ΠΡΑΚΤΙΚΑ ΤΗΣ ΑΚΑΔΗΜΙΑΣ ΑΘΗΝΩΝ ΕΤΟΣ 1976 : ΤΟΜΟΣ 51ΟΣ. ΕΝ ΑθΗΝΑΙΣ EFSTATHIOS VASSILIOU: ON THE HOLONOMY THEOREM

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Every set of first-order formulas is equivalent to an independent set

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Uniform Convergence of Fourier Series Michael Taylor

Congruence Classes of Invertible Matrices of Order 3 over F 2

Reminders: linear functions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 13 - Root Space Decomposition II

EE512: Error Control Coding

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Example Sheet 3 Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

A Note on Intuitionistic Fuzzy. Equivalence Relation

Fractional Colorings and Zykov Products of graphs

C.S. 430 Assignment 6, Sample Solutions

Homomorphism in Intuitionistic Fuzzy Automata

Lecture 15 - Root System Axiomatics

Finite Field Problems: Solutions

Section 8.3 Trigonometric Equations

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

4.6 Autoregressive Moving Average Model ARMA(1,1)

12. Radon-Nikodym Theorem

1. Introduction and Preliminaries.

de Rham Theorem May 10, 2016

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Cyclic or elementary abelian Covers of K 4

ST5224: Advanced Statistical Theory II

THE BIGRADED RUMIN COMPLEX. 1. Introduction

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

derivation of the Laplacian from rectangular to spherical coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

Statistical Inference I Locally most powerful tests

Space-Time Symmetries

Matrices and Determinants

5. Choice under Uncertainty

On the Galois Group of Linear Difference-Differential Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

On a four-dimensional hyperbolic manifold with finite volume

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Intuitionistic Fuzzy Ideals of Near Rings

A General Note on δ-quasi Monotone and Increasing Sequence

Bounding Nonsplitting Enumeration Degrees

Inverse trigonometric functions & General Solution of Trigonometric Equations

Approximation of distance between locations on earth given by latitude and longitude

Generating Set of the Complete Semigroups of Binary Relations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SOME PROPERTIES OF FUZZY REAL NUMBERS

Homework 3 Solutions

The semiclassical Garding inequality

Parametrized Surfaces

Knaster-Reichbach Theorem for 2 κ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Symmetric Stress-Energy Tensor

New bounds for spherical two-distance sets and equiangular lines

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Concrete Mathematics Exercises from 30 September 2016

Section 9.2 Polar Equations and Graphs

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homomorphism of Intuitionistic Fuzzy Groups

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Iterated trilinear fourier integrals with arbitrary symbols

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites

Lecture 2. Soundness and completeness of propositional logic

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Second Order RLC Filters

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Lecture 21: Properties and robustness of LSE

Math221: HW# 1 solutions

w o = R 1 p. (1) R = p =. = 1

Differential forms and the de Rham cohomology - Part I

The Simply Typed Lambda Calculus

Lecture 10 - Representation Theory III: Theory of Weights

Commutative Monoids in Intuitionistic Fuzzy Sets

Chapter 3: Ordinal Numbers

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Strain gauge and rosettes

Abstract Storage Devices

Math 6 SL Probability Distributions Practice Test Mark Scheme

F A S C I C U L I M A T H E M A T I C I

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

Second Order Partial Differential Equations

Section 7.6 Double and Half Angle Formulas

Transcript:

ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ ΠΡΑΚΤΙΚΑ ΤΗΣ ΑΚΑΔΗΜΙΑΣ ΑΘΗΝΩΝ ΕΤΟΣ 1976 : ΤΟΜΟΣ 51ΟΣ EFSTATHIOS VASSILIOU: ON THE HOLONOMY THEOREM ΕΥΣΤΑΘΙΟΥ ΒΑΣΙΛΕΙΟΥ : ΠΕΡΙ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΤΗΣ ΟΔΟΝΟΜΙΑΣ ΕΝ ΑθΗΝΑΙΣ ΓΡΑΦΕΙΟΝ ΔΗΜΟΣΙΕΥΜΑΤΩΝ ΤΗΣ ΑΚΑΔΗΜΙΑΣ ΑΘΗΝΩΝ 19 7 6

ΣΥΝΕΔΡΙΑ ΤΗΣ 8 ΑΠΡΙΛΙΟΥ 1976 463 ΜΑΘΗΜΑΤΙΚΑ On the holonomy theorem, by Efstathios Vassiliou*. Άνεκοινώθη υπό του Ακαδημαϊκού κ. Όθωνος ΓΙνλαρινοϋ. INTRODUCTION One of the nicest results of the theory of finite-dimensional connections is, certainly, the so-called Holonomy Theorem due to E. Cartan and rigorously proved first by Ambrose - Singer [1]. It describes, roughly speaking, the Lie algebra of the holonomy groups of a given finitedimensional connection, in terms of the curvature form of the connection. The purpose of the present note is to give an outline of the way in which we can obtain an analogous result within the infinite-dimensional framework. Terminology and notations are those found in standard books such as 12], [3], [4J, [71, where we refer for background theory. For the sake of simplicity, differentiability is of class C00 (smoothness). Throughout we use the vector bundle technique, so that the classical result gets a refreshing form. The author wishes to express his acknowledgement to Prof. A. Mallios, of the University of Athens, for his helping discussions and his valuable encouragement. 1. PRELIM INARIES Let I = (P, G, B, π) be a principal fibre bundle (p. f.b, for short) with connected and paracompact base B. A smooth connection on I is a G-splitting of the exact sequence of vector bundles (u.b s) ( ) v Τ π! O ---- > P X g ----* T P -----> π* (TB) -> O i. e there exists either a G - v. b-morphism V : T P - > P X g f such that V v = idpxg, or a G - v b-morphism c : π* (TB) -> TP such that Tjt! c = idn*(tb) Here g denotes the Lie algebra of G, Τ π! is the v b-morphism defined by the universal property of pull-backs and v is given (fiberwise) by v(p, X) = T e φ (p,.). (X), if φ denotes the (right) * ΕΥΣΤΑΘΙΟΥ ΒΑΣΙΛΕΙΟΥ, Περί τοΰ θεωρήματος της όλονομίας.

464 ΠΡΑΚΤΙΚΑ ΤΗΣ ΑΚΑΔΗΜΙΑΣ ΑΘΗΝΩΝ action of G on P and gf^rt eg. The maps V and v are G-morphisms in the sense they preserve the action of G on the bundles of ( ). The existence of a connection on I implies that TP = VP 0 HP, where VP and HP denote respectively the vertical subbundle Im(v) and the horizontal subbundle Im(c) of TP. Hence, each u E TP has the unique expression u = uv -b ub, where the exponents v and h denote the vertical and horizontal parts respectively. It is standard that the existence of a connection is equivalent to the definition of a gf-valued connection form ω on P, satisfying the well-known properties (cf. [3]). Here we set o)p(u) : = pr2 V (u), for each p E P and ugtpp. Following the classical pattern, we also define the curvature form Ω related with ω by th e structural equation Ω = dco -J- -γ [ω, ω]. T h e holonomy group Φ(ρ) atpis the set of s G G such that p and p s can be joined by a horizontal curve. Similarly, t h e restricted holonomy group Φ (ρ) atpis the set of s G G such that p and p s can be joined by a horizontal curve with O-homotopic projection. Finally, t h e holonomy bundle Q = P(p)atp is the set of points q G P which can be joined with p by a horizontal curve. Since the connectedness of the base B makes the choice of the reference point inessential, we omit it throughout the rest of the note. Let R be the set of all Qq (Xq, Y q), where q G Q and X q, Yq are arbitrary elements of H q P. Note that, in virtue of the structural equation, we obtain the expression Ως (Xq, Yq) = ω ([X, Y]v (q)), where X and Y are the horizontal vector fields extending X q and Yq respectively. The Lie algebra h generated by R is called t h e holonomy algebra (of the given connection). It is already known (cf. [6]) that the holonomy groups Φ and Φ are infinite-dimensional Lie subgroups of G, i.e. they are endowed with a manifold structure such that the natural injections i : Φ >- G and j : Φ0 >>G are C^-morphisms. Also, it is known that 1 = (Q, Φ, B, π) is a p.f. b. The infinite-dimensional version of the holonomy theorem, however, relies heavily upon the following conditions :

ΣΥΝΕΔΡΙΑ ΤΗΣ 8 ΑΠΡΙΛΙΟΥ 1976 465 (C. 1) : i : Φ > G is an immersion (C. 2). h is a direct summand of g (i. e. h is a closed subspace of g admitting a closed supplement in gf). Naturally, the above conditions are automatically satisfied in the finitedimensional framework. This is not the case here, where they play an important role. An immediate consequence of (C. 1) is that Q is an immersed submanifold of P and we can define a connection on 1, by an appropriate restriction of c or V. (C. 2) is needed later, in the definition of the bundle V * (cf. below). 2. TH E HOLONOMY THEOREM With the above conventions we state ' The holonomy theorem : The holonomy algebra h generates Φ0. The proof of the theorem is based on the following lemmas: Lemma 1. Let A* be the fundamental vector field o f A G g. I f Aq E VqQ, for some q E Q, then Aq E V qo, for all q E Q. P roof: The definition of A* (cf. [3]) implies that Aq = v(q, A). Let us denote by g the Lie algebra of Φ. Since v (q,.) : g -> V q Q is a topological vector space isomorphism, we deduce that A E gf ; hence, Aq E VqQ, for every q E Q. Lemma 2. I f A E h and q E Q, then Aq E Vq Q. Proof: We prove the lemma in the special case of In fact, since A = ω ( [X, Y]v (q)). v V = idvp on VP, we obtain Aq = v (q, A) = [X,Y]v-(q)E VqQ. Combining Lemma 1 and the previous case, we complete the proof. In the sequel we define the sets V q: = { A* : A E h} and V* : = U Vq. qsq In virtue of (C. 2), V* is a vector subbundle of TQ. In particular V* = v(jq X h) T h e above lemmas now yield the following: ΠΑΑ 1976

466 ΠΡΑΚΤΙΚΑ ΤΗΣ ΑΚΑΔΗΜΙΑΣ ΑΘΗΝΩΝ Lemma 3. V* coincides with the vertical subbundle VQ o f TQ. Proof: Following essentially [1], we show that V* 0 HP is an integrable subbundle of TQ and each horizontal curve joining p and q lies in the maximal integrable submanifold N through p ; hence, Q c N and TqQcTqN = Vq 0 H qp, On the other hand, it is immediate that Vq Hq Q c T q Q thus TQ = V * 0 HP, which completes the proof. The proof of the Theorem is now an immediate consequence of Lemma 3. Indeed, we have that v({q}xsr ) = VqQ = Vq* = v ({q }x h ) which yields h = g 0, since v is a topological vector space isomorphism on the fibers. As a corollary, we check that h is the Lie algebra of Φ, as well. This is the case, since Φ0 c: Φ and h is stable under Ad(s), for each s G Φ (cf. [5]). Π E P I Λ Η Ψ I Σ ΕΙς την εργασίαν ταΰτην επιτυγχάνεται ή υπό ώρισμένας προϋποθέσεις έπέκτασις εις συνοχάς μη πεπερασμένης διαστάσεως του θεωρήματος τής όλονομίας των Ambrose - Singer τοϋ άφορώντος εις τάς συνοχάς πεπερασμένης διαστάσεως, συμφώνως προς τό όποιον ή άλγεβρα Lie των ομάδων όλονομίας συνοχής πεπερασμένης διαστάσεως εκφράζεται διά τής μορφής καμπυλότητος τής συνοχής. Προς τούτο θεωρείται μία Banach - νηματική δέσμη (Ρ, G, Β, π) μέ συνεκτικήν και παρασυμπαγή βάσιν Β και συνοχήν ω, παριστώνται δέ διά των συμβόλων : g : ή άλγεβρα Lie-Banach τής όμάδος δράσεως G, Ω : ή μορφή καμπυλότητος τής συνοχής ω, HP : ή όριζοντία ΰποδέσμη τής εφαπτομένης δέσμης ΤΡ, Φ(ρ). ή όμάς όλονομίας εις τό σημεΐον ρ, Φ (ρ) ' ή περιωρισμένη όμάς όλονομίας εις τό σημεΐον ρ, Q(p) : ή δέσμη όλονομίας, δηλ. τό σΰνολον των q G P των συνδεομένων μετά τοΰ ρ δι όριζοντίας καμπύλης, h : ή άλγεβρα όλονομίας, δηλ. ή άλγεβρα Lie ή παραγομένη υπό στοιχείων τής μορφής Ως (Xq, Yq ) δι3 δλα τά ζεΰγη (Xq, Yq ) έν HP, οταν τό q διατρέχη τήν Q(p) καί άποδεικνυεται τό εξής :

ΣΥΝΕΔΡΙΑ ΤΗΣ 8 ΑΠΡΙΛΙΟΥ 1976 467 Θεώρημα τής όλονομίας : 'Η άλγεβρα όλονομίας h παράγει τάς ομάδας όλονομίας Φ καί Φ δταν α) ή άλγεβρα όλονομίας h είναι κλειστός ύποχώρος τής g εχων κλειστόν τοπολογικόν συμπλήρωμα εν g και β ) ή όμάς όλονομίας φ είναι εμφυτευμένη ύποομάς τής G. Εις τό θεώρημα τοΰτο αντί των Φ(ρ), Φ (ρ) γράφονται άντιστοίχως Φ, Φ, παραλειπόμενου, λόγφ τής συνεκτικότητος τής βάσεως, τοΰ σημείου αναφοράς p. Αι προϋποθέσεις α καί β αποτελούν συνθήκην ικανήν ΐνα ισχΰη τό ανωτέρω θεώρημα, ή συνθήκη δ αυτη πληροΰται πάντοτε είς την περίπτωσιν συνοχής πεπερασμένης διαστάσεως καί εις τήν περίπτωσιν ταύτην τό υπό του θεωρήματος τοΰτου έκφραζόμενον αποτέλεσμα ταυτίζεται μετά τοΰ υπό τοΰ θεωρήματος των Ambrose - Singer έκφραζομένου. REFERENCES ι. W- Ambrose -I. Singer, A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953). 4 2 8-4 4 3 2. N. Bourbaki, Varietes differentielles et analytiques (Fascicule de resultats) 1-7, Hermann, Paris 1967. 3. S. Kobayashi-K. Nomizu, Foundations of differential geometry, Vol. 1, Interscience, N. York 1963. 4. S. Lang, Introduction to differentiable manifolds, Interscience, N. York 1967. 5. M. Lazard, Groupes differentiables, Univ. Paris (Sorbonne) 1965. 6. L. Maxim, Connections compatible with Fredholm structures on Banach manifolds, Anal. Stiint. Univ. «Α. Cuza» Iasi, t. XVIII (1972), 389-400. 7. K. Nomizu, Lie groups and differential geometry, Publications Math. Soc. Japan (2), 1956.