black triangles). The approximate dip and strike of the subducting slab, for each area, is also shown οη the plots. 442

c :;:;;::ι 140 i :'1 "ιι ί: <.. ~ 1-- 1 ~ ~ 10 1\' t?" 1)' 1" 1~' 1'- 11' Η' 7" ".., "~1'(>~ '1-1~ )0...,9'90... f/t.ιl:..,...r Fig.4. Reliable fault plane solutions of intermediate depth earthquakes (a) in the Hellenic arc, (b) in the Calabrian arc and (c) in Vrancea area of the SE Carpathian arc. 443

It is seen that in the He11enic arc the Τ axes are 1ess variab1e, cornpared to the Ρ axes, and fo11ow the dip direction of the subduction. However, the rnean dip ang1e of the Τ axes is 57, when the dip of the Benioff Ζσnε is on1y 14. The b1ack triang1es in the p10ts show the projection of the slip vectors of the earthquakes along the Hellenic arc. As it is seen, the dip of the Τ axes is rnuch steeper than the dip of the subducting slab however, the slip occurs along the slab. Ιη Vrancea the s ituation is the sarne, with the Τ axes aligned a10ng the dip direction of the slab. Both the dip ang1e of the Τ axes (rnean value 75 G } and of the slab are the sarne. At the Calabrian arc, ση the contrary, it is the Ρ axes that fo11ow the descending slab and are lying within it, as they have the sarne dip ang1e. CALABFιIAN '" Fig.5. Equal area 10wer hernisphere projection of the Ρ axes (black circles) and of the Τ axes (σρεn circles) of the fault plane solutions shown in fig.4. The black triangles in the plots for the He11enic arc are the projection of the slip vectors of the earthquakes. The dashed lines indicate the approxirnate projection the approxirnate dip and strike of the subducting slab in each case. SEISMIC VELOCITY RATES Figure (6) ~s a sketch rnap which shows the rnaxirnurn seisrnic ve10cities observed at these subduction zones as they were calculated in Papazachos and Kiratzi (1992), Kiratzi (1993a, b). Ιn the He11enic arc, even though the Τ axes dip steeper than the slab, the rnaxirnurn slip though is observed a10ng the dip direction of the slab. The down dip extension, of 8 rnrn/yr in average, can be exp1ained by pu1l forces acting at the slab. The 444

horizontal cornpression though, that follows the trend of the Hellenic arc, is rather difficult to explain. Taymaz et al., (1990) believe that this compression is possibly due to the fact that eastern Meditterranean is in a state of compression frorn processes that are unrelated to the subduction. Ιη the Calabrian arc the descending slab is in a state of down dip compression with a maximum velocity of about 2 mm/yr. The pattern of deformation indicates that this deformation is taking place off of the plane of the descending slab (Kiratzi, 1993a). This would probably cause the breaking υρ of the slab or the generation of topography in its surface as pointed out by Anderson and Jackson (1987). """,rt'i!rilanκan HΚLIJI"IC.ΒΑ Ί1α/'Ica =~ "!" ---_..-"- Ν 0000060000000 νο,.-οn~ Ο... t'/'οοοζ>~οοοο... ο(lοοο') 30~ '"'"-..!: Ι) Dιιι-ι.:ιι dίp m-sίιoιιι ;Ob:~ 8mιn!Jr 6 B«~J8ΣDfyr~~:O ~ 901 'o~, S ο 120. :~:'~.. '... 0, : ι:ι 150.0. NW TYRRHENIAN SEA l~ 7" ο" "."":. c.... Ο ο"". ~.,. b "'.. ο 100 200 300 400 500 " ~... " '.~ 1i!ι < "."' ΓJ-<f/,.:>.~ ------- r ~1()ζI r > I~ J 1(1ι) ]00 ~~ ",<i> (.~...(, SE NW ι}" ΤΙΙ"Ε./ΙΟ1υ:'ls (lι~ '...,-;:: ',---'... '..', (#) Fig.6. Sketch rnap that illustrates the deformation pattern in each of the subduction zones examined in this paper. Finally, in the Vrancea area, the pattern of deformation is rather simple. The slab is descending due to its own weight which causes a down dip extension of 2 cm/yr and at the sarne time nearly horizontal shortening of 1 cm/yr. At a late stage, due to this geometry of deformation, the slab will be eventually detached. 445

CONCLUSIONS Three subduction zones of the Mediterranean area are exarnined in order to cornpare the distribution of stress and the geornetry of deformation. The subducting slab at the the Hellenic arc is in a state of down dip tension. The Τ axes have a mean dip of 57, when the dip of the Benioff zone, at the depth range of 40-100 Km, is about 14. The direction of the dip is from the outer part of the Hellenic arc (eastern Mediterranean) to the inner part (Aegean Sea). The maxlmum deformation is expressed as down dip extension at a rate of Β mm/yr and as horizonta1 compression, following the strike of the slab, at a rate of 21 mm/yr. This is the deformation due to the seismicity of the depth range 40-100 Km, where the Benioff zone has a shallow dip. The fault plane solutions of these events declare reverse faulting οη steeply dipping nodal planes. As we go closer to the trench, towards eastern Mediterranean, the fault plane solutions declare low angle thrust fau1ting (Papazachos et al., 1991). These thrust faults contribute to the deformation along the Hellenic arc, which is expressed as compression at a rate of 6 mm/yr that has a direction 214 (Papazachos et al., 1992). This is in accordance with the direction of Africa relative to Eurasia. P1ate motions predict that the convergence rate between these two plates is 1 cm/yr under Crete. If we consider the deformation attributed to the thrust faulting near the trench and to the reverse fau1ting at the shallow part of the Benioff zone, then there is ηο strong evidence for aseismic deformation processes involved at the Hellenic arc, an observation supported by various researchers (Main and Burton, 1989). The subducting slab at the Ca1abrian arc is in a state of down dip compression. The Ρ axes have a mean dip ang1e of 45, exactly the same as the dip ang1e of the descending slab. However, the maximum seismic compressional velocity is observed off the plane of the slab, at a rate of 1.7 mm/yr. Ιη the SE Carpathian arc, in Vrancea area, the descending slab is in a state of down dip extension. The Τ axes have a mean dip of 74 like the dip of the slab. The maximum deformation is expressed as extension at a rate of 2 cm/yr in the direction of the subduction. This zone of subduction is the oldest of the ones studied and the slab is descending due to its own weight nearly in a vertical direction. This variation in the distribution of stress, either down dip compression or down dip tension, is controlled mainly by the degree of resistance experienced by the plate during its descent. Ιη the case of the Hellenic arc and the Vrancea, for instance, the slab pull forces are dominating. Ιη the Calabria arc, however, the plate approaches depths of 500 Km, where the mesosphere prevents further descent and supports the lower margin of the plate so that the majority of the seismic zone experiences compression. Another explanation is that the compressional events at depth in the subducting plate may originate from the unbending of the slab. The angle at which a specific plate is descending plays a key role also to the distribution of stress. The very steep angle of the Benioff zone at Vrancea make the slab to descend due to negative buoyancy and the tension to prevail to 446

any compressiona1 effects. ACKNOWLEDGEMENTS The author would like to express her sincere gratitude to Prof. B.C. Papazachos and to Constantine Β. Papazachos for their support. REFERENCES Anderson,H. and Jackson,J., (1987). The deep seismicity of the Tyrrhenian Sea. Geophys. J. Int., 91, 613-637. Comninakis,P. and Papazachos,B., (1980). Space and time distribution of the intermediate focal depth earthquakes in the He11enic arc. Tectonophysics, 70, 35-47. Hatzfe1d,D. and Martin,C. (1992). Intermediate depth seismicity in the Aegean defined by teleseismic data. Earth and P1anet. Sci. Lett., 113,267-275. Kiratzi,A., (1993a). Active seismic deformation of the Italian peninsula and Sicily. Publ. of the Geophys. Lab., Univ. of Thessa1oniki, Νο 1. Kiratzi,A., (1993b). Active deformation in the Vrancea region, Rumania. Pageoph, in press. Kiratzi,A. and Papazachos,C., (1992). Active seismic deformation in the southern Aegean Benioff zone. Pub1. of the Geophys. Lab., Univ. of Thessa1oniki, Νο 13. LePichon,X. and Ange1ier,J., (1979). The He11enic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics, 60, 1-42. Main,I. and Burton,P., (1989). Seismotectonics and the earthquake frequency-magnitude distribution in the Aegean area. Geophys. J. R. astr. Soc., 98, 575-586. McKenzie, Ο., (1978). Active tectonics of the A1pine-Hima1ayan be1t: the Aegean Sea and surrounding regions. Geophys. J. R. a s t r. Soc., 55, 217-254. Papazachos,B., (1990). Seismicity of the Aegean and surrounding area. Tectonophysics, 178, 287-308. Papazachos,B. and Comninakis,P., (1969). Geophysical features of the Greek is1and arc and eastern Mediterranean ridge. C. R. Seances de la Conference Reunie a Madrid, 16, 74-75. Papazac hos,β. and Comn inakis, Ρ., ( 1971). Geophys ical and tectonic features of the Aegean arc. J. Geophys. Res., 76, 851 7-8533. Papazachos,B., Kiratzi,A. and Papadimitriou,E., (1991). Regional focal mechanisms for earthquakes in the Aegean area. Pageoph, 136, 405-420. Papazachos,C. and Kiratzi,A., (1992). Α formu1ation for reliab1e estimation of active crusta1 deformation and its app1ication to centra1 Greece. Geophys. J. Int., 111, 424 432. Papazachos,C., Kiratzi,A. and Papazachos,B., ( 1992). Rates ο f active crusta1 deformation in the Aegean and the surrounding area. J. of Geodynamics, 16, 147-179. 447

TaymaztT., JacksontJ. and WestawaYtR.t (1990). Earthquake mechanisms in the He11enic trench near Crete. Geophys. J. Int., 102 ι 695-731. Trifu,C., (1990). Detai1ed configuration of intermediate depth seismicity in Vrancea region. Rev. Geofisica t 46, 33-40. 448