Γενική Φυσική ΙΙ (ΦΥΣ 132) Ηλεκτρισμός, Ηλεκτρομαγνητισμός και Οπτική

Σχετικά έγγραφα
1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά πεδία

1η ΠΑΡΟΥΣΙΑΣΗ. Ηλεκτρικά φορτία, ηλεκτρικές δυνάμεις και πεδία

Κεφάλαιο Η1. Ηλεκτρικά πεδία

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 1: Hλεκτρικά πεδία. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Φυσική για Μηχανικούς

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ

Φυσική για Μηχανικούς

Ηλεκτρικά Κυκλώματα Ι ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

Φυσική για Μηχανικούς

Ηλεκτρομαγνητισμός. Νίκος Ν. Αρπατζάνης

φυσική Βꞌ Λυκείου γενικής παιδείας 1 ο Κεφάλαιο

Μονάδα μέτρησης του ηλεκτρικού φορτίου στο Διεθνές Σύστημα (S.I.) είναι το προς τιμήν του Γάλλου φυσικού Charles Augustin de Coulomb.

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ. Ηλεκτρισμένα σώματα. πως διαπιστώνουμε ότι ένα σώμα είναι ηλεκτρισμένο ; Ηλεκτρικό φορτίο

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

ΑΣΚΗΣΗ-1: ΗΛΕΚΤΡΙΚΑ ΠΕΔΙΑ

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1

Φυσική για Μηχανικούς

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο Η2. Ο νόµος του Gauss

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη.

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

πάχος 0 πλάτος 2a μήκος

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ

Φυσική για Μηχανικούς

Κεφάλαιο 21 Ηλεκτρικά Φορτία και Ηλεκτρικά Πεδία. Copyright 2009 Pearson Education, Inc.

ΚΑΛΩΣ ΗΛΘΑΤΕ ΣΤΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗΣ

φυσική Βꞌ Λυκείου γενικής παιδείας 1 ο Κεφάλαιο 1

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΚΕΦΑΛΑΙΟ 1: Στατικός Ηλεκτρισμός

ΕΝΟΤΗΤΑ 1 ΗΛΕΚΤΡΙΣΜΟΣ. Κεφάλαιο 1. Ηλεκτρική δύναμη και φορτίο. 1.1 Γνωριμία με την ηλεκτρική δύναμη.

1η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1. Λύσεις Ασκήσεων 1 ου Κεφαλαίου

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Β ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Δυνάμεις μεταξύ ηλεκτρικών φορτίων

8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου

Θεωρία Φυσικής Τμήματος Πληροφορικής και Τεχνολογίας Υπολογιστών Τ.Ε.Ι. Λαμίας

Ηλεκτρισμός: Το φορτίο στο εσωτερικό του ατόμου

1. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) ή λανθασμένες (Λ):

Δυνάμεις μεταξύ ηλεκτρικών φορτίων

Κεφάλαιο 5: Στατικός Ηλεκτρισμός

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: Απαντήσεις ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:

Ηλεκτρική δυναμική ενέργεια

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Φυσική για Μηχανικούς

δ. έχουν πάντα την ίδια διεύθυνση.

Οι ηλεκτρικές δυνάμεις ασκούνται από απόσταση.

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS

ΘΕΜΑΤΑ ΠΑΛΑΙΟΤΕΡΩΝ ΕΞΕΤΑΣΕΩΝ

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΚΕΦΑΛΑΙΟ 1 Ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ

To θετικό πρόσημο σημαίνει ότι το πεδίο προσφέρει την ενέργεια για τη μετακίνηση αυτή.

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. Στατικός Ηλεκτρισµός

Φυσική ΘΕΜΑ 1 ΘΕΜΑ 2 ΘΕΜΑ 3

Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική)

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 3.1 ΝΟΜΟΣ ΤΟΥ COULOMB

Andre-Marie Ampère Γάλλος φυσικός Ανακάλυψε τον ηλεκτροµαγνητισµό. Ασχολήθηκε και µε τα µαθηµατικά.

Φυσική για Μηχανικούς

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 08/11/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:

Φυσική ΙΙ (Ηλεκτρομαγνητισμός Οπτική)

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΘΕΜΑ Δ

Φυσική για Μηχανικούς

Πηγές μαγνητικού πεδίου Νόμος Ampere. Ιωάννης Γκιάλας 21 Μαίου 2014

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ 1. Δύο ακίνητα σημειακά ηλεκτρικά φορτία q 1 = - 2 μc και q 2 = + 3 μc, βρίσκονται αντίστοιχα

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Ασκήσεις 6 ου Κεφαλαίου

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική.

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

Ηλεκτροστατικέςδυνάµεις καιηλεκτρικόπεδίο. Κυριάκος Κουγιουµτζόπουλος 1

Κεφάλαιο Η4. Χωρητικότητα και διηλεκτρικά

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΜΟΣ Ι ΕΙΣΑΓΩΓΗ 1

Ηλεκτρισμός νόμος του Coulomb Ηλεκτρoστατικές δυνάμεις Είναι ελκτικές ή απωστικές δυνάμεις μεταξύ ακίνητων φορτισμένων σωμάτων P F

ΘΕΜΑ B ΝΟΜΟΣ ΤΟΥ COULOMB

1. B.2 Δύο σφαίρες Α, Β, αμελητέων διαστάσεων φορτίστηκαν με ίση ποσότητα θετικού

Q (όπου Q το φορτίο και V η τάση

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

Βασικά στοιχεία Ηλεκτρισμού

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

Transcript:

Γενική Φυσική ΙΙ (ΦΥΣ 132) Ηλεκτρισμός, Ηλεκτρομαγνητισμός και Οπτική Διδάσκων: Τζιχάντ Μούσα e-mail: mousa@ucy.ac.cy Τηλ: 22.89.2844 Γραφείο: B244 ΘΕΕ02 Τμήμα Φυσικής Πανεπιστημιούπολη Διδασκαλία: Τρίτη-Παρασκευή 18:00 19:30, αίθουσα: 104 ΧΩΔ01 Τετάρτη 16:00-17:00, αίθουσα: 101 ΧΩΔ01 Γραφείο: Τετάρτη 11:00-13:00 web-page: http://www2.ucy.ac.cy/~mjehad01/phy132_2017.html J.M.

Βιβλιογραφία Physics for Scientists and Engineers - R.A. Serway (απόδοση στα Ελληνικά από Λ.Κ. Ρεσβάνη). ή Φυσική για Επιστήμονες και Μηχανικούς - Ηλεκτρισμός και μαγνητισμός, Φώς και οπτική, Σύγχρονη" φυσική. Επιμέλεια: Χαράλαμπος Βάρβογλης Μέρος ΙΙ (Ηλεκτρισμό και Μαγνητισμό ) Επιπρόσθετη Βιβλιογραφία: Physics II - Halliday & Resnick (Μέρος Α) (Ελληνικά ) "Ηλεκτρομαγνητισμός, Σύγχρονη Φυσική, Σχετικότητα" Πανεπιστημιακή Φυσική - Young & Freedman (Ελληνικά ) J.M. 2

J.M. Βαθμολογία Η βαθμολογία θα βασιστεί στα ακόλουθα: 20% mini-exams Τρίτη: (31/1/2017) 30% : ενδιάμεση Τρίτη: (21/2/2017) Τρίτη: (21/3/2017) Τρίτη: (11/4/2017) Η εξέταση θα γίνει τo Σάββατο 11 Μαρτίου 2017 50 % τελική εξέταση Οι εξετάσεις (πρόοδοι και τελική) είναι χωρίς σημειώσεις και βιβλία αλλά σας δίνεται τυπολόγιο. Τα mini-exams θα είναι σύντομα προβλήματα που θα απαιτούν απάντηση είτε με μορφή επιλογής από διάφορες απαντήσεις (multiple choice) ή με κάποιους σύντομους υπολογισμούς.

Περιεχόμενα Ηλεκτρισμός και Μαγνητισμός 1. Ηλεκτρικά Πεδία 2. Νόμος του Gauss 3. Ηλεκτρικό Δυναμικό 4. Χωρητικότητα και Διηλεκτρικά 5. Ρεύμα και Αντίσταση 6. Κυκλώματα Συνεχούς Ρεύματος 7. Μαγνητικά Πεδία (νόμος Ampere) 8. Πηγές του Μαγνητικού Πεδίου (Biot-Savart) 9. Νόμος του Faraday 10. Επαγωγική και Kινητήρες 11. Κυκλώματα Εναλλασσόμενου Ρεύματος 12. Ηλεκτρομαγνητικά Κύματα Οπτική 1. Πόλωση, νόμος του Malu, διπλή διάθλαση, παραγωγή κυκλικά πολωμένου φωτός 2. Αρχή του Haygen και του Fermat 3. Συμβολή, πείραμα Young, το συμβολόμετρο του Michelson 4. Κριτήριο διακριτότητας του Rayleigh 5. περίθλαση κατά Fraunhofer, διαφράγματα περίθλασης, νόμος του Bragg 6. Γεωμετρική οπτική J.M. 4

Κεφάλαιο Η1 Ηλεκτρικά πεδία Charles Coulomb 1736 1806 Γάλλος φυσικός Η πιο σημαντική συνεισφορά του ήταν στους τομείς του ηλεκτροστατικής και του μαγνητισμού. Ασχολήθηκε και με την έρευνα στους παρακάτω τομείς: Αντοχή υλικών Στατική των κατασκευών Εργονομία J.M. 5

Ηλεκτρισμός και μαγνητισμός Δυνάμεις Η ηλεκτρομαγνητική δύναμη που αναπτύσσεται μεταξύ φορτισμένων σωματιδίων είναι μία από τις θεμελιώδεις δυνάμεις της φύσης. Ηλεκτρικά φορτία Υπάρχουν δύο είδη ηλεκτρικών φορτίων: Το θετικό και το αρνητικό. Αρνητικό φορτίο φέρει, για παράδειγμα, το ηλεκτρόνιο. Θετικό φορτίο φέρει, για παράδειγμα, το πρωτόνιο. Τα ομόσημα φορτία απωθούνται, ενώ τα ετερόσημα φορτία έλκονται. J.M. 6

Ηλεκτρικά φορτία Η ράβδος από καουτσούκ είναι αρνητικά φορτισμένη. Η ράβδος από γυαλί είναι θετικά φορτισμένη. Οι δύο ράβδοι έλκονται. Η ράβδος από καουτσούκ είναι αρνητικά φορτισμένη. Η δεύτερη ράβδος από καουτσούκ είναι και αυτή αρνητικά φορτισμένη. Οι δύο ράβδοι απωθούνται. J.M. 7

Ηλεκτρικά φορτία Σε ένα απομονωμένο σύστημα, το ηλεκτρικό φορτίο πάντα διατηρείται. Για παράδειγμα, όταν τρίβουμε ένα σώμα σε ένα άλλο, δεν δημιουργείται φορτίο. Η ηλέκτριση οφείλεται στη μεταφορά φορτίου από το ένα σώμα στο άλλο. Διατήρηση του ηλεκτρικού φορτίου Μια γυάλινη ράβδος τρίβεται επάνω σε ένα μεταξωτό ύφασμα. Μεταφέρονται ηλεκτρόνια από το γυαλί στο μετάξι. Κάθε ηλεκτρόνιο προσθέτει ένα αρνητικό φορτίο στο μετάξι. Στη ράβδο απομένει ισόποσο θετικό φορτίο. e e γ γ ( εξαΰλωση ) γ e e ( δίδυμη γένεση) 8

Κβάντωση του ηλεκτρικού φορτίου Το ηλεκτρικό φορτίο, q, είναι κβαντισμένο. q είναι το τυποποιημένο σύμβολο που χρησιμοποιείται για τη μεταβλητή του φορτίου. Το ηλεκτρικό φορτίο υπάρχει σε μορφή διακριτών «πακέτων». q = Ne Το N είναι ακέραιος αριθμός. e είναι το στοιχειώδες φορτίο. e = 1.6 x 10 19 C Για το ηλεκτρόνιο: q = e Για το πρωτόνιο: q = +e 9

Ηλεκτρικοί αγωγοί Ηλεκτρικοί αγωγοί ονομάζονται τα υλικά στα οποία κάποια από τα ηλεκτρόνια είναι ελεύθερα. Τα ελεύθερα ηλεκτρόνια δεν είναι δεσμευμένα στα άτομα. Τα ηλεκτρόνια αυτά μπορούν να κινούνται με σχετική ελευθερία μέσα στο υλικό. Καλοί αγωγοί είναι, για παράδειγμα, ο χαλκός, το αλουμίνιο, και ο άργυρος. Όταν ένας καλός αγωγός φορτιστεί σε μια μικρή περιοχή του, τότε το φορτίο κατανέμεται άμεσα σε ολόκληρη την επιφάνειά του. Ηλεκτρικοί μονωτές Ηλεκτρικοί μονωτές ονομάζονται τα υλικά στα οποία όλα τα ηλεκτρόνια είναι δεσμευμένα στα άτομα. Αυτά τα ηλεκτρόνια δεν μπορούν να κινούνται ελεύθερα μέσα στο υλικό. Μονωτές είναι, για παράδειγμα, το γυαλί, το καουτσούκ, και το ξύλο. Όταν ένας μονωτής φορτιστεί σε μια μικρή περιοχή του, τότε το φορτίο δεν μπορεί να κατανεμηθεί σε άλλα σημεία του υλικού. Ημιαγωγοί Οι ηλεκτρικές ιδιότητες των ημιαγωγών είναι ενδιάμεσες εκείνων των αγωγών και των μονωτών. Παραδείγματα ημιαγώγιμων υλικών είναι το πυρίτιο και το γερμάνιο. Ημιαγωγοί από τέτοια υλικά χρησιμοποιούνται συνήθως στην κατασκευή ηλεκτρονικών ολοκληρωμένων κυκλωμάτων (τσιπ). Οι ηλεκτρικές ιδιότητες των ημιαγωγών μπορούν να τροποποιηθούν με την προσθήκη ελεγχόμενων ποσοτήτων ορισμένων ατόμων. 10

Φόρτιση με επαγωγή Κατά τη φόρτιση μέσω επαγωγής, δεν απαιτείται επαφή με το σώμα που επάγει το φορτίο. A. Έστω ότι έχουμε μια ουδέτερη μεταλλική σφαίρα. Η σφαίρα έχει ίσο αριθμό θετικών και αρνητικών φορτίων. B. Κοντά στη σφαίρα τοποθετείται μια φορτισμένη ράβδος από καουτσούκ. Η ράβδος δεν έρχεται σε επαφή με τη σφαίρα. Γίνεται ανακατανομή των ηλεκτρονίων της ουδέτερης σφαίρας. C. Η σφαίρα γειώνεται. Κάποια ηλεκτρόνια εγκαταλείπουν τη γειωμένη σφαίρα διαμέσου του σύρματος. 11

Φόρτιση με επαγωγή D. Αφαιρείται το σύρμα της γείωσης. Τώρα θα υπάρχουν περισσότερα θετικά φορτία. Τα φορτία δεν είναι κατανεμημένα ομοιόμορφα. Στη σφαίρα επάγεται θετικό φορτίο. E. Αφαιρείται η ράβδος. Τα ηλεκτρόνια που απομένουν στη σφαίρα ανακατανέμονται. Στη σφαίρα υπάρχει πάλι θετικό συνολικό φορτίο. Τώρα το φορτίο είναι κατανεμημένο ομοιόμορφα. Παρατηρούμε ότι η ράβδος δεν χάνει το αρνητικό φορτίο της κατά τη διαδικασία αυτή. 12

Αναδιάταξη των φορτίων στους μονωτές Στους μονωτές συμβαίνει μια διαδικασία παρόμοια με αυτή της επαγωγής στους αγωγούς. Γίνεται αναδιάταξη των φορτίων που υπάρχουν στα μόρια του υλικού. Η προσέγγιση των θετικών φορτίων στην επιφάνεια του σώματος και των αρνητικών φορτίων στην επιφάνεια του μονωτή προκαλεί μια ελκτική δύναμη μεταξύ του σώματος και του μονωτή. 13

Ο νόμος του Coulomb Ο Charles Coulomb μέτρησε το μέτρο της ηλεκτρικής δύναμης που αναπτύσσεται μεταξύ δύο μικρών φορτισμένων σφαιρών. Το μέτρο της δύναμης είναι αντιστρόφως ανάλογο του τετραγώνου της απόστασης r μεταξύ των φορτίων και ασκείται κατά μήκος της ευθείας που ενώνει τα δύο φορτία. Το μέτρο της δύναμης είναι ανάλογο του γινομένου των τιμών των φορτίων, q 1 και q 2, που φέρουν τα δύο σωματίδια. Ο νόμος του Coulomb δίνει το μέτρο της ηλεκτρικής δύναμης που αναπτύσσεται μεταξύ δύο ακίνητων σημειακών φορτίων. 14

Σημειακό φορτίο Ο όρος σημειακό φορτίο αναφέρεται σε ένα σωματίδιο μηδενικού μεγέθους που φέρει ηλεκτρικό φορτίο. Η μοντελοποίηση των ηλεκτρονίων και των πρωτονίων ως σημειακών φορτίων μας επιτρέπει να περιγράψουμε ιανοποιητικά την ηλεκτρική συμπεριφορά τους. 15

Ο νόμος του Coulomb Αν τα φορτία είναι ετερόσημα, τότε η δύναμη είναι ελκτική. Αν τα φορτία είναι ομόσημα, τότε η δύναμη είναι απωστική. Η ηλεκτρική δύναμη είναι συντηρητική. Ο νόμος του Coulomb διατυπώνεται μαθηματικά ως εξής: q1 q2 Fe ke 2 r Η μονάδα του ηλεκτρικού φορτίου στο σύστημα μονάδων SI είναι το coulomb (C). Όπου k e είναι η σταθερά του Coulomb. k e = 8.9876 x 10 9 N. m 2 /C 2 = 1/(4π є o ) Όπου є o είναι η διηλεκτρική σταθερά του κενού (ή ηλεκτρική διαπερατότητα του κενού). є o = 8.8542 x 10 12 C 2 / N. m 2 16

Η διανυσματική φύση των ηλεκτρικών δυνάμεων Οι ηλεκτρικές δυνάμεις υπακούουν στον τρίτο νόμο του Νεύτωνα. Η δύναμη που δέχεται το q 1 είναι ίση κατά μέτρο και αντίθετη με τη δύναμη που δέχεται το q 2. F F 21 12 Στην περίπτωση των ομόσημων φορτίων, το γινόμενο q 1 q 2 είναι θετικό και η δύναμη είναι απωστική. 17

Πολλά φορτία Η συνισταμένη δύναμη που δέχεται κάθε φορτίο είναι ίση με το διανυσματικό άθροισμα των δυνάμεων που ασκούν όλα τα άλλα επιμέρους φορτία. Προσοχή: Οι δυνάμεις προστίθενται διανυσματικά. Η συνισταμένη δύναμη που δέχεται το φορτίο q 1 είναι ίση με το διανυσματικό άθροισμα όλων των δυνάμεων που ασκούν σε αυτό όλα τα υπόλοιπα φορτία. Για παράδειγμα, αν υπάρχουν τέσσερα φορτία, η συνισταμένη δύναμη που δέχεται το ένα από αυτά είναι ίση με το διανυσματικό άθροισμα των δυνάμεων που ασκούν σε αυτό τα υπόλοιπα τρία φορτία. F1 F21 F31 F41 18

Παράδειγμα Δύο σημειακά φορτία βρίσκονται πάνω στον θετικό άξονα x ενός συστήματος συντεταγμένων. Το φορτίο q 1 =2.0 nc απέχει 2.0 cm από την αρχή και το φορτίο q 2 =-3.0 nc απέχει 4.0 cm από την αρχή. Πόση είναι η ολική δύναμη, που ασκούν αυτά τα δύο φορτία σε φορτίο q 3 =5.0 nc που βρίσκεται στην αρχή του άξονα; F 1 3 1 1 2 k q r q 9 9 2.0x10 C 5.0x10 C 9 2 2 9.0x10 N. m / C 2 4 F x N 1 2.25 10 0.02m Η δύναμη αυτή έχει αρνητική συνιστώσα x αφού το q 3 απωθείται από το q 1, με το οποίο έχει το ίδιο πρόσημο. Το μέτρο F 2 της δύναμης που οφείλεται στο q 2 είναι 9 9 3.0x10 C 5.0x10 C 9.0 10. / q q F k x N m C 2 r 2 3 9 2 2 2 1 2 4 F x N 2 0.84 10 0.04m Το άθροισμα των συνιστωσών είναι F 2.25 10 4 0.84 10 4 1.41 10 4 x x N x N x N 19

Παράδειγμα Δυο μικρές σφαίρες η καθεμιά μάζας 3x 10 2 kg είναι ηλεκτρικά φορτισμένες και ισορροπούν καθώς είναι αναρτημένες από νήματα. Το μήκος καθενός νήματος είναι 0.15 m και η γωνία που σχηματίζει το καθένα με την κατακόρυφο είναι θ= 5. Υπολογίστε το φορτίο υποθέτοντας ότι είναι το ίδιο και στη μία και στην άλλη σφαίρα. Υπολογίζουμε την απόσταση α χρησιμοποιώντας το μήκος του νήματος και τη γωνία: sin a/ L o a L sin (0.15 m) sin 5 0.013m (1) F T sin F 0 x (2) F T cos mg 0 T mg / cos y Αντικαθιστούμε το Τ στην (1) και βρίσκουμε: e (3) tan (3 10 )(9.8 / ) 2.57 10 2 2 2 Fe mg kg m s N Από τον νόμο του Coulomb 2 2 2 2 2 e (2.57 10 )(0.026 ) 2 9 2 2 q Fr N m Fe k q r k 9 10 N. m / C q 4.4 10 8 C 20

Το ηλεκτρικό πεδίο Εισαγωγή Η ηλεκτρική δύναμη είναι δύναμη πεδίου. Οι δυνάμεις πεδίου ασκούνται εξ αποστάσεως. Υφίστανται ακόμα και όταν δεν υπάρχει φυσική επαφή μεταξύ των σωμάτων. Η έννοια του πεδίου στον ηλεκτρισμό προτάθηκε από τον Faraday. Στον χώρο γύρω από ένα φορτισμένο σώμα υπάρχει ηλεκτρικό πεδίο. Αυτό το φορτισμένο σώμα είναι το φορτίο-πηγή. Όταν σε αυτό το ηλεκτρικό πεδίο εισέλθει ένα άλλο φορτισμένο σώμα, το δοκιμαστικό φορτίο, τότε ασκείται ηλεκτρική δύναμη σε αυτό. Το ηλεκτρικό πεδίο ορίζεται ως η ηλεκτρική δύναμη που ασκείται στο δοκιμαστικό φορτίο ανά μονάδα φορτίου. E F q o Το διάνυσμα του ηλεκτρικού πεδίου, E, σε ένα σημείο του χώρου ορίζεται ως ο λόγος της ηλεκτρικής δύναμης που δέχεται ένα θετικό δοκιμαστικό φορτίο, q o, F που έχει τοποθετηθεί σε εκείνο το σημείο, προς το δοκιμαστικό φορτίο: 21

E Επισημάνσεις σχετικά με το ηλεκτρικό πεδίο είναι το πεδίο που παράγει ένα φορτίο ή μια κατανομή φορτίου και όχι το ίδιο το δοκιμαστικό φορτίο. Η ύπαρξη ηλεκτρικού πεδίου είναι ιδιότητα του φορτίου-πηγής. Δηλαδή το πεδίο υφίσταται ανεξάρτητα της παρουσίας του δοκιμαστικού φορτίου. Το δοκιμαστικό φορτίο μας επιτρέπει να ανιχνεύσουμε το ηλεκτρικό πεδίο. E E Η κατεύθυνση του είναι ίδια με εκείνη της δύναμης που ασκείται σε ένα θετικό δοκιμαστικό φορτίο, το οποίο βρίσκεται στο πεδίο. Η μονάδα πεδίου στο σύστημα SI είναι τα N/C. Μπορούμε επίσης να πούμε ότι σε ένα σημείο του χώρου υπάρχει ηλεκτρικό πεδίο εφόσον ασκείται ηλεκτρική δύναμη σε ένα δοκιμαστικό φορτίο που βρίσκεται εκεί. 22

Σχέση μεταξύ των F και E F e qe Η σχέση αυτή ισχύει μόνο για ένα σημειακό φορτίο. Δηλαδή φορτία με μηδενικές διαστάσεις. Για μεγαλύτερα σώματα, το πεδίο μπορεί έχει διαφορετική τιμή σε διαφορετικά σημεία του σώματος. Αν το φορτίο q είναι θετικό, τότε τα διανύσματα της δύναμης και του πεδίου είναι ομόρροπα. Αν το φορτίο q είναι αρνητικό, τότε τα διανύσματα της δύναμης και του πεδίου είναι αντίρροπα. Ο νόμος του Coulomb, ο οποίος εκφράζει τη δύναμη που αναπτύσσεται μεταξύ του φορτίου-πηγής και του δοκιμαστικού φορτίου, μπορεί να γραφτεί στη μορφή: F e qq ke r o r ˆ 2 Οπότε το ηλεκτρικό πεδίο είναι: E F q e o k e q r r ˆ 2 23

Περισσότερα σχετικά με την κατεύθυνση του ηλεκτρικού πεδίου a) Αν το φορτίο q είναι θετικό, τότε η δύναμη έχει κατεύθυνση μακριά από το q. Το πεδίο έχει επίσης κατεύθυνση μακριά από το θετικό φορτίο-πηγή. b) Αν το φορτίο q είναι αρνητικό, τότε η δύναμη έχει κατεύθυνση προς το q. Το πεδίο έχει επίσης κατεύθυνση προς το αρνητικό φορτίο-πηγή. 24

Το ηλεκτρικό πεδίο που δημιουργούν πολλά φορτία Το συνολικό ηλεκτρικό πεδίο, το οποίο δημιουργεί μια ομάδα φορτίων-πηγών σε οποιοδήποτε σημείο Σ, ισούται με το διανυσματικό άθροισμα των ηλεκτρικών πεδίων όλων των φορτίων. qi E k ˆ e r 2 i r i i Οι αποστάσεις μεταξύ των φορτίων μιας ομάδας από φορτία μπορεί να είναι πολύ μικρότερες από την απόσταση μεταξύ αυτής της ομάδας και του σημείου που μελετούμε. Σε αυτές τις περιπτώσεις, μπορούμε να μοντελοποιήσουμε το σύστημα φορτίων ως συνεχές. Το σύστημα των φορτίων που βρίσκονται σε μικρή απόσταση μεταξύ τους ισοδυναμεί με ένα συνολικό φορτίο συνεχώς κατανεμημένο σε μια ευθεία, μια επιφάνεια ή έναν όγκο. 25

Το ηλεκτρικό πεδίο που δημιουργεί μια συνεχής κατανομή φορτίων Μεθοδολογία: Διαιρούμε την κατανομή φορτίου σε στοιχειώδη φορτία, καθένα από τα οποία έχει φορτίο Δq. Υπολογίζουμε το ηλεκτρικό πεδίο που δημιουργεί ένα από αυτά τα στοιχειώδη φορτία στο σημείο Σ. Υπολογίζουμε το συνολικό πεδίο αθροίζοντας τις συνεισφορές όλων των στοιχειωδών φορτίων. Για κάθε στοιχειώδες φορτίο, q E k r e r ˆ 2 Επειδή η κατανομή φορτίου είναι συνεχής, q dq E k lim rˆ k rˆ i e 0 2 i e q 2 i i ri r 26

J.M. 27

Παράδειγμα Τα φορτία q 1 και q 2 βρίσκονται στον άξονα x, σε απόσταση α και b αντίστοιχα, από την αρχή των αξόνων. (α) βρείτε τις συνιστώσες του ολικού ηλεκτρικού πεδίου στο σημείο Σ, με συντεταγμένες (0,y). 28

29

Παράδειγμα Ένα ηλεκτρονικό δίπολο μέσα σε ομογενές ηλεκτρικό πεδίο εκτρέπεται λίγο από τη θέση ισορροπίας του, όπου η γωνία θ είναι μικρή. Η ροπή ηλεκτρικού διπόλου είναι p = 2qα και η ροπή αδράνειας του είναι I. Αν το δίπολο αφεθεί ελεύθερο από αυτήν τη θέση, αποδείξτε ότι θα εκτελέσει απλή αρμονική κίνηση με συχνότητα που είναι - -q 2α + q E Λύση f 1 2 pe I Το μέτρο της ροπής είναι: t = -2Fα sin θ -2Eqα sin θ Για μικρές γωνίες θ μπορούμε όμως να γράψουμε sinq = q - q 3 Η ροπή ηλεκτρικού διπόλου είναι p = 2qα, άρα το μέτρο της ροπής είναι: Η ροπή 2 t I 2 d I dt 2 3! + q 5 5! +» q (1) t = -Εpθ Από (1) και (2) d dt Ep I 2 0 2 2 d 2 dt 2 ό : 2 Ep I J.M. Δ.Ε. αρμονικού ταλαντωτή με συχνότητα f 1 pe 1 2qaE 2 I 2 I

Πυκνότητα φορτίου Χωρική πυκνότητα φορτίου: Το φορτίο είναι ομοιόμορφα κατανεμημένο σε όγκο V. ρ Q / V με μονάδες C/m 3 Επιφανειακή πυκνότητα φορτίου: Το φορτίο είναι ομοιόμορφα κατανεμημένο σε επιφάνεια εμβαδού A. σ Q / A με μονάδες C/m 2 Γραμμική πυκνότητα φορτίου: Το φορτίο είναι ομοιόμορφα κατανεμημένο κατά μήκος ευθείας μήκους l. λ Q / l με μονάδες C/m Αν το φορτίο δεν είναι ομοιόμορφα κατανεμημένο στον όγκο, την επιφάνεια ή την ευθεία, τότε η ποσότητα του στοιχειώδους φορτίου, dq, δίνεται από τις σχέσεις: Για έναν στοιχειώδη όγκο: dq = ρ dv Για μια στοιχειώδη επιφάνεια: dq = σ da Για ένα στοιχειώδες ευθύγραμμο τμήμα: dq = λ dl 31

Μοντελοποίηση Μεθοδολογία επίλυσης προβλημάτων Σχηματίστε μια νοερή εικόνα του προβλήματος. Φανταστείτε το ηλεκτρικό πεδίο που δημιουργείται από τα φορτία ή την κατανομή των φορτίων. Κατηγοριοποίηση Πρόκειται για ένα μεμονωμένο φορτίο; Πρόκειται για μια ομάδα μεμονωμένων φορτίων; Πρόκειται για μια συνεχή κατανομή φορτίων; Ανάλυση Ανάλυση μιας ομάδας μεμονωμένων φορτίων: Χρησιμοποιήστε την αρχή της υπέρθεσης, υπολογίστε τα πεδία που δημιουργούνται από τα επιμέρους φορτία στο υπό μελέτη σημείο, και έπειτα προσθέστε διανυσματικά τα πεδία για να βρείτε το συνιστάμενο πεδίο. Προσοχή στη χρήση των διανυσματικών ποσοτήτων. 32

Ανάλυση μιας συνεχούς κατανομής φορτίου: Αντικαταστήστε τα διανυσματικά αθροίσματα, που χρησιμοποιούνται στον υπολογισμό του ολικού ηλεκτρικού πεδίου σε κάποιο σημείο από τα επιμέρους φορτία, με διανυσματικά ολοκληρώματα. Διαιρέστε την κατανομή φορτίου σε απειροστά τμήματα και υπολογίστε το διανυσματικό άθροισμα ολοκληρώνοντας σε ολόκληρο το εύρος της κατανομής φορτίου. Συμμετρία: Εκμεταλλευτείτε τη συμμετρία, εφόσον υπάρχει, για να απλουστεύσετε τους υπολογισμούς. Ολοκλήρωση Ελέγξτε αν η παράσταση του ηλεκτρικού πεδίου στην οποία καταλήξατε συμφωνεί με τη νοητική σας αναπαράσταση. Ελέγξτε αν η λύση αντικατοπτρίζει τη συμμετρία που είχατε εντοπίσει. Μεταβάλλετε νοερά παραμέτρους για να εξακριβώσετε αν το μαθηματικό αποτέλεσμα μεταβάλλεται με εύλογο τρόπο. 33

Παράδειγμα Φορτισμένος δίσκος Παράδειγμα Ένας δακτύλιος ακτίνας α φέρει ομοιόμορφο κατανεμημένο θετικό φορτίο Q. Υπολογίστε το ηλεκτρικό πεδίο σε ένα σημείο Σ. Φανταζόμαστε πως ο δακτύλιος διαμερίζεται σε μικρά τμήματα ds. Ας είναι dq το φορτίο του τμήματος ds. Το μέτρο de της συνεισφοράς de αυτού του φορτίου στο ηλεκτρικό πεδίο σε σημείο P του πεδίου δίνεται από τη σχέση. kq e E 3 x α Για x << a x 34

Παράδειγμα Ένα αρνητικό φορτισμένο σωματίδιο q τοποθετείται στο κέντρο ενός ομοιόμορφο φορτισμένο διακτυλίου, όπου ο δακτύλιος έχει καθαρά θετικό φορτίο Q. Το σωματίδιο περιοριζόμενο να κινείται κατά μήκος του άξονα x, απομακρύνεται κατά μια μικρή απόσταση x κατά του άξονα (όπου x << α) και αφήνεται ελεύθερο. Αποδείξτε ότι το σωματίδιο ταλαντώνεται με απλή αρμονική κίνηση κατά μήκος του άξονα με συχνότητα που δίνεται από τη σχέση -q f 1 2π k qq e 3 mα Η δύναμη που δέχεται το φορτίο q είναι: keqq Για x << α Fx x 3 α 2 2 d x keqq d x 2 x ωx 2 3 2 dt mα dt Δ.Ε. αρμονικού ταλαντωτή με συχνότητα F Eq F x ό 2 e : f x 1 2π k qq 3 m k qq e 3 ( x α ) mα k qq e 2 2 3 / 2 x 35

Παράδειγμα Λύση Το φορτίο dq σε έναν δακτύλιο ακτίνας r και πλάτους dr dex k dq e cos k dq x e r x r x ( r x ) 2 2 2 2 2 2 1/ 2 36

Γραμμές ηλεκτρικού πεδίου Οι γραμμές του πεδίου είναι ένας τρόπος αναπαράστασης της μορφής του ηλεκτρικού πεδίου. Η διεύθυνση του διανύσματος του ηλεκτρικού πεδίου εφάπτεται στη γραμμή του ηλεκτρικού πεδίου σε κάθε σημείο της. Η κατεύθυνση της γραμμής είναι ίδια με εκείνη του διανύσματος του ηλεκτρικού πεδίου. Το πλήθος των γραμμών ανά μονάδα επιφάνειας που διέρχονται από μια επιφάνεια κάθετη σε αυτές είναι ανάλογο του μέτρου του ηλεκτρικού πεδίου σε αυτή την περιοχή. Η πυκνότητα των γραμμών του πεδίου που διέρχονται από την επιφάνεια A είναι μεγαλύτερη από την πυκνότητα των γραμμών του πεδίου που διέρχονται από την επιφάνεια B. Το μέτρο του ηλεκτρικού πεδίου είναι μεγαλύτερο στην επιφάνεια A απ ό,τι στην B. Σε κάθε σημείο, οι γραμμές του πεδίου δείχνουν προς διαφορετική κατεύθυνση. Αυτό δείχνει ότι το πεδίο δεν είναι ομογενές. 37

Γραμμές ηλεκτρικού πεδίου Θετικό σημειακό φορτίο Οι γραμμές του πεδίου κατευθύνονται ακτινικά προς τα έξω σε κάθε διεύθυνση. Στον τριδιάστατο χώρο, η κατανομή είναι σφαιρική. Οι γραμμές έχουν κατεύθυνση μακριά από το φορτίο-πηγή. Ένα θετικό δοκιμαστικό φορτίο μέσα σε αυτό το πεδίο θα δεχόταν μια απωστική δύναμη από το θετικό φορτίο-πηγή. 38

Γραμμές ηλεκτρικού πεδίου Αρνητικό σημειακό φορτίο Οι γραμμές του πεδίου κατευθύνονται ακτινικά προς το φορτίο σε κάθε διεύθυνση. Οι γραμμές έχουν κατεύθυνση προς το φορτίο-πηγή. Ένα θετικό δοκιμαστικό φορτίο μέσα σε αυτό το πεδίο θα δεχόταν μια ελκτική δύναμη από το αρνητικό φορτίο-πηγή. 39

Γραμμές ηλεκτρικού πεδίου Κανόνες σχεδίασης Οι γραμμές ξεκινούν από θετικά φορτία και καταλήγουν σε αρνητικά. Σε περίπτωση περίσσειας ενός τύπου φορτίου, κάποιες από αυτές θα ξεκινούν από το άπειρο ή θα καταλήγουν σε αυτό. Το πλήθος των γραμμών που ξεκινούν από ένα θετικό φορτίο ή καταλήγουν σε ένα αρνητικό είναι ανάλογο της τιμής του φορτίου. Οι γραμμές του πεδίου δεν τέμνονται ποτέ. Οι γραμμές του πεδίου δεν έχουν υλική υπόσταση. Αποτελούν μόνο μια γραφική αναπαράσταση που περιγράφει ποιοτικά το ηλεκτρικό πεδίο. 40

Γραμμές ηλεκτρικού πεδίου Ηλεκτρικό δίπολο Τα φορτία είναι ίσα και ετερόσημα. Το πλήθος των γραμμών του πεδίου που ξεκινούν από το θετικό φορτίο είναι ίσο με το πλήθος των γραμμών που καταλήγουν στο αρνητικό φορτίο. Τα φορτία είναι ίσα και θετικά. Επειδή τα φορτία είναι ίσα, από καθένα τους ξεκινά ίδιο πλήθος γραμμών. Σε μεγάλη απόσταση, το πεδίο είναι περίπου ίσο με εκείνο ενός σημειακού φορτίου με τιμή 2q. Επειδή δεν υπάρχουν αρνητικά φορτία, οι γραμμές του ηλεκτρικού πεδίου εκτείνονται έως το άπειρο. 41

Γραμμές ηλεκτρικού πεδίου Άνισα και ετερόσημα φορτία Το θετικό φορτίο έχει διπλάσια τιμή από το αρνητικό φορτίο. Το πλήθος των γραμμών που ξεκινούν από το θετικό φορτίο είναι διπλάσιο εκείνου που καταλήγουν στο αρνητικό φορτίο. Σε μεγάλη απόσταση, το πεδίο είναι περίπου ίσο με εκείνο ενός σημειακού φορτίου με τιμή +q. 42

Κίνηση φορτισμένων σωματιδίων Αν ένα φορτισμένο σωματίδιο βρεθεί μέσα σε ένα ηλεκτρικό πεδίο, θα δεχτεί μια ηλεκτρική δύναμη. Αν αυτή είναι η μόνη δύναμη που ασκείται στο σωματίδιο, τότε είναι και η συνισταμένη δύναμη που δέχεται. Η συνισταμένη δύναμη θα επιταχύνει το σωματίδιο σύμφωνα με τον δεύτερο νόμο του Νεύτωνα. Fe qe ma Αν το πεδίο είναι ομογενές, τότε η επιτάχυνση θα είναι σταθερή. Η κίνηση ενός τέτοιου σωματιδίου περιγράφεται από το μοντέλο του σταθερά επιταχυνόμενου σωματιδίου. Υπό την επίδραση της ηλεκτρικής δύναμης, το σωματίδιο κινείται σύμφωνα με τα γνωστά μοντέλα δυνάμεων και κίνησης. Αν το σωματίδιο φέρει θετικό φορτίο, η επιτάχυνσή του έχει την κατεύθυνση του ηλεκτρικού πεδίου. Αν το σωματίδιο φέρει αρνητικό φορτίο, η επιτάχυνσή του έχει κατεύθυνση αντίθετη από εκείνη του ηλεκτρικού πεδίου. 43

Ηλεκτρόνιο μέσα σε ομογενές πεδίο Παράδειγμα 44