ΦΥΣ. 211 Τελική Εξέταση 20-Μάη-2016

Σχετικά έγγραφα
ΦΥΣ. 211 Τελική Εξέταση 20-Μάη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017

ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ. 131 Τελική εξέταση: 10-Δεκεμβρίου-2005

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

ΦΥΕ14-5 η Εργασία Παράδοση

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

Β ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 19-Νοεµβρίου-2011

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

ΦΥΣ Τελική Εξέταση: 10-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Τελική Εξέταση: 10-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΔΕΚΕΜΒΡΙΟΥ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W


ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Απρίλη-2014


ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ:

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

ΦΥΣ Τελική Εξέταση: 16-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Τελική Εξέταση: 16-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Νοεµβρίου-2008

5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Θέµα Α

ΦΥΣ η Πρόοδος: 5-Νοεμβρίου-2006

6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Απρίλιος 2015

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

Ασκήσεις στροφικής κίνησης στερεού σώµατος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ

Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΘΕΜΑΤΑ Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι δεκτή

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. 22 Μαΐου 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

Τίτλος Κεφαλαίου: Στερεό σώµα. Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως. Γεώργιος Μακεδών, Φυσικός Ρ/Η Σελίδα 1

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Φυσική Ο.Π. Γ Λυκείου

ΦΥΣ η Πρόοδος: 14-Οκτωβρίου-2017

ΦΥΣ η Πρόοδος: 14-Οκτωβρίου-2017


ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα


ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

Το ελαστικο κωνικο εκκρεμε ς

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

K K. 1 2 mr. Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο. Τμήμα ΘΕΜΑ 1

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Θέµα Α

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 14/4/2019

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013

Transcript:

ΦΥΣ. Τελική Εξέταση 0-Μάη-06 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε µόνο τις σελίδες που δίνονται και µην κόψετε καµιά από τις σελίδες. Προσπαθήστε να δείξετε τη σκέψη σας και να γράψετε καθαρές εξισώσεις. Για πλήρη ή µερική βαθµολόγηση θα πρέπει να φαίνεται καθαρά αυτό που προσπαθείτε να δείξετε. Αν δεν µπορώ να διαβάσω τι γράφετε αυτόµατα θα υποθέσω ότι είναι λάθος. Απαντήστε σε 7 από τις 8 ασκήσεις που σας δίνονται µε σύνολο 70 µονάδων. Θα µετρήσουν οι 7 ασκήσεις που σας δίνουν τη µεγαλύτερη συνολική βαθµολογία. Η σειρά των ασκήσεων δεν είναι αντιπροσωπευτική της δυσκολίας τους. Πριν ξεκινήσετε διαβάστε όλες τις ασκήσεις και σκεφτείτε τι χρειάζεται να κάνετε. Η διάρκεια της εξέτασης είναι 4 ώρες. Καλή επιτυχία και καλό καλοκαίρι.

Διανύσµατα: C = A B = ˆ A B x x ˆj A B y y ˆ A B z z, A A = 0, Τυπολόγιο A ( A B) ( B C) = ( A B) C, A ( B C) = B( A C) ( A B)C = 0, A Ανάπτυγµα Taylo συνάρτησης ως προς σηµείο α: 3 f ( z) = f ( a) + ( z a) f ( a) + ( z a) f ( a) + ( z a) f ( a) + 3 Σειρά διωνύµου: n( n ) ( + z) n = + nz + z + για z < Στροφορµή: Κέντρο µάζας: n n L L p I = = = ω RCM = m, M = m ή M = = L = L CM + L d n L εξ ως, CM = [ F ] dt Τανυστής αδράνειας N ( ) R CM = dm M I j = m a a δ j a a j ή I j = d 3 ρ και I c j = I CM j + M c δ j c c j a= { ( )} ( ) δ j ( e ) e j ( ) Συνθήκες για µια δύναµη να είναι συντηρητική: F = U () και F = 0 όπου = ˆ + ˆj + ˆ x y z Eule-Lagange εξισώσεις: x f d f S = f [ y( x), y ( x), x]dx είναι στάσιµο κατά µήκος της y = y( x) αν = 0 x y dx y Lagangan: Αρχή Hamlton: t L = Τ V S = L dt t Κυλινδρικές συντεταγµένες: Σφαιρικές συντεταγµένες: m = ( ρ + ρ m L φ + z ) U( ρφz) L = ( + θ + φ sn θ ) U( θφ) Εξισώσεις Lagange: Εξισώσεις Lagange µε πολλαπλασιαστές: m d L L d L L f = 0 t s dt q q dt = ( ) =,,3, q λ q = q Γενικευµένη ορµή: Αγνοήσιµη ή κυκλική συντεταγµένη: p = L L = 0 q q Hamltonan: Εξισώσεις Hamlton: H ( q, p, t) = p q L( q, q, t) q" = H [ =,, n] p L H H = p" = [ =,, n] t t q ( )

Ανηγµένη µάζα: Ενεργό δυναµικό: mm l µ = U eff ( ) = U( ) + U cf ( ) = U( ) + m + m µ Μετασχηµατισµένη ακτινική Δ.Ε. τροχιάς: Ενέργεια τροχιάς: d u µ l + u + F = 0, όπου u = E = µ + dφ l u u µ + U( ) Τροχιές Keple: mm γ c l F = G = λύση ακτινικής εξίσωσης είναι: ( φ) =, µε c = + e cosφ γµ γ µ Εκκεντρότητα (e): E = ( e ) όπου E = Ενέργεια l Εκκεντρότητα Ενέργεια Είδος Τροχιάς e = 0 E < 0 κυκλική 0< e < E < 0 ελλειπτική e = E = 0 παραβολική e > E > 0 υπερβολική Περιήλιο: mn = c + e Αφήλιο: c c max = Μεγάλος ηµιάξ.: a = Μικρός ηµιάξ.: b = e e e Νόµοι Keple: ος νόµος: τροχιές πλανητών είναι ελλείψεις µε τον ήλιο σε µια από τις εστίες της έλλειψης ος da l νόµος: = 3 ος 4π 3 νόµος: Τ = a dt µ GM H Συζευγµένοι ταλαντωτές: xa, xa, U T = M jq jq M j = ma U = V jq jq V j = q q q q j, a q Mq = Vq q = ιδιοσυχνότητες: det( M) = 0 q n q ( t) = a η ( t) Κανονικές συντεταγµένες: η ( t) = β e j j Ορθοκανονικότητα: M j a j a = δ s = j, Tαλαντώσεις: q + ω q = 0 µε λύσεις: ω < 0 q t j j, V ω ιδιοδιανύσµατα: ( V ω M ) a = 0 0 s = s ω t ( ) = Acos( ωt) + Bcos( ωt) ή αν ω > 0 q( t) = Ae + ω t + Be ω t q + ω Q q + ω q = 0 µε λύσεις: q( t) = Ae a + t + Be + a t όπου a = a ± = ω ( ) = Ae ωt q t Q ω 4Q e t q + ω 0 Q q + ω q = F cosωt q t 0 Περιστρεφόµενα συστήµατα a = a σωµ. + ω υ σωµ + ω ω µε Q > και q( t) = Ae ωt + Bte ωt για Q = ( ) = Ae δt e ωt + q οµογ tanδ = ωω 0 Q ω 0 ω ( ) j j j Q ± ω 4Q και Q < A = ( ) + ω " "αδρ. = d dt = " σωµ + ω ( ) e F 0 j j ( ω 0 ω ) + ω ω 0 Q = " σωµ + ω

Εξισώσεις Eule: I ω + ω ω 3 I 3 I ( ) = τ ( ) = τ ( ) = τ 3 I ω + ω ω 3 I I 3 I 3 ω 3 + ω ω I I Συµµετρική σβούρα: Συχνότητα µετάπτωσης (χωρίς εξωτερική δύναµη): Ω = ω 3 I I 3 I Mετάπτωση χωρίς κλόνηση (βαριά σβούρα): I 3 ω 3 > 4MglI cosθ 0 Γωνιακή ταχύτητα: ω "ϕ snψ snθ + θ " cosψ ω = "ϕ cosψ snθ θ " snψ = ω "ϕ cosθ + ψ" ω 3 Τριγωνοµετρικές ταυτότητες: ( ) = cos( a) ( ) = sn( a) ( ) = cos a ( ) = sn a sec a csc a cos a ± b sn a ± b ( )cos b ( )cos b ( ) sn a ( ) ± cos a sn( a) + sn( b) = sn a + b sn( a) sn b ( ) = cos a + b cos( a) + cos( b) = cos a + b cos( a) cos b ( )sn b ( )sn b ( ) ( ) cos a b sn a b cos a b sn a b ( ) = sn a + b Ροπές αδράνειας σωµάτων: Ράβδου ως προς το CM: ml Δίσκου ως προς το CM: mr και ως προς διάµετρο του δίσκου: 4 mr Στεφανιού: mr Μεγέθη σε διάφορα συστήµατα συντεταγµένων: Καρτεσιανό Σφαιρικό Κυλινδρικό d s = dx ê + dx ê + dx 3 ê 3 d s = dê + dθê θ + snθdϕê ϕ d s = dê + dϕê ϕ + dzê z ds = dx + dx + dx 3 υ = x + x + x 3 υ = "x ê + "x ê + "x 3 ê 3 ds = d + dθ + sn θdϕ ds = d + dϕ + dz υ = + θ + sn θ ϕ υ = + ϕ + z υ = "ê + "θê θ + snθ "ϕê ϕ υ = "ê + "ϕê ϕ + "zê z

. (0µ συνολικά) Θεωρήστε ένα φορτισµένο σωµατίδιο σε ένα ηλεκτρικό πεδίο. Η Lagangan µπορεί να γραφεί µε την µορφή: L = mx + QE 0 x, όπου Q είναι το φορτίο του σωµατιδίου και Ε 0 η ένταση του ηλεκτρικού πεδίου. (α) Ποια η Hamltonan του συστήµατος; [3µ] (β) Ποιες οι εξισώσεις Hamlton; [µ] (γ) Το σώµα ξεκινά από την θέση x = 0 τη χρονική στιγµή t = 0. Σχεδιάστε τη µετέπειτα διαδροµή του σωµατιδίου στο φασικό χώρο. [5µ]

. (0µ συνολικά) Μια αράχνη κρέµεται µέσω µιας λεπτής κλωστής του ιστού της από το κλαδί ενός δέντρου στην Πανεπιστηµιούπολη στην Αγλαντζιά. Βρείτε το προσανατολισµό και τιµή της γωνίας που σχηµατίζει η κλωστή µε την κατακόρυφο διεύθυνση (π.χ. τη διεύθυνση της βαρύτητας) λαµβάνοντας υπόψη την περιστροφή της Γης. Θεωρήστε ότι το γεωγραφικό πλάτος στο οποίο βρίσκεται η Πανεπιστηµιούπολη είναι θ ~ 35 ο και η ακτίνα της Γης είναι R ~ 6400m.

3. (0π συνολικά) Θεωρήστε ένα ορειβάτη ο οποίος θέλει να αναρριχηθεί σε µια πλαγιά κωνικού σχήµατος που περιγράφεται από την εξίσωση z = x + y. Δυστυχώς, η µετερεωλογική εταιρεία προβλέπει την ύπαρξη καταιγίδας και θα πρέπει ο ορειβάτης να βρει γρήγορα το καταφύγιο πριν πληγεί από την καταιγίδα. Να βρεθεί η ακριβής εξίσωση της συντοµότερης διαδροµής στο καταφύγιο που βρίσκεται στην θέση µε συντεταγµένες (-,0,-) αν την στιγµή που πήρε την ειδοποίηση για την καταιγίδα βρίσκονταν στην θέση µε συντεταγµένες (,0,-). Υπόδειξη: Πιθανόν να σας φανεί χρήσιµο να αντικαταστήσετε την συντεταγµένη, w, ως προς την οποία βρίσκετε την διαφορική εξίσωση, µε µια νέα µεταβλητή u = w, και να χρησιµοποιήσετε τριγωνοµετρικές ταυτότητες για να απλουστεύσετε την απάντησή σας.

4. (0µ συνολικά) Τροχιές γύρω από µια µαύρη τρύπα µάζας M µπορούν να περιγραφούν µε βάση ένα ενεργό δυναµικό της µορφής: U eff ( ) = + l l, όπου l είναι η στροφορµή της τροχιάς. Ως 3 προς το κλασικό Keplean δυναµικό, η µοναδική τροποποίηση είναι ο τελευταίος όρος 3 ενώ για χάρη απλότητας υποθέτουµε ότι η ανηγµένη µάζα είναι µ = και η σταθερά του πεδίου είναι G N =. Το δυναµικό αυτό µπορεί να ερµηνευτεί και χρησιµοποιηθεί µε τον συνήθη τρόπο, ότι δηλαδή, η ακτινική εξίσωση της κίνησης για ένα σωµατίδιο που κινείται γύρω από την µαύρη τρύπα προέρχεται από µια Lagangan της µορφής L = U eff ( ). (α) Δείξτε ότι για l < δεν υπάρχουν κυκλικές τροχιές, ενώ για l > υπάρχουν δύο κυκλικές τροχιές. [µ] (β) Σχεδιάστε το ενεργό δυναµικό, U eff (), για l < και l >. [4µ] (γ) Περιγράψτε ποιοτικά τις πιθανές τροχιές για l < και l >. [4µ]

5. (0µ συνολικά) Μια συµπαγής σφαίρα ακτίνας R και µάζας M βρίσκεται πάνω σε µια λεπτή ράβδο που είναι στερεωµένη και παραµένει ακίνητη. Η σφαίρα ξεκινά από την κατάσταση της ηρεµίας να κυλά πάνω στη ράβδο χωρίς να ολισθαίνει ώσπου τελικά πέφτει από την ράβδο. (α) Ποιος δεσµός υπάρχει για το σύστηµα; [µ] (β) Χρησιµοποιώντας την µέθοδο των πολλαπλασιαστών Lagange, να υπολογίσετε την γωνία, θ, που η σφαίρα χάνει επαφή µε τη ράβδο. [8µ] Η ροπή αδράνειας της σφαίρας ισούται µε I σϕ CM = MR 5. Υπόδειξη: Θα µπορούσε να βοηθήσει στην επίλυση της εξίσωσης που θα καταλήξετε η χρήση διατήρησης της ενέργειας. Αρχική θέση σφαίρας (ακίνητη) Θέση της σφαίρας όταν πέφτει από την ράβδο R Άξονας σφαίρας θ Ράβδος (άξονας έξω από τη σελίδα)

6. (0µ συνολικά) Μια κούνια µάζας m έχει σχήµα τόξου ακτίνας R και κρέµεται από σηµείο στήριξης µέσω σχοινιών στα άκρα της (δείτε το διπλανό σχήµα). Ένα στεφάνι ακτίνας Ο α, ίδιας µάζας m όπως και η κούνια και ροπής αδράνειας Ι = mα, κυλά χωρίς να ολισθαίνει στην επιφάνεια της κούνιας. Η κίνηση του στεφανιού και της κούνιας δεν υπόκεινται σε απώλειες λόγω τριβών ενώ συµβαίνουν κάτω από την επίδραση της βαρυτικής δύναµης F g = mgĵ. Βρείτε όλες τις δυνατές συχνότητες ταλαντώσεων του συστήµατος για µικρές αποκλίσεις από την ισορροπία θεωρώντας ότι a R. Υπόδειξη: Η γωνιακή αποµάκρυνση, θ, του κέντρου µάζας του στεφανιού και η γωνιακή αποµάκρυνση, φ, της κούνιας ως προς το σηµείο Ο δεν είναι ίδιες γιατί τότε το στεφάνι θα ήταν ακίνητο σχετικά µε την κούνια. Το στεφάνι επίσης περιστρέφεται ως προς το CM λόγω κύλησης.

7. (0µ συνολικά) Η διπλανή διάταξη αποτελείται από µάζες m που συνδέονται z y µεταξύ τους µε βραχίονες αµελητέας µάζας και µήκους l ο 0 x καθένας, και µια µάζα, M, στο κατώτερο µέρος της διάταξης. Η διάταξη είναι περιορισµένη να κινείται ως προς κατακόρυφο l θ θ l άξονα πάνω στον οποίο η µάζα M µπορεί να κινείται κατακόρυφα m m ω χωρίς τριβές. Αγνοήστε τριβές και αντιστάσεις του αέρα, καθώς ο θ θ και τις διαστάσεις της µάζας Μ. Υποθέστε ακόµα ότι ο άξονας l l περιστροφής περιστρέφεται µε σταθερή γωνιακή ταχύτητα ω 0. M (α) Εκφράστε τις θέσεις των µαζών συναρτήσει τα µήκη των βραχιόνων και της γωνίας θ. [µ] ω ο (β) Βρείτε την εξίσωση κίνησης του συστήµατος. [3µ] (γ) Υπολογίστε το ύψος στο οποίο ισορροπεί η µάζα M. Το ύψος αυτό αντιστοιχεί σε συγκεκριµένη γωνία θ ο, γωνία ισορροπίας. [3µ] (δ) Θεωρώντας µικρές γωνιακές αποκλίσεις, θ, από τη γωνία ισορροπίας, θ ο, και κρατώντας µόνο όρους ης τάξης ως προς θ στην εξίσωση κίνησης, υπολογίστε την συχνότητα των µικρών ταλαντώσεων γύρω από την θέση αυτή ισορροπίας. [3µ] Υπόδειξη: Προσέξτε ότι το σύστηµα της διάταξης αποτελεί µη αδρανειακό σύστηµα αναφοράς.

8. (0µ συνολικά) Μια συµµετρική «σβούρα» αποτελείται από λεπτό οµοιογενή δίσκο µάζας 4m και ακτίνας R=3α. Μια λεπτή συµπαγής ράβδος µήκους l=4α και µάζας m είναι στερεωµένη στο κέντρο του δίσκου όπως φαίνεται στο διπλανό σχήµα. Η ράβδος είναι κάθετη στο επίπεδο του δίσκου. Η «σβούρα» στηρίζεται στην κορυφή ενός κωνικού στηρίγµατος, όπως φαίνεται στο σχήµα. Επιλέξτε ένα σύστηµα συντεταγµένων σώµατος τέτοιο ώστε ο άξονας ˆx 3 να έχει διεύθυνση κατά µήκος της ράβδου. Ως υπευνθύµιση, οι γωνίες Eule ορίζονται µε τον ακόλουθο τρόπο: φ αντιπροσωπεύει περιστροφή ως προς τον ˆx 3 - άξονα, θ αντιπροσωπεύει περιστροφή ως προς τον νέο ˆx - άξονα ( xˆ - άξονας) που προκύπτει από την περιστροφή ως προς φ, ενώ η K θ γωνία ψ αντιπροσωπεύει περιστροφή ως προς τον ˆx 3 - άξονα ( xˆ e - άξονας) που προκύπτει µετά την περιστροφή κατά θ. Οι εξισώσεις κίνησης για τις συνιστώσες της γωνιακής ταχύτητας σώµατος ω, ω, ω 3 συναρτήσει των γωνιών Eule, θ, φ, και ψ, είναι: ω = ϕ snθ snψ + θ cosψ ω = ϕ snθ cosψ θ snψ και ω 3 = ϕ cosθ + ψ (α) Βρείτε την θέση του κέντρου µάζας του συστήµατος και τις ροπές αδράνειας, Ι, Ι, Ι 3 κατά µήκος των αξόνων ˆx, ˆx και ˆx 3 ως προς την κορυφή του στηρίγµατος Κ. [4µ] (β) Η σβούρα µπορεί να περιστρέφεται ελεύθερα (χωρίς τριβές) ως προς το σηµείο στήριξης στην κορυφή του κωνικού στηρίγµατος, και υπόκειται στη σταθερή βαρυτική επιτάχυνση g. Βρείτε την Lagangan του συστήµατος συναρτήσει των γωνιών Eule φ, θ και ψ. Δεν χρειάζεται να γνωρίζετε ακριβώς τις τιµές των κύριων ροπών αδράνειας Ι, Ι, Ι 3. [µ] (γ) Βρείτε τις εξισώσεις κίνησης για τις γωνίες Eule. Προσδιορίστε τυχόν διατηρήσιµες ποσότητες. Όπως και στο ερώτηµα (β) δεν χρειάζεται να ξέρετε ακριβώς τις Ι, Ι, Ι 3. [µ] (δ) Προσδιορίστε την ελάχιστη ταχύτητα περιστροφής του δίσκου ως προς την ράβδο (σπιν), τέτοια ώστε η σβούρα να µεταπίπτει σε σταθερή κατάσταση κίνησης (steady state) όπου θ = 0 = θ = ϕ = ψ, ϕ = Ω και το χαµηλότερο σηµείο της περιφέρειας του δίσκου να είναι στο ίδιο οριζόντιο επίπεδο µε την κορυφή του στηρίγµατος, όπως φαίνεται στο σχήµα. [µ] ράβδος δίσκος l=4a R=3α