( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j
|
|
- Βίων Αγγελίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Γωνίες Euler ΦΥΣ 11 - Διαλ.3 1 q Όλοι σχεδόν οι υπολογισµοί που έχουµε κάνει για την κίνηση ενός στερεού στο σύστηµα συντεταγµένων του στερεού σώµατος Ø Για παράδειγµα η γωνιακή ταχύτητα είναι: ω = i ω i ei q Ωστόσο θα θέλαµε να καταλάβουµε/περιγράψουµε την κίνηση του στερεού ως προς αδρανειακό σύστηµα συντεταγµένων: q Η σύνδεση µεταξύ του περιστρεφόµενου και αδρανειακού συστήµατος γίνεται µέσω: ei = U ij ej j Ø Εποµένως είναι ιδιαίτερα χρήσιµο να υπάρχει ένας ακριβής τρόπος για να παραµετροποιήσουµε τους πίνακες περιστροφής: q Ισχυρισµός: Ένας τυχαίος 3 3 ορθογώνιος πίνακας περιστροφής U ij µπορεί να γραφεί σαν το αποτέλεσµα 3 διαδοχικών περιστροφών,ψ, θ, φ γύρω από 3 διαφορετικούς άξονες συντεταγµένων ( ) = U 3 ψ U ψ,θ,ϕ Ø π.χ U 3 ( ϕ) ( )U 1 ( θ )U 3 ϕ ( ) όπου U j περιγράφει περιστροφή ως προς e j περιγράφει περιστροφή γύρω από τον z-άξονα κατά γωνία φ U 3 ϕ ( ) = cosϕ sinϕ 0 sinϕ cosϕ
2 Γωνίες Euler ΦΥΣ 11 - Διαλ.3 q Ανάλογα, ο πίνακας περιστροφής U 1 (θ) θα περιγράφει περιστροφή κατά γωνία θ, ως προς τον x-άξονα U 1 ( θ ) = cosθ sinθ 0 sinθ cosθ e j Ø Προσοχή: άξονας ως προς τον οποίο γίνεται η περιστροφή, είναι αυτός όπως έχει προκύψει µετά από κάποια προηγούµενη περιστροφή Ø Γράφοντας αναλυτικά τις περιστροφές: ² ² ² ( ) : U 3 ϕ U 1 ( θ ) : ei e j = ei e j = U 3 ( ψ ) : e i e j = i i i U 3 ϕ ( ) ei ji U 1 ( θ ) ei ji U 3 ( ψ ) ei ji περιστροφή γύρω από τον z-άξονα των αδρανειακών συντεταγµένων περιστροφή γύρω από τον x-άξονα των συντεταγµένων (δηλαδή ex ) περιστροφή γύρω από τον z-άξονα των συντεταγµένων (δηλαδή ez ) Ø Η διαδικασία αυτή επιτρέπει την γραφή της γωνιακής ταχύτητας στο αδρανειακό σύστηµα αναφοράς: e i
3 Γωνίες Euler - Γραφικά ΦΥΣ 11 - Διαλ.3 3 q Θα µπορούσαµε να δείξουµε τις περιστροφές για τις γωνίες Euler ως εξής: D = = cosϕ sinϕ 0 sinϕ cosϕ C = cosθ sinθ 0 sinθ cosθ B = cosψ sinψ 0 sinψ cosψ cosψ cosϕ cosθ sinϕ sinψ cosψ sinϕ + cosθ cosϕ sinψ sinψ sinθ sinψ cosϕ cosθ sinϕ cosψ sinψ sinϕ + cosθ cosϕ cosψ cosψ sinθ sinθ sinϕ sinθ cosϕ cosθ
4 Γωνίες Euler Γωνιακή ταχύτητα ΦΥΣ 11 - Διαλ.3 4 q Οι συνιστώσες της γωνιακής ταχύτητας ωστόσο δεν αποτελούν ορθογώνιο σύστηµα. Συγκεκριµένα: ϕ θ ψ z είναι στην κατεύθυνση του αρχικού z - άξονα είναι στην κατεύθυνση του ξ - άξονα είναι στην κατεύθυνση του - άξονα - κλόνηση - spin - µετάπτωση ˆη z z ω ˆη z y ω ξ - κοµβική γραµµή Μπορούµε να γράψουµε την γωνιακή ταχύτητα: ω = ˆη z "ϕ + ˆη ξ "θ + ˆη z ψ" = ˆη x ω 1 + ˆη y ω + ˆη z x ω 1 Παίρνουµε τις συνιστώσες των γωνιακών ταχυτήτων ως προς το τελικό σύστηµα συντεταγµένων x y z ˆη ξ
5 Γωνίες Euler Γωνιακή ταχύτητα ΦΥΣ 11 - Διαλ.3 5 q Χρησιµοποιώντας τις γωνίες Euler, και τον µετασχηµατισµό περιστροφής µεταξύ των δυο συστηµάτων, w loc = A wgl,η γωνιακή ταχύτητα µπορεί να γραφεί: ω 1 = ϕ ˆη x ˆη z + θ ˆη x ˆη ξ + ψ ˆη x ˆη z ω = ϕ ˆη y ˆη z + θ ˆη y ˆη ξ + ψ ˆη y ˆη z = ϕ ˆη z ˆη z + θ ˆη z ˆη ξ + ψ ˆη z ˆη z = ϕ sinθ sinψ + θ cosψ = ϕ sinθ cosψ θ sinψ = ϕ cosθ + ψ Ø Τα παραπάνω εσωτερικά γινόµενα υπολογίζονται εύκολα παρατηρώντας ότι: H γωνία µεταξύ ẑ ξ είναι 90 ο - ψ ẑ = cos 90 ο ψ H γωνία µεταξύ ẑ z είναι θ Το µοναδιαίο διάνυσµα επί της κοµβικής γραµµής, ˆη ξ ˆη ξ = cosψ ˆη x sinψ ˆη y ( )sinθ ˆη sin( 90 ο ψ )sinθ ˆη cosθ ˆη z q Εποµένως η γωνιακή ταχύτητα συναρτήσει των γωνιών Euler θα γραφεί ως εξής: ω = ˆη z "ϕ + ˆη ξ "θ + ˆη z ψ" = ϕ sinψ sinθ + θ cosψ ϕ cosψ sinθ θ sinψ ϕ cosθ + ψ Ø Στο σύστηµα αναφοράς του περιστρεφόµενου σώµατος x + y +
6 Γωνίες Euler Γωνιακή ταχύτητα q Μπορούµε να εκφράσουµε την Lagrangian µε την µορφή: ΦΥΣ 11 - Διαλ.3 6 T = 1 M RCM " Ø Θεωρώντας ότι το CM είναι η αρχή του περιστρεφόµενου συστήµατος αναφοράς ( ) + T ( ϕ, θ, ψ ) T = 1 M x + y + z q Αρκετές φορές µπορούµε να ξεχωρίσουµε και την δυναµική ενέργεια: ( ) U = U 1 ( x, y,z) +U ϕ,θ,ψ U 1 = g r Ø U 1 βαρυτικό πεδίο: Ø U µαγνητικό πεδίο, Β, και διπολική ροπή M: U = M B q H Lagrangian µπορεί να γραφεί σαν άθροισµα δυο τµηµάτων: L = L γραµ. ( x, y,z,ϕ,θ,ψ ) + L περ. x, y, z, ϕ, θ, ψ ( ) + i 1 m ir " i
7 Περιστροφή κάτω από εξωτερική ροπή ΦΥΣ 11 - Διαλ.3 7 q Συζητήσαµε περιπτώσεις στερεών στα οποία δεν υπήρχε εξωτερική ροπή. Ø Εισάγωντας εξωτερικές ροπές, η κατάσταση γίνεται πολύπλοκη Ø Εξισώσεις κίνησης γίνονται: ( ) = τ 1 ( ) = τ ( ) = τ 3 I 1 ω 1 ω I I 3 I ω ω 1 I 3 I 1 I 3 ω 1 ω I 1 I q Θεωρήστε µια περιστρεφόµενη σβούρα: q Ορίζουµε τις γωνίες Euler: Ø Έστω: I 1 = I I 3 Ø H κινητική ενέργεια είναι: T = 1 I 1 ω 1 + ω Ø Αλλά η γωνιακή ταχύτητα γράφεται: ω = ( ) + 1 I 3 "ϕ sinψ sinθ + "θ cosψ "ϕ cosψ sinθ " θ sinψ "ϕ cosθ + " ψ Ø Εποµένως η κινητική ενέργεια είναι: T = I 1 ( θ + ϕ sin θ ) + I 3 ( ) ϕ cosθ + ψ
8 Βαριά Σβούρα ΦΥΣ 11 - Διαλ.3 8 q Η δυναµική ενέργεια προέρχεται από το ύψος του CM: V = Mgl cosθ Ø και η τελική µορφή της Lagrangian είναι: ( ) + I 3 L = I 1 θ + ϕ sin θ ϕ cosθ + ψ q Οι γωνίες φ και ψ είναι κυκλικές: ( ) Mgl cosθ Ø Υπάρχουν συζυγείς ορµές οι οποίες διατηρούνται: p ϕ q Διατήρηση των δυο ορµών δίνει: p ψ = L ψ = I 3 ϕ cosθ + ψ p ϕ = L ϕ = I 1 ϕ sin θ + I 3 cosθ ϕ cosθ + ψ q Λύνουµε για: ϕ και ψ ϕ = b acosθ sin θ και ( ) p ψ = I 3 = σταθ. I 1 a και ψ = I a 1 I 3 p ψ ( ) p θ = I 1 ω 1 = σταθ. I 1 b cosθ b acosθ sin θ q Χρειάζεται να βρούµε την συνάρτηση θ ( t) για να προσδιοριστούν ϕ ( t) και ψ ( t)
9 Βαριά Σβούρα q Η µηχανική ενέργεια όµως διατηρείται, οπότε µπορούµε να γράψουµε: E = I 1 ( θ + ϕ sin θ ) + I 3 ϕ cosθ + ψ q Ο ος όρος όµως δίνει: 1 I 3 ( ) + Mgl cosθ ΦΥΣ 11 - Διαλ.3 9 q Και µπορούµε να γράψουµε την ενέργεια µε την µορφή: E = E I 3 E = I 1 θ + I 1 ( b acosθ ) + Mgl cosθ sin θ q Καταλήξαµε σε εξίσωση κίνησης σε 1-διάσταση: Ø Σώµα µε µάζα Ι 1 σε δυναµικό της µορφής: V eff = I 1 b acosθ sinθ q Απλουστεύουµε την εξίσωση κίνησης, ορίζοντας: α E I 3 α = θ + b acosθ Ø Η εξίσωση κίνησης γίνεται: sinθ Ø Αλλάζουµε µεταβλητές: θ u = cosθ Ø Η εξίσωση κίνησης γίνεται: u = 1 u ( ) α βu I 1 + β cosθ ( ) ( b au) και + Mgl cosθ β Mgl I 1
10 ΦΥΣ 11 - Διαλ.3 10 Βαριά Σβούρα Εξίσωση κίνησης Ποιοτική μελέτη q Βρίσκουµε σαν εξίσωση κίνησης: u = ( 1 u )( α βu) ( b au) q Ολοκλήρωση θα δώσει: t = u( t) ( ) u 0 du ( 1 u ) α βu ( ) ( b au) Ελλειπτικό ολοκλήρωµα q Μπορούµε να µελετήσουµε την κίνηση ποιοτικά (κίνηση σε κεντρικό δυναµικό) [ ] Ø Υπάρχουν όρια στις τιµές του u: u = cosθ u 1,1 ( ) α βu ( ) = 1 u ( ) ( b au) u = f u = βu 3 ( α + a )u + ( ab β )u + ( α b ) 0 Ø H f(u) είναι κυβική συνάρτηση του u µε β Mgl > 0 I 1 Ø Οι δυο οριακές τιµές: f ( ±1) = ( b au) 0 q Οι συνθήκες αυτές περιορίζουν την µορφή της συνάρτησης f(u) q Πολυώνυµο 3 ου βαθµού, οπότε περιµένουµε 3 ρίζες
11 ΦΥΣ 11 - Διαλ.3 11 Βαριά Σβούρα Ποιοτική Μελέτη Λύσεων - Κλόνηση q Τρεις ρίζες Ø H λύση για 1 u 1 u 1 u 3 u = f u ( ) είναι φραγµένη u 1 u u q H θ ταλαντώνεται µεταξύ των τιµών cos -1 (u 1 ) και cos -1 (u ) q Οι γωνίες φ και ψ προσδιορίζονται από τις: ϕ = b acosθ sin θ και ψ = I 1a I 3 cosθ b acosθ sin θ q Μελετώντας το πρόσηµο της : ϕ = b acosθ = b au sin θ 1 u Ø H ϕ αλλάζει πρόσηµο στο b au = 0 u = u = b a ² u < u 1 ή u > u φ µονότονη ² u 1 < u < u φ αλλάζει κατεύθυνση
12 Βαριά Σβούρα Αρχικές συνθήκες ΦΥΣ 11 - Διαλ.3 1 q Υποθέστε ότι αρχικά ο άξονας είναι ακίνητος q Θέτουµε την σβούρα σε περιστροφή και την αφήνουµε ελεύθερη q Οι αρχικές συνθήκες είναι: θ t=0 = 0 f ( u t=0 ) = 0 u t=0 = u 1 ή u ϕ t=0 = 0 b au t=0 = 0 u t=0 = u Ø Αρχικά ο άξονας πέφτει Ø Αρχίζει κατόπιν να µεταπίπτει ως προς φ Ø Η διεύθυνση της µετάπτωσης? q Προέλευση της µετάπτωσης? Ø Από διατήρηση της στροφορµής p ψ = L ψ = I 3 και p ϕ = L ϕ = I 1 ϕ sin θ + I 3 cosθ Ø είναι σταθερή Ø Καθώς ο άξονας περιστροφής «πέφτει», ελαττώνεται στην p φ Ø φ πρέπει να αρχίσει να µεταπίπτει για να εξισορροπήσει την απώλεια q Η διεύθυνση της µετάπτωσης είναι ίδια µε αυτή της περιστροφής της σβούρας
13 Βαριά Σβούρα Ομοιόμορφη μετάπτωση ΦΥΣ 11 - Διαλ.3 13 q Μπορούµε να κάνουµε την σβούρα να µεταπίπτει χωρίς κλόνηση θ = 0 και ϕ = b au 1 u = σταθ. q Χρειάζεται να υπάρχει διπλή ρίζα για f(u)=0 ( ) = 1 u 0 ( ) ( b au 0 ) = 0 ( ) = u 0 ( α βu 0 ) β 1 u 0 ( ) = 0 f u 0 f u 0 ( ) α βu 0 ( ) + α b au 0 I 1 a I 3 β Mgl Mgl = ϕ ( I 3 I 1 ϕ cosθ 0 ) I 1 β = a ϕ ϕ u 0 q Για οποιαδήποτε δεδοµένη τιµή του και γωνία του άξονα περιστροφής. cosθ 0, πρέπει να δοθεί ακριβώς η σωστή ώθηση σε φ ώστε να µην υπάρχει κλόνηση q Εξίσωση ου βαθµού και εποµένως λύσεις Η ίδια σβούρα µπορεί να κάνει είτε γρήγορη είτε αργή µετάπτωση q Για να υπάρχει λύση θα πρέπει I 3 > 4MglI 1 cosθ 0 > I 3 MglI 1 cosθ 0 q Οµοιόµορφη µετάπτωση επιτυγχάνεται από µια γρήγορα περιστρεφόµενη σβούρα
14 Μαγνητική διπολική ροπή ΦΥΣ 11 - Διαλ.3 14 q Θεωρήστε ένα στερεό σώµα το οποίο αποτελείται από φορτισµένα σωµατίδια Ø Εποµένως θα έχουµε: µάζα m i, φορτίο q i, θέση r i και ταχύτητα υ ι q Υποθέτουµε ότι υπάρχει οµοιόµοργο µαγνητικό πεδίο B Ø Σε κάθε φορτισµένο σωµατίδιο ασκείται µια δύναµη: F i = q i ui B Ø Αν το ΚΜ είναι ακίνητο και q i /m i = σταθ., τότε: F = q i ui B = q m m iu i B = 0 q Η ροπή θα είναι: τ = r i F i = q i ri u i B q Χρησιµοποιώντας τ = q m m i ( ) τ = q m m i u i = ω r i ω r i ( ) ( ) r i B q Χρησιµοποιώντας πολικές συντεταγµένες ( ω r i ) r i B ( ) = ωr i Bsinθ q Υποθέτοντας γρήγορη περιστροφή παίρνουµε µέση τιµή ως προς χρόνο ( ) r i u i B sinϕ cosϕ 0 τ = q m m i ω ( sinθ cosϕ sinθ + cosθ cosθ) ( r i sinθ ) ω B = q m L B r i
15 Μαγνητική διπολική ροπή q H ροπή είναι: τ = q L B m q Μαγνητικό δίπολο M σε πεδίο B αισθάνεται ροπή: τ = M B ΦΥΣ 11 - Διαλ.3 15 q Ένα γρήγορα περιστρεφόµενο φορτισµένο σώµα έχει µαγνητική ροπή: M = γ L γ = q m Ø όπου: γυροµαγνητικός λόγος q H εξίσωση της κίνησης θα γίνει: d L dt = γ L B q Κάνει το διάνυσµα της στροφορµής να µεταπίπτει γύρω από το Β q Γωνιακή ταχύτητα µετάπτωσης είναι: ω µεταπτ. = γ B = q m B συχνότητα Larmor
16 ΦΥΣ 11 - Διαλ.3 16 Μαγνητική διπολική ροπή στοιχειωδών σωματιδίων q Σωµατίδια όπως το ηλεκτρόνιο και το πρωτόνιο έχουν Ø σπιν, s Ø µαγνητική ροπή, µ q H εξίσωση του Dirac για σωµατίδια µε σπιν ½ προβλέπει ότι: µ = q m s Ø Διαφέρει από το κλασικό φορτισµένο στερεό σώµα κατά ένα παράγοντα Ø Συνηθίζεται να λέµε µ = gq m s όπου g = 1 κλασικό στερεό σωµατίδιο Dirac q g= για τα ηλεκτρόνια, µιόνια Dirac σωµατίδια q g=.8 για τα πρωτόνια, -1.9 για τα νετρόνια Δεν είναι στοιχειώδη σωµατίδια q µ για τα ηλεκτρόνια και µιόνια είναι γνωστή µε µεγάλη ακρίβεια g ηλεκ. = ± g µιονιου = ± q Όχι ακριβώς Dirac σωµατίδια εξαιτίας ενός νέφους δυνητικών σωµατιδίων που τα περιβάλει εξαιτίας κβαντικών διαταραχών q Η πειραµατική µέτρηση στηρίζεται σε πολύ καλή γνώση του µαγνητικού πεδίου
17 Πείραμα μέτρησης g- του μιονίου ΦΥΣ 11 - Διαλ.3 q Η πειραµατική µέτρηση στηρίζεται σε πολύ καλή γνώση του µαγνητικού πεδίου q Χρησιµοποιεί µετάπτωση του σπιν των σωµατιδίων q Αποθηκεύει σωµατίδια µε γνωστό προσανατολισµό spin σε µαγνητικό πεδίο gq B q Μέτρηση του προσανατολισµού του spin µετά από χρόνο t: ω µεταπτ. = m 17
( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.
Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a
Διαβάστε περισσότερα( ) { } ( ) ( ( ) 2. ( )! r! e j ( ) Κίνηση στερεών σωμάτων. ω 2 2 ra. ω j. ω i. ω = ! ω! r a. 1 2 m a T = T = 1 2 i, j. I ij. r j. d 3! rρ. r! e!
Κίνηση στερεών σωμάτων ΦΥΣ 11 - Διαλ.30 1 q Κίνηση στερεού σώµατος: Ø Υπολογισµός της κινητικής ενέργειας Ø Θεωρήσαµε ότι ένα σώµα διακριτής ή συνεχούς κατανοµής µάζας q Η κινητική ενέργεια δίνεται από
Διαβάστε περισσότερα1. Μετάπτωση Larmor (γενικά)
. Μετάπτωση Larmor (γενικά) Τι είναι η μετάπτωση; Μετάπτωση είναι η αλλαγή της διεύθυνσης του άξονα περιστροφής ενός περιστρεφόμενου αντικειμένου. Αν ο άξονας περιστροφής ενός αντικειμένου περιστρέφεται
Διαβάστε περισσότεραΤο ελαστικο κωνικο εκκρεμε ς
Το ελαστικο κωνικο εκκρεμε ς 1. Εξισώσεις Euler -Lagrange x 0 φ θ z F l 0 y r m B Το ελαστικό κωνικό εκκρεμές αποτελείται από ένα ελατήριο με σταθερά επαναφοράς k, το οποίο αναρτάται από ένα σταθερό σημείο,
Διαβάστε περισσότεραΚίνηση στερεών σωμάτων - περιστροφική
Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων
Διαβάστε περισσότεραΚεφάλαιο M11. Στροφορµή
Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την
Διαβάστε περισσότεραv = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2
ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΉΣ Ι ΤΜΗΜΑ ΧΗΜΕΙΑΣ, 9 ΙΑΝΟΥΑΡΙΟΥ 019 ΚΏΣΤΑΣ ΒΕΛΛΙΔΗΣ, cvellid@phys.uoa.r, 10 77 6895 ΘΕΜΑ 1: Σώµα κινείται µε σταθερή ταχύτητα u κατά µήκος οριζόντιας ράβδου που περιστρέφεται
Διαβάστε περισσότερα( ) ( ) ( ) Μη αδρανειακά συστήματα αναφοράς. ( x, y,z) καρτεσιανό. !!z = h x, y,z. !! y = q. x = f. !! z = h
Μη αδρανειακά συστήματα αναφοράς ΦΥΣ 211 - Διαλ.27 1 q Μέχρι τώρα έχουµε χρησιµοποιήσει συστήµατα αναφοράς όπως ( x, y,z) καρτεσιανό q όπου ο 2 ος νόµος του Newton F = m a x = f x, y,z έχει την µορφή:
Διαβάστε περισσότεραΜηχανική του στερεού σώματος
Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη
Διαβάστε περισσότερα( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r
ΦΥΣ 211 - Διαλ.28 1 Απειροστές περιστροφές και γωνιακή ταχύτητα q Θεωρήστε ότι έχετε ένα σώµα το οποίο περιστρέφεται ως προς άξονα: q Θεωρήστε ότι ένα σηµείο P πάνω στο σώµα µε διάνυσµα θέσης r t O r t
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την
Διαβάστε περισσότεραΦΥΣ Διαλ Κινηµατική και Δυναµική Κυκλικής κίνησης
ΦΥΣ - Διαλ.4 Κινηµατική και Δυναµική Κυκλικής κίνησης Κυκλική κίνηση ΦΥΣ - Διαλ.4 Ορίζουµε τα ακόλουθα µοναδιαία διανύσµατα: ˆ βρίσκεται κατά µήκος του διανύσµατος της ακτίνας θˆ είναι εφαπτόµενο του κύκλου
Διαβάστε περισσότερα( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2
ΦΥΣ 211 - Διαλ.04 1 Παραδείγματα Κίνηση ενός και μόνο σωματιδίου, χρησιμοποιώντας Καρτεσιανές συντεταγμένες και συντηρητικές δυνάμεις. Οι εξισώσεις Lagrange θα πρέπει να επιστρέφουν τα ίδια αποτελέσματα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη
Διαβάστε περισσότεραΟΛΟΚΛΗΡΩΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΟΥ ΜΑΓΝΗΤΙΚΟΥ ΣΥΝΤΟΝΙΣΜΟΥ ΜΑΓΝΗΤΙΚΗ ΡΟΠΗ ΠΑΡΑΜΑΓΝΗΤΙΚΩΝ ΚΑΙ ΔΙΑΜΑΓΝΗΤΙΚΩΝ ΑΕΡΙΩΝ ΠΡΟΛΟΓΟΣ
ΟΛΟΚΛΗΡΩΣΗ ΤΗΣ ΘΕΩΡΙΑΣ ΤΟΥ ΜΑΓΝΗΤΙΚΟΥ ΣΥΝΤΟΝΙΣΜΟΥ ΜΑΓΝΗΤΙΚΗ ΡΟΠΗ ΠΑΡΑΜΑΓΝΗΤΙΚΩΝ ΚΑΙ ΔΙΑΜΑΓΝΗΤΙΚΩΝ ΑΕΡΙΩΝ Του Αλέκου Χαραλαμπόπουλου ΠΡΟΛΟΓΟΣ Όταν ένα φορτισμένο σωμάτιο με spin L, βρεθεί μέσα σε ομογενές
Διαβάστε περισσότεραΦΥΣ. 211 Τελική Εξέταση 20-Μάη-2016
ΦΥΣ. 11 Τελική Εξέταση 0-Μάη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Διαβάστε περισσότεραΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ. Ενότητα 5 η : Παραδείγµατα 3 µηχανισµών. χώρο (3 )
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ Ενότητα 5 η Παραδείγµατα µηχανισµών στο χώρο (3 ) Παράδειγµα 1 ο : Ροµποτικός βραχίονας RPPRR R: revolute pair P: prismatic pair Βραχίονας Τηλεσκοπικός βραχίονας
Διαβάστε περισσότεραm 2 (ż2 + R 2 θ2 )dt ż = a/t + ζ, θ = η m 2 ( ζ 2 + R 2 η 2 )dt m
Λύσεις Μηχ. ΙΙ Σεπτεµβριος 9 Πρόβληµα 1 Η Λαγκραντζιανή είναι L = (ż + R θ ) Η δράση που αντιστοιχεί στη διαδροµή z(t), θ(t) που αρχίζει στο z() =, θ() = και καταλήγει στο θ( ) = z( ) = είναι: S = (ż +
Διαβάστε περισσότεραΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση
ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΗΧΑΝΙΚΗ ΙΙ Σεπτέµβριος 2001 ΘΕΜΑ 1 Ένα φυσικό σύστηµα, ενός βαθµού ελευθερίας, περιγράφεται από την ακόλουθη συνάρτηση Hamilton:, όπου κάποια σταθερά και η κανονική θέση και ορµή
Διαβάστε περισσότερα1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 20 Σεπτεμβρίου 2007
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Πτυχιακή εξέταση στη Μηχανική ΙI 0 Σεπτεμβρίου 007 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα ερωτήματα που ακολουθούν με σαφήνεια, ακρίβεια και απλότητα. Όλα τα
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2013
ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 0 ΘΕΜΑ α) Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα x Ox για την απωστική δύναµη F x, > 0 και για ενέργεια Ε. β) Υλικό σηµείο µάζας m µπορεί να κινείται
Διαβάστε περισσότεραΑ. Ροπή δύναµης ως προς άξονα περιστροφής
Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI Ιουνίου 202 Απαντήστε και στα 4 Θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις στα ερωτήματα εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.
Διαβάστε περισσότερα!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα
Συστήματα με Ν βαθμούς ελευθερίας ΦΥΣ 211 - Διαλ.25 1 Ø Συστήµατα µε Ν βαθµούς ελευθερίας που βρίσκονται κοντά σε µια θέση ισσορροπίας τους συµπεριφέρονται σαν Ν ανεξάρτητοι αρµονικοί ταλαντωτές Γιατί
Διαβάστε περισσότερα1 p p a y. , όπου H 1,2. u l, όπου l r p και u τυχαίο μοναδιαίο διάνυσμα. Δείξτε ότι μπορούν να γραφούν σε διανυσματική μορφή ως εξής.
ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ Ασκήσεις Κεφαλαίου V Άσκηση : Οι θεμελιώδεις σχέσεις μετάθεσης της στροφορμής επιτρέπουν την ύπαρξη ακέραιων και ημιπεριττών ιδιοτιμών Αλλά για την τροχιακή στροφορμή L r p γνωρίζουμε ότι
Διαβάστε περισσότεραΕνότητα 4: Κεντρικές διατηρητικές δυνάμεις
Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις Έστω F=f κεντρικό πεδίο δυνάμεων. Είναι εύκολο να δείξουμε ότι F=0, δηλ. είναι διατηρητικό: F= V. Σε σφαιρικές συντεταγμένες, γενικά: V ma = F =, V maθ = Fθ =,
Διαβάστε περισσότεραΚίνηση σε κεντρικό δυναμικό
Κίνηση σε κεντρικό δυναμικό ΦΥΣ 211 - Διαλ.13 1 q Έστω ένα σωματίδιο κάτω από την επίδραση μιας κεντρικής δύναμης Ø Δύναμη παράλληλη στο 0 F q Υποθέτουμε ότι η δύναμη είναι συντηρητική: F = V( ) m Ø V
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Διαβάστε περισσότεραυναµ α ι µ κή τ ων Ρ οµ ο π µ ο π τ ο ικών Βραχιόνων
υναµική των Ροµποτικών Βραχιόνων Ροµποτική Αρχιτεκτονική: η υναµική u Ροµποτική υναµική q, q& Ροµποτική Κινηµατική Περιβάλλον Θέση, Προσανατολισµός & και αλληλε ίδραση Η δυναµική ασχολείται µε την εξαγωγή
Διαβάστε περισσότεραΦΥΣ Διαλ Δυναµική
ΦΥΣ 131 - Διαλ.08 1 Δυναµική Ø F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Ø Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Ø Γιατί σώµατα κινούνται µε το τρόπο που κινούνται q Θεµελιώδεις νόµοι της µηχανικής:
Διαβάστε περισσότερα2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Διαβάστε περισσότεραΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4
ιαλέξεις Κβαντικής Μηχανικής ΙΙ - Κεφάλαιο 4 Α. Λαχανας 1/ 45 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Κεφάλαιο 4 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων ακαδηµαικό
Διαβάστε περισσότεραΦΥΣ. 211 Τελική Εξέταση 20-Μάη-2016
ΦΥΣ. Τελική Εξέταση 0-Μάη-06 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε µόνο
Διαβάστε περισσότεραΠΕΙΡΑΜΑ 8. Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων
ΠΕΙΡΑΜΑ 8 Μελέτη Ροπής Αδρανείας Στερεών Σωµάτων Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη της ροπής αδρανείας διαφόρων στερεών σωµάτων και των στροφικών ταλαντώσεων που εκτελούν γύρω
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 200 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε και στα 3 θέματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται
Διαβάστε περισσότεραΠαράδειγµα διατήρησης στροφορµής
Παράδειγµα διατήρησης στροφορµής ΦΥΣ 3 - Διαλ.6 Κολόνα πέφτει σε γίγαντα. Δίνονται η µάζα του γίγαντα Μ, της κολόνας m, το µήκος της κολόνας l, η ταχύτητα της κολόνας v. H κίνηση γίνεται σε λεία επιφάνεια.
Διαβάστε περισσότεραΟρμή - Κρούσεις. ΦΥΣ Διαλ.23 1
Ορμή - Κρούσεις ΦΥΣ 111 - Διαλ.3 1 Χτύπημα καράτε ΦΥΣ 111 - Διαλ.3 q Σπάσιμο μιας σανίδας ξύλου με την ώθηση I = FΔt = Δp = mδυ Δt πολύ μικρό και Δp = σταθ. è F μεγάλη Ø Σώματα: ü Χέρι: M xεριού =3Kg,
Διαβάστε περισσότεραΟ τελευταίος όρος είναι πάνω από την επιφάνεια στο άπειρο όπου J = 0,έτσι είναι μηδέν. Επομένως
Πρόβλημα 9.1 Αλλά και αφού είναι: Αλλά Και Έτσι Όμοια Επί πλέον (οι άλλοι δύο όροι αναιρούνται αφού Επομένως: Ο τελευταίος όρος είναι πάνω από την επιφάνεια στο άπειρο όπου J = 0,έτσι είναι μηδέν. Επομένως
Διαβάστε περισσότεραΣτροφορµή. ΦΥΣ 131 - Διαλ.25 1
Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v
Διαβάστε περισσότεραΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ
Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ -A.1 - Μηχανισμοί & Εισαγωγή στο Σχεδιασμό Μηχανών Ακαδημαϊκό έτος: 214-215 Copyright ΕΜΠ
Διαβάστε περισσότεραΕξαναγκασµένες φθίνουσες ταλαντώσεις
ΦΥΣ 131 - Διαλ.32 1 Εξαναγκασµένες φθίνουσες ταλαντώσεις q Στην περίπτωση αυτή µελετάµε την δεδοµένη οδηγό δύναµη: F d (t) = F cos! d t η οποία δρα επιπλέον των άλλων δυνάµεων:!kx! b x Ø H συχνότητα µπορεί
Διαβάστε περισσότεραΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ
ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ - 8. - opyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο Δυναμικής και Κατασκευών - 202. Με επιφύλαξη παντός δικαιώµατος. ll rights reserved. Απαγορεύεται
Διαβάστε περισσότερα( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν
ΦΥΣ 111 - Διαλ.33 1 Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας αβαρούς τροχαλίας όπως στο σχήµα. Από διατήρηση ενέργειας υπολογίστε την ταχύτητα των δυο σωµάτων όταν η µάζα m 2 έχει κατέβει
Διαβάστε περισσότερα) = 0 όπου: ω = κ µε m-εκφυλισµό
Εκφυλισμένες ιδιοτιμές Ø Υποθέσαµε ότι : ω k ω k ΦΥΣ 211 - Διαλ.25 1 Ø Τι ακριβώς συµβαίνει όταν έχουµε εκφυλισµών των ιδιοτιµών? Ø Στην περίπτωση αυτή πολλαπλές ιδιοτιµές αντιστοιχούν σε πολλαπλά ιδιοδιανύσµατα
Διαβάστε περισσότεραΣτροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή
Στροφορµή Στροφορµή υλικού σηµείου Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή ως προς σηµείο ή ως προς άξονα, που το µέτρο της υπολογίζεται από την εξίσωση L = mυr Όπου
Διαβάστε περισσότεραmg ηµφ Σφαίρα, I = 52
Μελέτη της κίνησης ενός σώµατος που µπορεί να κυλάει σε κεκλιµένο επίπεδο (π.χ. σφόνδυλος, κύλινδρος, σφαίρα, κλπ.) Τ mg συνφ Κ Ν mg ηµφ Το σώµα του σχήµατος έχει µάζα m, ακτίνα και µπορεί να είναι: Σφόνδυλος
Διαβάστε περισσότεραΚεφάλαιο 27 Μαγνητισµός. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 27 Μαγνητισµός Περιεχόµενα Κεφαλαίου 27 Μαγνήτες και Μαγνητικά πεδία Τα ηλεκτρικά ρεύµατα παράγουν µαγνητικά πεδία Μαγνητικές Δυνάµεις πάνω σε φορτισµένα σωµατίδια. Η ροπή ενός βρόχου ρεύµατος.
Διαβάστε περισσότεραΟρμή - Κρούσεις, ΦΥΣ Διαλ.19 1
Ορμή - Κρούσεις, ΦΥΣ 131 - Διαλ.19 1 ΦΥΣ 131 - Διαλ.19 2 Κρούσεις σε 2 διαστάσεις q Για ελαστικές κρούσεις! p 1 + p! 2 = p! 1! + p! 2! όπου p = (p x,p y ) Δηλαδή είναι 2 εξισώσεις, µια για κάθε διεύθυνση
Διαβάστε περισσότεραΔυναμική Μηχανών I. Επανάληψη: Κινηματική και Δυναμική
Δυναμική Μηχανών I 2 2 Επανάληψη: Κινηματική και Δυναμική 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα
Διαβάστε περισσότεραΟµάδα Ασκήσεων #1-Λύσεις
Οµάδα Ασκήσεων #-Λύσεις Πρόβληµα # (α) (β) Τουλάχιστον Β.Ε. (Βαθµοί Ελευθερίας) χρειάζονται για αυθαίρετη τοποθέτηση στο χώρο (x,y,z) και επιπλέον Β.Ε. απαιτούνται για αυθαίρετο προσανατολισµό (στη δεδοµένη
Διαβάστε περισσότεραΚεφάλαιο 11 Στροφορµή
Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων
Διαβάστε περισσότερα3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ
3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν
Διαβάστε περισσότεραΕνέργεια στην περιστροφική κίνηση
ΦΥΣ 111 - Διαλ.31 1 Ενέργεια στην περιστροφική κίνηση q Ένα περιστρεφόµενο στερεό αποτελεί µια µάζα σε κίνηση. Εποµένως υπάρχει κινητική ενέργεια. v i θ i r i m i Θεωρείστε ένα στερεό σώµα περιστρεφόµενο
Διαβάστε περισσότεραΜΕΡΟΣ Α! Κινηµατική άποψη
ΜΕΡΟΣ Α Κινηµατική άποψη Θεωρούµε στερεό σώµα που κινείται στον χώρο, ενώ ένα σηµείο του Ο είναι διαρκώς ακίνητο ως προς το αδρανειακό σύττηµα από το οποίο εξετάζεται. Η θέση του στερεού καθορίζεται κάθε
Διαβάστε περισσότεραΚίνηση πλανητών Νόµοι του Kepler
ΦΥΣ 111 - Διαλ.29 1 Κίνηση πλανητών Νόµοι του Keple! Θα υποθέσουµε ότι ο ήλιος είναι ακίνητος (σχεδόν σωστό αφού έχει τόσο µεγάλη µάζα και η γη δεν τον κινεί).! Οι τροχιές των πλανητών µοιάζουν κάπως σα
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
Διαβάστε περισσότεραΓια τη συνέχεια σήμερα...
ΦΥΣ 211 - Διαλ.10 1 Για τη συνέχεια σήμερα... q Συζήτηση ξανά των νόμων διατήρησης q Χρησιμοποιώντας τον φορμαλισμό Lagrange q Γραμμική ορμή και στροφορμή q Σύνδεση μεταξύ συμμετρίας, αναλλοίωτο της Lagrangan,
Διαβάστε περισσότεραΚεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Διαβάστε περισσότεραΗλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται
Διαβάστε περισσότεραΕφαρμογή της γενικής λύσης
Εφαρμογή της γενικής λύσης Να βρεθούν οι χαρακτηριστικές συχνότητες του συστήματος ΦΥΣ 11 - Διαλ.4 1 x 1 x m 1 m k 1 k 1 k 3 Η δυναμική ενέργεια του συστήματος είναι: U = 1 kx 1 + 1 k 1 ( x x 1 ) + 1 kx
Διαβάστε περισσότεραΦθίνουσες ταλαντώσεις
ΦΥΣ 111 - Διαλ.39 1 Φθίνουσες ταλαντώσεις q Οι περισσότερες ταλαντώσεις στη φύση εξασθενούν (φθίνουν) γιατί χάνεται ενέργεια. q Φανταστείτε ένα σύστημα κάτω από μια δύναμη αντίστασης της μορφής F = bυ
Διαβάστε περισσότεραΛύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (29/8/2001) (3), (4), όπου, (5),, (6), (9), όπου,
Λύσεις των θεμάτων του Διαγωνίσματος Μηχανικης ΙΙ (9/8/1) Θέμα 1: (1), (), (3), (4), όπου, (5),, (6), (7), (8), (9), όπου, (1), (11) ενέργεια [ ], όλες οι συνιστώσες της στροφορμής [ ], (1), (13), (κυματ
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΠΤΗΣΗΣ 3A: ΔΥΝΑΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ ΓΕΝΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συστήματα αξόνων του αεροσκάφους Κίνηση αεροσκάφους στην ατμόσφαιρα Απαιτούνται κατάλληλα συστήματα αξόνων για την περιγραφή
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες
Διαβάστε περισσότεραA! Κινηµατική άποψη. Σχήµα 1 Σχήµα 2
A Κινηµατική άποψη Θεωρούµε στερεό σώµα σε τυχαία κίνηση, η οποία εξέταζεται από ένα αδρα νειακό σύστηµα αναφοράς ΟXYZ. Εφοδιάζουµε το σώµα µε κινητό σύστηµα συντεταγµένων xyz ακλόνητα συνδεδεµένο µε αυτό,
Διαβάστε περισσότεραΣτροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.
Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου
Διαβάστε περισσότεραΣτοιχειώδη Σωματίδια. Διάλεξη 20η Πετρίδου Χαρά. Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου
Στοιχειώδη Σωματίδια Διάλεξη 20η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Φερµιόνια & Μποζόνια Συµπεριφορά της Κυµατοσυνάρτησης δύο ταυτόσηµων σωµατίων κάτω από την εναλλαγή τους στο χώρο 15 Δεκ
Διαβάστε περισσότεραΦυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 2 0 Κεφάλαιο
Φυσική Θετικών Σπουδών Γ τάξη Ενιαίου Λυκείου 0 Κεφάλαιο Περιέχει: Αναλυτική Θεωρία Ερωτήσεις Θεωρίας Ερωτήσεις Πολλαπλής Επιλογής Ερωτήσεις Σωστού - λάθους Ασκήσεις ΘΕΩΡΙΑ 4- ΕΙΣΑΓΩΓΗ Στην μέχρι τώρα
Διαβάστε περισσότεραF mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται
6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση
Διαβάστε περισσότεραΜηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν
Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).
Διαβάστε περισσότεραHamiltonian φορμαλισμός
ΦΥΣ - Διαλ.0 Hamltonan φορμαλισμός q = H H Οι εξισώσεις Hamlton είναι:, p = p q Ø (p,q) ονομάζονται κανονικές μεταβλητές Ø Η είναι συνάρτηση που ονομάζεται Hamltonan Ø Κανονικές μεταβλητές ~ θέση και ορμή
Διαβάστε περισσότεραΡοµποτική. είτε µε το ανυσµατικό άθροισµα. όπου x = αποτελούν τα µοναδιαία ανύσµατα του
Ροµποτική Ο χειρισµός αντικειµένων και εργαλείων από ένα ροµποτικό βραχίονα σηµαίνει ότι το ροµπότ πρέπει να είναι ικανό να τοποθετεί και να προσανατολίζει κατάλληλα το άκρο του στο χώρο εργασίας π.χ.
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς
Διαβάστε περισσότερα1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Διαβάστε περισσότεραΕλληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά
Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις
Διαβάστε περισσότερα10. Παραγώγιση διανυσµάτων
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις
Διαβάστε περισσότεραΧωρικές Περιγραφές και Μετασχηµατισµοί
Χωρικές Περιγραφές και Μετασχηµατισµοί Νίκος Βλάσσης Τµήµα Μηχανικών Παραγωγής και ιοίκησης Πολυτεχνείο Κρητης Ροµποτική, 9ο εξάµηνο ΜΠ, 2007 Ροµπότ SCR 1 Περιεχόµενα Στοιχεία γραµµικής άλγεβρας Χωρικές
Διαβάστε περισσότεραΜΕΡΟΣ Β! Στρόβος ελεύθερος από εξωτερικές ροπές
ΜΕΡΟΣ Β Στρόβος ελεύθερος από εξωτερικές ροπές Θεωρούµε µια συµµετρική σβούρα στην οποία έχει δοθεί µε κατάλληλο τρό πο αρχική περιστροφική κίνηση περί άξονα που δεν συµπίπτει µε τον άξονα συµµετρίας της
Διαβάστε περισσότεραΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1
ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V
Διαβάστε περισσότεραHamiltonian Δυναμική - Παράδειγμα
Hamiltonian Δυναμική - Παράδειγμα ΦΥΣ 211 - Διαλ.12 1 Μάζα m κινείται στο εσωτερικό επιφάνειας κατακόρυφου κώνου ρ=cz. Το σώμα κινείται μέσα σε ομοιόμορφο βαρυτικό πεδίο με g προς τα κάτω. Χρησιμοποιήστε
Διαβάστε περισσότεραΔυναµική. ! F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή),! Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του! Γιατί σώµατα κινούνται µε το τρόπο που κινούνται
1 Δυναµική F(δύναµη), m(µάζα), E(ενέργεια), p(ορµή), Πως ένα σώµα αλληλεπιδρά µε το περιβάλλον του Γιατί σώµατα κινούνται µε το τρόπο που κινούνται " Θεµελιώδεις νόµοι της µηχανικής: Οι τρεις νόµοι του
Διαβάστε περισσότεραΛύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013
ΘΕΜΑ 1: ( 3 µονάδες ) Λύσεις Θεµάτων - Κβαντοµηχανική ΙΙ (Τµήµα Α. Λαχανά) Ειδική Εξεταστική Περίοδος - 11ης Μαρτίου 2013 Ηλεκτρόνιο κινείται επάνω από µία αδιαπέραστη και αγώγιµη γειωµένη επιφάνεια που
Διαβάστε περισσότεραΑνακεφαλαίωση. q Εισήγαμε την έννοια των δεσμών. Ø Ολόνομους και μή ολόνομους δεσμούς. Ø Γενικευμένες συντεταγμένες
ΦΥΣ 211 - Διαλ.06 1 Ανακεφαλαίωση Τι είδαμε μέχρι τώρα: q Συζητήσαμε συστήματα πολλών σωμάτων Ø Εσωτερικές και εξωτερικές δυνάμεις Ø Νόμους δράσης-αντίδρασης Ø Ορμές, νόμους διατήρησης (γραμμική ορμή,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I Σεπτεμβρίου 00 Απαντήστε και στα 0 ερωτήματα με σαφήνεια και απλότητα. Οι ολοκληρωμένες απαντήσεις εκτιμώνται ιδιαιτέρως. Καλή σας επιτυχία.. Ένας
Διαβάστε περισσότεραΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014
ΦΥΣ. 11 1 η ΠΡΟΟΔΟΣ 8-Μάρτη-014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Διαβάστε περισσότερα14 Εφαρµογές των ολοκληρωµάτων
14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.
Διαβάστε περισσότεραp& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,
Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον
Διαβάστε περισσότεραΚαρτεσιανό Σύστηµα y. y A. x A
Στη γενική περίπτωση µπορούµε να ορίσουµε άπειρα συστήµατα συντεταγ- µένων τα οποία να µας επιτρέπουν να προσδιορίσουµε τη θέση ενός σηµείου. Στη Φυσική χρησιµοποιούνται αρκετά. Τα βασικά από αυτά θα εξετάσουµε
Διαβάστε περισσότερα( ) Ολική στροφορμή L = p! i. L =! R M! v + ri m i vi. r i. q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r! i
ΦΥΣ - Διαλ.03 Ολική στροφορμή q Ορίζουμε την θέση ενός σημείου I από το κέντρο μάζας: r = r R q Ορίζουμε επίσης τις ταχύτητες: v = " r v = και R " Ø Υπολογίζουμε την ολική στροφορμή L = r p = L = R M v
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Ιούνιος 2004 Τμήμα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε στα 4 θέματα με σαφήνεια συντομία. Η πλήρης απάντηση θέματος εκτιμάται ιδιαίτερα. Καλή
Διαβάστε περισσότεραΑσκήσεις Κεφ. 2, Δυναμική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 29 Μαΐου 2012 1. Στο υλικό σημείο A ασκούνται οι δυνάμεις F 1 και F2 των οποίων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι 22 Ιανουαρίου, 2019
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Μηχανική Ι Ιανουαρίου, 9 Καλή σας επιτυχία. Πρόβλημα Α Ένα σωματίδιο μάζας m κινείται υπό την επίδραση του πεδίου δύο σημειακών ελκτικών κέντρων, το ένα εκ των οποίων
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως
Διαβάστε περισσότεραΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014
ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε
Διαβάστε περισσότερα( ) ( r) V r. ( ) + l 2. Τι είδαμε: m!! r = l 2. 2mr 2. 2mr 2 + V r. q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης
ΦΥΣ 2 - Διαλ.4 Τι είδαμε: q Ξεκινήσαμε την συζήτηση για το θέμα κεντρικής δύναμης ü Ανάγαμε το πρόβλημα 2 σωμάτων σε πρόβλημα κεντρικής δύναμης ü διατήρηση ορμής CM μετατρέπει το πρόβλημα από 6 DoF σε
Διαβάστε περισσότεραμαγνητικό πεδίο παράλληλο στον άξονα x
Σπιν μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο παράλληλο στον άξονα ) Ηλεκτρόνιο βρίσκεται μέσα σε ομογενές, χρονικά ανεξάρτητο μαγνητικό πεδίο με κατεύθυνση στα θετικά του άξονα, δηλαδή e,
Διαβάστε περισσότεραΦ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε. Α Σ Κ Η Σ Ε Ι Σ. Α. Κινηµατική
Φ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε Α Σ Κ Η Σ Ε Ι Σ Α Κινηµατική Α Η θέση ενός σηµείου πάνω στον άξονα των δίνεται, ως συνάρτηση του χρόνου t, από τη σχέση: ( = 4 + t sin5t (σε m όταν ο χρόνος είναι σε s) Να βρεθεί
Διαβάστε περισσότερα6. Αρµονικός ταλαντωτής
6 Αρµονικός ταλαντωτής Βιβλιογραφία Kittel, W D Knight, A Ruderman, A Helmholz και B J oyer, Μηχανική Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 998 Κεφ 7 F S rawford Jr, Κυµατική Σειρά Μαθηµάτων Φυσικής Berkeley,
Διαβάστε περισσότεραΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6
Κβαντική Μηχανική ΙΙ Ακ. Ετος 2013-14, Α. Λαχανάς 1/ 25 ΚΒΑΝΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ - Ενότητα 6 Α. Λαχανάς ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ, Τµήµα Φυσικής Τοµέας Πυρηνικής Φυσικής & Στοιχειωδών Σωµατιδίων Ακαδηµαικό έτος
Διαβάστε περισσότερα