Introductory Circuit Analysis

Σχετικά έγγραφα
Answers to practice exercises

Metal Oxide Leaded Film Resistor

Metal Oxide Leaded Film Resistor

Capacitors - Capacitance, Charge and Potential Difference

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Exercises in Electromagnetic Field

Metal Film Leaded Precision Resistor

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Carbon Film Leaded Resistor

the total number of electrons passing through the lamp.

Metal Film Leaded Precision Resistor

[1] P Q. Fig. 3.1

Metal Film Flame-Proof Resistors

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

IXBH42N170 IXBT42N170

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

Metal thin film chip resistor networks

EE101: Resonance in RLC circuits

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Matrices and Determinants

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Homework 3 Solutions

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SMD - Resistors. TThin Film Precision Chip Resistor - SMDT Series. Product : Size: 0201/0402/0603/0805/1206/1210/2010/2512. official distributor of

Aluminum Electrolytic Capacitors (Large Can Type)

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

Κεφάλαιο 3 Ο Νόμος του Ohm

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

MAX-QUALITY ELECTRIC CO; LTD Thin Film Precision Chip Resistors. Data Sheet

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

Microelectronic Circuit Design Fourth Edition - Part II Solutions to Exercises

Metal Oxide Varistors (MOV) Data Sheet

Second Order RLC Filters

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

LR Series Metal Alloy Low-Resistance Resistor

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

LR Series Metal Alloy Low-Resistance Resistor

4. Construction. 5. Dimensions Unit mm

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Aluminum Electrolytic Capacitors

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

Electronic Devices and Circuit Theory

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

Homework 8 Model Solution Section

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

MICROMASTER Vector MIDIMASTER Vector

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Right Rear Door. Let's now finish the door hinge saga with the right rear door

ST5224: Advanced Statistical Theory II

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Thin Film Precision Chip Resistor-AR Series

Digital motor protection relays

Surface Mount Aluminum Electrolytic Capacitors

Type 947D Polypropylene, High Energy Density, DC Link Capacitors

SCOPE OF ACCREDITATION TO ISO 17025:2005

SMD Wire Wound Ferrite Chip Inductors - LS Series. LS Series. Product Identification. Shape and Dimensions / Recommended Pattern LS0402/0603/0805/1008

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

LR(-A) Series Metal Alloy Low-Resistance Resistor

Thin Film Precision Chip Resistor (AR Series)

SMD AVR AVR-M AVRL. Variable resistor. 2 Zener diode (1/10) RoHS / / j9c11_avr.fm. RoHS EU Directive 2002/95/EC PBB PBDE

Derivation of Optical-Bloch Equations

NTC Thermistor:SCK Series

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

EE512: Error Control Coding

Anti-Corrosive Thin Film Precision Chip Resistor (PR Series)

( )( ) ( )( ) 2. Chapter 3 Exercise Solutions EX3.1. Transistor biased in the saturation region

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

No item Digit Description Series Reference (1) Meritek Series SI Signal Inductor LI: Leaded Inductor PI: Power Inductor

RC series Thick Film Chip Resistor

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Strain gauge and rosettes

Trimmable Thick Film Chip Resistor

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

= 0.927rad, t = 1.16ms

Section 8.3 Trigonometric Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Unshielded Power Inductor / PI Series

First Sensor Quad APD Data Sheet Part Description QA TO Order #

Chapter 7 Transformations of Stress and Strain

RECIPROCATING COMPRESSOR CALCULATION SHEET

THICK FILM LEAD FREE CHIP RESISTORS

Section 7.6 Double and Half Angle Formulas

Current Sensing Chip Resistor

MECHANICAL PROPERTIES OF MATERIALS

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

IXBK64N250 IXBX64N250

APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09

Suitable for DC-DC Converters, Voltage Regulators, Decoupling Applications for Computer Motherboards, etc. Performance Characteristics

Areas and Lengths in Polar Coordinates

Thick Film Chip Resistors

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

Transcript:

Instructor s Resource Manual to accompany Introductory Circuit Analysis Eleventh Edition Robert L. Boylestad Upper Saddle River, New Jersey Columbus, Ohio

Contents CHAPTER CHAPTER 9 CHAPTER 3 3 CHAPTER 4 CHAPTER 5 9 CHAPTER 6 39 CHAPTER 7 5 CHAPTER 8 65 CHAPTER 9 86 CHAPTER 0 06 CHAPTER 4 CHAPTER 43 CHAPTER 3 50 CHAPTER 4 57 CHAPTER 5 70 CHAPTER 6 95 CHAPTER 7 0 CHAPTER 8 CHAPTER 9 53 CHAPTER 0 66 CHAPTER 80 CHAPTER 3 CHAPTER 3 38 CHAPTER 4 333 CHAPTER 5 34 TEST ITEM FILE 353 iii

Chapter.. 3. d 0,000 ft mi 60 s 60 min 4. υ t 0 s 5,80 ft min h 363.64 mph 5. h 4 min 0.067 h 60 min d 3mi υ t.067 h 9.05 mph 6. a. 95 mi 5,80 ft h min 39.33 ft/s h mi 60 min 60 s b. d 60 ft t υ 39.33 ft/s 0.43 s c. d 60 ft 60 s 60min mi υ 40.9 mph t s min h 5,80 ft 7. 8. 9. 0. 5 5 5 MKS, CGS, C ( F 3) (68 3) (36) 0 9 9 9 SI: K 73.5 + C 73.5 + 0 93.5. 0.7378 ft - lb 000 J 737.8 ft-lbs J 3 ft in..54 cm. 0.5 yd yd ft in. 45.7 cm 3. a. 0 4 b. 0 6 c. 0 3 d. 0 3 e. 0 0 f. 0 4. a. 5 0 3 b. 30 0 3 c..4 0 6 d. 50 0 3 e. 4.0 0 4 f. 0 0 Chapter

5. a. 4. 0 3 + 48.0 0 3 5. 0 3 5. 0 4 b. 90 0 3 + 360 0 3 450 0 3 4.50 0 5 c. 50 0 5 6 0 5 44 0 5 4.4 0 4 d.. 0 3 + 0.05 0 3 0.6 0 3 0.65 0 3 6.5 0 6. a. (0 )(0 3 ) 0 5 00 0 3 b. (0 )(0 3 ) 0 0 c. (0 3 )(0 6 ) 0 9 d. (0 )(0 5 ) 0 3 e. (0 6 )(0 0 6 ) 0 f. (0 4 )(0 8 )(0 8 ) 0 4 7. a. (50 0 3 )(3 0 4 ) 50 0.5 0 b. (. 0 3 )( 0 3 ) 4.4 0 0 4.4 c. (8 0 6 )(.8 0 6 ) 9.6.96 0 d. (30 0 4 )(4 0 3 )(7 0 8 ) 840 0 8.40 0 3 8. a. 0 /0 4 0 0 0 3 b. 0 /0 3 0 5 0 0 6 c. 0 4 /0 3 0 7 0 0 6 d. 0 7 /0.0 0 9 e. 0 38 /0 4.0 0 4 f. 00 /0 0 /0 0 3 9. a. ( 0 3 )/(8 0 5 ) 0.5 0 8.50 0 7 b. (4 0 3 )/(60 0 4 ) 4/60 0 7 0.667 0 7 6.67 0 8 c. ( 0 5 )/(5 0 5 ) /5 0 0 4.4 d. (78 0 8 )/(4 0 6 ).95 0 5 0. a. (0 ) 3.0 0 6 b. (0 4 ) / 0.0 0 3 c. (0 4 ) 8 00.0 0 30 d. (0 7 ) 9.0 0 63. a. (4 0 ) 6 0 4.6 0 5 b. (6 0 3 ) 3 6 0 9.6 0 7 c. (4 0 3 )(6 0 ) (4 0 3 )(36 0 4 ) 44 0.44 0 3 d. (( 0 3 )(0.8 0 4 )(0.003 0 5 )) 3 (4.8 0 3 ) 3 (4.8) 3 (0 3 ) 3 0.6 0 9. 0. a. ( 0 3 ).0 0 6 b. c. d. 4 (0 )(0 ) 0 /0 3.0 0 5 3 0 3 6 4 (0 ) (0 ) (0 )(0 ) 0.0 0 8 4 4 4 0 0 0 3 4 (0 )(0 ) 0 7 /0 4.0 0 4 0 Chapter

e. ( 0 4 ) 3 (0 )/0 6 (0 )(0 )/0 6 0 0 /0 6.0 0 6 3 [(0 )(0 )] f. 4 3 3 [(0 ) ][ 0 ] (0 )(0 ) 0.0 0 3. a. (3 0 ) (0 ) (9 0 4 )(0 )/(3 0 4 ) (9 0 6 )/(3 0 4 ) 3 0 300 4 3 0 b. 4 8 (4 0 ) 6 0 3 3 (0) 8 0 0 5 00.0 0 3 c. 4 8 (6 0 ) 36 0 4 ( 0 ) 4 0 9.0 0 d. (7 0 0 6 / 3 5 ) 3 0 0 5.5 0 7 50.0 0 9 e. 3 (4 0 ) (3 0 ) (6 0 )(3 0 ) 48 0 4 4 4 0 0 0 6 8 4.0 0 f. (6 0 6 ) / (0 5 ) 5 ( 0 ) (4 0 3 )(0 5 )( 0 ) 8 0 0 800.0 0 8 g. 3 3 4 / (3 0 ).60 0 ( 0 )(8 0 ) 5 (7 0 ) 9 4 / (7 0 )(.56 0 )(6 0 ) 0 49 0 5 6 (69. 0 )(4 0 ) 76.48 0 0 0 49 0 49 0 5.64 0 4 56.4 0 3 +3 4. a. 6 0 3 0.006 0 +6 3 3 b. 4 0 3 4000 0 6 +3 +3 +3 c. 50 0 5 5000 0 3 5 0 6 0.005 0 9 + 3 3 Chapter 3

+5 3 3 d. 30 0 8 0.0003 0 3 0.3 0 6 300 0 9 5 +3 +3 3 5. a. 0.05 0 0 s 50 0 3 s 50 ms +3 +3 b. 000 0 6 s 0 3 s ms 3 3 c. 0.04 0 3 s 40 0 6 s 40 μs +3 +6 d. 8400 0 s 0.0084 0 6 s 0.0084 μs 6 3 e. 4 0 3 0 3 m 4 0 0 m 4000 0 3 m 4000 mm +3 0 0 increase by 3 f. 60 0 3 0 3 m 0.6 0 3 m 0.6 km 3 6. a. 60 s.5 min 90 s min b. 60 min 60 s 0.04 h h min 44 s c. μs 0.05 s 0.05 0 6 μs 50 0 3 μs 0 6 s d. mm 0.6 m 0.6 0 3 mm 60 mm 0 3 m 4 Chapter

e.. 0 7 ns s 0 9 s. 0 ns 0 ns f. 3.6 0 6 min h day s 60 s 60 min 4 h 4.90 days 6 0 F pf 7. a. 0. μf μf 0 F 0. 0 6 0 pf 0 5 pf b. 80 0 3 00 cm m m 8000 0 3 cm 8 cm m km c. 60 cm 00 cm 000 m 60 0 5 km 60 min 60 s ms d. 3. h.5 0 6 ms h min 0 3 s 3 0 m μ m e. 0.06 mm 6 mm 0 m 0.06 0 3 μm 6 μm f. 60 cm m m 00 cm 00 cm 60 0 4 m m 8. a. 00 in. 39.37 in..54 m in. m b. 4 ft ft 39.37 in.. m 4.45 N c. 6 lb lb 6.7 N d. 60 0 3 N lb dynes 5 0 dynes 4.45 N 0.3 lb in. ft e. 50,000 cm.54 cm in. 49.6 ft 580 ft in. m f. 0.00 mi 3. m mi ft 39.37 in. Chapter 5

yd 9. 580 ft, 580 ft 760 yds 3 ft in. m 580 ft 609.35 m,.6 km ft 39.37 in. m 39.37 in. ft mi 60 s 60 min 30. 99,79,458 s m in. 580 ft min h 670,65,88. mph 670.6 0 6 mph 3 ft mi 3. 00 yds yd 5,80 ft 60 mi h min h 60 min 60 s 0.0568 mi 0.067 mi/s 3. d 0.0568 mi t υ 0.067 mi/s 3.40 s 30 mi 580 ft in. m h min h mi ft 39.37 in. 60 min 60 s 3.4 m/s 50 yd 60 min 3 ft mi 33..705 mi/h min h yd 5,80 ft d 3000 mi day t 760 h 73.33 days υ.705 mi/h 4 h 000 m 39.37 in. ft mi 34. 0 km km m in. 580 ft mi d 6.4 mi υ, t 40.39 min 6.5 min υ mi 6.5 min 6.4 mi 3 ft in. 35. 00 yds yd ft 3600 in 3600 quarters 36. 60 mph: d 00 mi t.67 h h:40. min υ 60 mi/h 75 mph: d 00 mi t.33 h h:9.98 min υ 75 mi/h difference 0. minutes 6 Chapter

cm 60 min 60 s m 600 0.06 h 345.6 m s h min 00 cm 37. d υt [ ] 4 ft step 38. d 86 stories 605 steps story 9 ft d d 605 steps minute υ t 80.5 seconds t υ steps 60 seconds second 3.38 minutes 4 ft mile 39. d (86 stories) 04 ft story 5,80 ft min 0.7833 min 47.30 min/mile mile 0.8 miles 0.8 miles 40. 5 min mile υ d t mile 5,80 ft 056 ft 4 ft 5 min mile, distance 86 stories minute story d 04 ft t.4 minutes υ ft 056 min 04 ft 4. a. Btu 5 J 4.74 0 3 Btu 054.35 J b. 3 gallon m 4 ounces 8 ounces 64.7 gallons 7. 0 4 m 3 c. 86,400 s.4 days. 0 5 s day d. m 3 64.7 gallons 8 pints 3.38 pints 3 m gallon 4. 6(4 + 8) 7 43. (0 + 3)/4 3 44. (8 + ) 4.4 45. MODE DEGREES: cos 50 0.64 46. MODE DEGREES: tan (3/4) 36.87 Chapter 7

47. ( 400/(6 0) ) +.95 48. 05 0 6 49..0 0 50. 6.667 0 6 + 0.5 0 6 7.7 0 6 8 Chapter

Chapter. QQ. a. F ( 9 0 )(C)( C) k 8 0 9 N r (m) 9 QQ b. F k r 9 ( 9 0 )(C) (3 m) ( C) 0 9 N 9 QQ c. F ( 9 0 )(C)( C) k 0.8 0 9 N r (0 m) 9 r3 0 m d. Exponentially, r m 0 while F 8 0 N 9 F 0.8 0 N 00 3. a. r mi: 580 ft in. m mi 609.35 m mi ft 39.37 in. kqq (9 0 )(8 0 C)(40 0 C) 880 0 F r (609.35 m).59 0 9 6-6 3 6. μn b. r 0 ft: in. m 0 ft ft 39.37 in. 3.05 m F 3 3 880 0 880 0 kq Q r 0.3 N (3.05 m) 9.30 in. m c..59 mm 6 39.37 in. 3 3 kqq 880 0 880 0 F 38.34 0 3 6 r (.59 0 m).53 0 38.34 kn 3 N 4. kqq kqq (9 0 )(0 0 5. F r 4 r F 3.6 0 9 6 ) 0 mm Chapter 9

kqq kqq 6. F.8 kq Q 4(.8) 7. r ( m) kqq 7. a. F 7 mn r (0) b. Q /Q / Q Q 7. kq Q (9 0 9 )(Q )(Q ) 9 0 9 ( Q ) 7. 7. Q 9 Q 0 μc 9 8 0 8 0 Q Q ( 0 5 C) 40 μc 7. W. J Q 0.4 mc 3 k 8. W Q (60 )(8 mc) 0.48 J 9. Q W 96 J 6 6 C 0. Q W 7 J 9 8 C. I. I Q t Q t mc 4.9 ma.8 s 3 C.60 A ()(60 s) 3. Q It (40 ma)(0.8)(60 s).9 C 4. Q It (50 ma)(.)(60 s) 8.0 C 5. t Q I 6 mc ma 3 s 6..847 0 8 C electrons 3.5 C 8 6.4 0 electrons Q 3.5 C I 0.9 A t s 7. Q It (4 ma)(90 s) 360 mc 8 6.4 0 electrons 360 mc.5 0 8 electrons C 0 Chapter

8. I Q t 86 C (.)(60 s).94 A > A (yes) 9. 0.84 0 6 C electrons.346 mc 8 6.4 0 electrons Q.346 mc I.43 ma t 60 ms 0. a. Q It ( ma)(0.0 μs) 0 C 0 8 6.4 0 electrons C C electron.5 0 8 $.5 0 6.5 million b. Q It (00 μa)(.5 ns).5 0 3 C.5 0 3 8 6.4 0 electrons $ C C electron (a) > (b) 0.94 million. Q It (00 0 3 A)(30 s) 6 C W 40 J 6.67 Q 6 C 40 C. Q It (0.5 min) min W 74 J 3.53 Q 0 C 0 C W 0.4 J 3. Q 0.067 C 4 Q 0.067 C I 3.34 A 3 t 5 0 s 4. I Ah rating 00 Ah t(hours) 40 h 5 A 5. Ah (0.8 A)(75 h) 60.0 Ah 6. t(hours) Ah rating I 3 Ah.8 A 5 h Chapter

60 min 60 s 7. 40 Ah(for h): W Q I t ( )(40 A)( h).78 0 6 J h min 60 min 60 s 60 Ah(for h): W ( )(60 A)( h).59 0 6 J h min Ratio W /W.5 or 50% more energy available with 60 Ah rating. min h For 60 s discharge: 40 Ah It I [ 60 s] I(6.67 0 3 h) 60 s 60 min 40 Ah and I 400 A -3 6.67 0 h min h 60 Ah It I [ 60 s] I(6.67 0 3 h) 60 s 60 min 60 Ah and I 3600 A -3 6.67 0 h I /I.5 or 50 % more starting current available at 60 Ah 8. I 3 Ah 500 ma 6.0 h 60 min 60 s Q It (500 ma)(6 h) h min W Q (0.8 kc)( ) 9.6 kj 0.80 kc 9. 30. 3. 3. 33. 34. 60 s 35. 4 min 40 s min Q It (.5 A)(40 s) 600 C 36. Q It (0 0 3 A)(0 s) 00 mc W Q (.5 )(00 0 3 C).5 J Chapter

Chapter 3. a. 0.5 in. 500 mils 000 mils b. 0.0 in. in. 0 mils c. 000 mils in. 0.5 in. 4 in. 50 mils d. in. 000 mils e. 3 in. 0 mils 0.0 ft 40 mils ft in. in. 000 mils f. 0. cm.54 cm in. 39.37 mils. a. A CM (30 mils) 900 CM b. 0.06 in. 6 mils, A CM (6 mils) 56 CM c. " 8 0.5" 5 mils, A CM (5 mils) 5.63 0 3 CM in. 000 mils d. cm.54 cm in. 393.7 mils, A CM (393.7 mils) 55 0 3 CM in. 000 mils e. 0.0 ft ft in. 40 mils, A CM (40 mils) 57.60 0 3 CM 39.37 in. f. 0.004 m m 0.654 in. 65.4 mils, A CM (65.4 mils) 7.36 0 3 CM 3. A CM (d mils ) d mils A CM a. d 600 CM 40 mils 0.04 in. b. d 80 CM 8.64 mils 0.09 in. c. d 40,000 CM 00 mils 0. in. Chapter 3 3

d. d 65 CM 5 mils 0.05 in. e. d 6.5 CM.5 mils 0.005 in. f. d 00 CM 0 mils 0.0 in. 4. 0.0 in. 0 mils, A CM (0 mils) 00 CM l (00 ) R ρ (0.37) 0.74 Ω A 00 CM 5. A CM (4 mils) l 6 CM, R ρ A l 80 6. a. A ρ 7 544 CM R.5 Ω (50 ft) ( 9.9) 9.8 Ω 6 CM b. d A 544 CM 3.3 mils 3.3 0 3 in. CM 7. " 3 R 0.035" 3.5 mils, A CM (3.5 mils) 976.56 CM l ρ l R RA ρ (. Ω)(976.56 CM) 3.58 ft 600 l 8. a. A CM ρ (0.37)(300 ) 94.73 CM A 3.3 Ω d 94.73 CM 30.70 mils 30.7 0 3 in. b. larger c. smaller 9. a. R silver > R copper > R aluminum l (9.9)(0 ft) b. Silver: R ρ A CM 99 Ω { A CM ( mil) CM l (0.37)(50 ft) Copper: R ρ A 00 CM 5.9 Ω { A CM (0 mils) 00 CM Aluminum: R l ρ A (7)(00 ft) 500 CM.36 Ω { A CM (50 mils) 500 CM 0. ρ RA (500 Ω)(94 CM) l 000 47 nickel 4 Chapter 3

. a. 3" 3000 mils, /" 0.5 in. 500 mils Area (3 0 3 mils)(5 0 mils) 5 0 5 sq. mils 5 0 5 4/ π CM sq mils 9.08 0 5 CM sq mil l (0.37)(4 ) R ρ.7 μω 5 A 9.08 0 CM l (7)(4 ) b. R ρ 35.59 μω 5 A 9.08 0 CM Aluminum bus-bar has almost 64% higher resistance. c. increases d. decreases. l l, A A /4, ρ ρ ρl R A ρla l A 8 R ρ l ρl A l A / 4 A and R 8R 8(0. Ω).6 Ω ΔR.6 Ω 0. Ω.4 Ω 3. πd 4A 4(0.04 in. ) A d 4 π π 0.57 in. d mils 5.7 mils A CM (5.7 mils) 50,940.49 CM l ρ R A ρl A l A R l ρ ρla la A (ρ ρ ) and R R l A l A Ω (800 m )(300 ft)(40,000 CM) 94.8 mω (00 ft)(50,940.49 CM) 4. a..60 Ω #: 450 ft 000 ft.55 Ω #4: 450 ft 000 ft 0.567 Ω.36 Ω b. Resistance: #4:#.36 Ω:0.567 Ω : c. Area: #4:# 406.8 CM:834.0 CM : Chapter 3 5

0.68 Ω 5. a. #8: R 800 ft 000 ft.3 Ω 6.385 Ω #8: R 800 ft.49 Ω 000 ft b. #8:#8.49 Ω:.3 Ω 0.7: 0: c. #8:#8 64.3 CM:6,509 CM :0.6 :0 6. a. l (0.37)(30 ) 3.CM A ρ 5,850 CM #3 3 R 6 mω 6 0 but 0 A # b. l (0.37)(30 ) 3.CM A ρ 03,700 CM #0 3 R 3 mω 3 0 7. a. A/CM 30 A/,600 CM.09 ma/cm b..09 ma CM 000 mils 000 mils CM π sq mils in. in..39 ka/in. 4 in. c. 5 ka.39 ka 3.6 in. 8. in. 0.083 in..54 cm in. 0. cm π d (3.4)(0. cm) A 4 4 0.035 cm RA ( Ω)(0.035 cm ) l 6 ρ.74 0 40,603 cm 406.03 m 9. a. ".54 cm ".7 cm, 3 in..54 cm in. 7.6 cm in..54 cm 4 ft ft in..9 cm -6 l (.74 x 0 )(.9 cm) R ρ.7 μω A (.7 cm)(7.6 cm) b. R 6 (.85 0 )(.9 cm) ρ A (.7 cm)(7.6 cm) 35.59 μω 6 Chapter 3

c. increases d. decreases 6 ρ ρ 50 0 0. R s 00 d d 00 00. R R s l w w s l R R (50 Ω)(/ in.) 500 Ω.5 μcm 0.5 in.. a. d in. 000 mils A CM (0 3 mils) 0 6 CM 6 RA ( m Ω)(0 CM) ρ CM-Ω/ft 3 l 0 ft b. in..54 cm πd π(.54 cm) A 5.067 cm 4 4 in..54 cm l 000 ft ft in. 30,480 cm RA ( m Ω)(5.067 cm ) ρ.66 0 7 Ω-cm l 30,480 cm c. k 7 ρ.66 0 Ω-cm ρ CM- Ω / ft.66 0 7 3. 4. 34.5 + 0 34.5 + 80 Ω R 36 + 0 36 + 00 0.0 Ω R R (0.0 Ω)(336) 36, R (34.5)( Ω ) 44.5 0.08 Ω.57 Ω 5 5 5. C ( F 3) (3 3) 0 (3 F) 9 9 5 C (70 3). (70 F) 9 34.5 +. 34.5 + 0 4 Ω R ( 34.5)(4 Ω ) R 3.67 Ω 55.6 Chapter 3 7

6. 7. 34.5 + 30 34.5 40 0.76 Ω R R ( 94.5)(0.76 Ω ) 0.56 Ω 64.5 43 + ( 30) 43 + 0 0.04 Ω R R (43)(40 m Ω ) 3 46 mω 8. a. 68 F 0 C, 3 F 0 C 34.5 + 0 34.5 + 0 0.00 R R (34.5)( m Ω ) 54.5.84 mω F 00 C 34.5 + 0 34.5 + 00 m Ω R R (334.5)( m Ω ) 54.5.63 mω b. ΔR.63 m Ω mω 0.63 mω Δ T 00 C 0 C 80 C 7.88 μω/ C or 7.88 0-5 Ω/0 C 9. a. 34.5 + 4 34.5 + t, Ω. Ω t 7.85 C 34.5 + 4 34.5 + t b. Ω 0.Ω, t 0.65 C 30. a. K 73.5 + C 50 73.5 + C C 3.5 34.5 + 0 34.5 3.5 0 Ω R R c. F.35 (0 Ω) 0.446 Ω 54.5 9 9 C + 3 ( 73.5 ) + 3 459.67 5 5 b. K 73.5 + C 38.65 73.5 + C C 34.5 34.5 + 0 34.5 0 Ω R 34.5 ( 0)0 Ω R 0 Ω 54.5 Recall: 34.5 Inferred absolute zero R 0 Ω 8 Chapter 3

3. a. α 0 T i + 0 C 34.5 + 0 54.5 0.00399 0.00393 b. R R 0 [ + α 0 (t 0 C)] Ω 0.8 Ω[ + 0.00393(t 0 )].5 + 0.00393t 0.0786.5 0.94 0.00393t 0.386 0.00393t 0.386 t 0.00393 83.6 C 3. R R 0 [ + α 0 (t 0 C)] 0.4 Ω[ + 0.00393(6 0)] 0.4 Ω[ 0.057] 0.39 Ω 33. Table: 000 of # copper wire.588 Ω @ 0 C C 9 5 (F 3) 9 5 (5 3) 46. C R R 0 [ + α 0 (t 0 C)].588 Ω[ + 0.00393(46. 0)].75 Ω Rnominal Ω 34. ΔR (PPM)( ΔT) 6 6 (00)(65 0 ) 0.98 Ω 0 0 R R nominal + ΔR.98 Ω Rnominal 00 Ω 35. ΔR (PPM)( ΔT) 6 6 (00)(50 0 ) 0.30 Ω 0 0 R R nominal + ΔR 00 Ω + 0.30 Ω 00.30 Ω 36. 37. 38. #: Area 659 CM.54 cm d 659 CM 80.8 mils 0.0808 in. in. πd π (0.05 cm) A 0.033 cm 4 4 MA I [0.033 cm ] 33 ka >> 0 A cm 0.05 cm 39. 40. a. times larger b. 4 times larger 4. 0 kω 3.5 kω 6.5 kω Chapter 3 9

4. 6.5 kω and 8.75 kω 43. 44. a. 560 kω ± 5%, 560 kω ± 8 kω, 53 kω 588 kω b. 0 Ω ± 0%, 0 Ω ± Ω, 98 Ω 4 Ω c. 00 Ω ± 0%, 00 Ω ± 0 Ω, 80 Ω 0 Ω 45. a. 0 Ω Brown, Red, Brown, Silver b. 8. Ω Gray, Red, Gold, Silver c. 6.8 kω Blue, Gray, Red, Silver d. 3.3 MΩ Orange, Orange, Green, Silver 46. 0 Ω± 0% 8 Ω Ω no overlap, continuance 5 Ω± 0% Ω 8 Ω 47. 0 Ω± 0% 0 Ω± Ω 9 Ω Ω No overlap 5 Ω± 0% 5 Ω±.5 Ω 3.5 Ω 6.5 Ω 48. a. 6 6 0 Ω 60 Ω 0.6 kω b. 333 33 0 3 Ω 33 kω c. Q 3.9 0 Ω 390 Ω d. C6. 0 6 Ω. MΩ 49. a. G R 0 Ω 8.33 ms b. G 4 kω 0.5 ms c. G 0.46 μs. MΩ G a > G b > G c vs. R c > R b > R a 50. a. Table 3., Ω/000.588 Ω G R 69.7 ms.588 Ω or G A 659.9 CM (Table 3.) ρ l (0.37)(000 ) 69.69 ms (Cu) b. G c. G 659.9 CM (7)(000 ) 659.9 CM (74)(000 ) 384. ms (Al) 88.4 ms (Fe) 0 Chapter 3

5. A A 5 3 3 A l, l l 3, ρ ρ 3 A l ρ A G l ρla 3 G A ρla 5 ρ 5 l A l 3 5. 53. 54. G 5G 5(00 S) 500 S 55. a. 50 C specific resistance 0 5 Ω-cm 50 C specific resistance 500 Ω-cm 00 C specific resistance 7 Ω-cm b. negative c. No d. ρ ΔΩ cm 300 30 70 Ω cm ΔT 5 50 75 C 3.6 Ω-cm/ C 56. a. Log scale: 0 fc 3 kω 00 fc 0.4 kω b. negative c. no log scales imply linearity d. kω 30 fc 0 kω fc ΔR 0 k Ω k Ω Δfc 30 fc fc 57. a. @ 0.5 ma, 95 @ ma, 00 @ 5 ma, 5 b. Δ total 5 95 0 c. 5 ma:0.5 ma 0: compared to 5 : 00.08: and ΔR Δfc 3.43 Ω/fc 3.43 Ω/fc Chapter 3

Chapter 4. IR (.5 A)(47 Ω) 7.5. I R 6.8 Ω.76 A 3. R 6 I.5 ma 4 kω 4. I 3 R 40 0 Ω 300 A 5. IR (3.6 μa)(0.0 MΩ) 0.07 7 m 6. I 6 R 5 k Ω 4.3 ma 7. R 0 I. A 54.55 Ω 8. I 0 R 7.5 k Ω 6 ma 9. R 0 I 4. A 8.57 Ω 0. R 4.5 I 5 m A 36 Ω. R I 4 m 0 μ A. kω. IR (5 A)(0.5 Ω) 7.5 3. a. R 0 I 9.5 A.63 Ω 60 min 60 s b. t h h min 3600 s W Pt It (0 )(9.5 A)(3600 s) 4. 0 6 J 4. IR (.4 μa)(3.3 MΩ) 7.9 5. Chapter 4

6. b. (0.3 ma)(500 h) 65 mah 7. 8. 9. 0. P W t 40 J 40 J 60 s 40 s 4 min min.75 W. t. a. W 640 J P 40 J/s 6 s 60 min 60 s 8 h h min 8,800 s W Pt ( W)(8,000 s) 57.6 kj b. kwh ( W)(8 h) 000 6 0 3 kwh Q 300 C min 3. I t min 60 s 5 C/s 5 A P I R (5 A) 0 Ω 50 W 4. P I (3 )(.4 A) 4.0 W W J t P 4. W.86 s 48 C min 5. I min 60 s 0.8 A P EI (6 )(0.8 A) 4.8 W 6. P I R (7. ma) 4 kω 07.36 mw 7. P I R I P 40 mw R. kω 0.44 ma P W 8. I R 9.0 ma 0 Ω IR (9.0 ma)(0 Ω) 5.49 Chapter 4 3

E 9. I R.4 ma 5.6 kω P I R (.4 ma) 5.6 kω 5.65 mw 60 min 60 s W P t (5.65 mw) h h min 9.34 J 30. E P 34 W I.7 A 0 3. I no P R W 4.7 MΩ 46.7 μa 3. PR (4 mw)(. k Ω ) 9.40 9.6 33. P EI (9 )(45 ma) 405 mw P 00 W 34. P I, I 0 0.833 A 0 R I 0.833 A 44.06 Ω 35. R P 450 W I 3.75 A 0 0 I 3.75 A 3 Ω 36. a. P EI and I 37. I P E 3 0.4 0 W 0.3 ma 3 b. Ah rating (0.3 ma)(500 h) 66.5 mah P R 00 W 5 0 0 kω 3 70.7 ma PR (00 W)(0 k Ω ).4 k 38. a. W Pt t 60 s R 0 Ω 864 J b. Energy doubles, power the same 4 Chapter 4

39. 4 weeks h 3 [5 months] 60 h week month (30 W)(60 h) kwh 59.80 kwh 000 40. kwh Pt (000)(kWh) (000)( kwh) t 8 h 000 P 500 W (4 W)(3 h) 4. kwh 7 0 3 kwh 000 (7 0 3 kwh)(9 /kwh) 0.65 4. a. kwh Pt (000)(kWh) (000)(00 kwh) P 0 kw 000 P 0 h b. I 3 P 0 0 W 576.9 A E 08 c. P lost P i P o P i ηp i P i ( η) 0 kw( 0.8).6 kw Pt (.6 kw)(0 h) kwh lost 6 kwh 000 000 43. #kwh $.00. 9 Pt (kwh)(000) (.)(000) kwh t 44.44 h 000 P.50 t (kwh)(000) (.)(000).3 h P 4800 44. a. W Pt (60 W)( h) 60 Wh 60 min 60 s b. W Pt (60 W) h h min 6 kws c. kj Ws, 6 kj d. W Pt (60 W)( h) 60 0 3 kwh 000 000 Chapter 4 5

45. a. P EI (9 )(0.455 A) 4. W b. R E 9 I 0.455 A 9.78 Ω c. W Pt (4. W)(,600 s) 88.56 kj 60 min 60 s 6 h h min,600 s 46. a. P EI (0 )(00 A) kw b. P T 5 hp 746 W hp + 3000 W + 400 W + 000 W 0,30 <,000 W (Yes) c. W Pt (0.3 kw)( h) 0.6 kwh h (860 W)(6 h) + (4800 W)(/ h) + (900 W) 0 min + (0 W)(3.5 h) 60 min) 47. kwh 000 560 Wh +400 Wh + 300 Wh + 385 Wh 8.45 kwh 000 (8.45 kwh)(9 /kwh) 74. h h (00 W)(4 h) + (00 W) 0 min + (70 W)(.5 h) + (50 W) 30 min 60 min 60 min 48. kwh 000 800 Wh + 400 Wh + 05 Wh + 35 Wh.63 kwh 000 (.63 kwh)(9 /kwh) 4.67 49. η P o P i 746 W (0.5 hp) hp 373 00% 00% 00% 94.43% 395 W 395 50. η Po P, P P i o i P i P i EI, I (.8 hp)(746 W/hp) η 0.685 960.9 W 960.9 W E 0 6.34 A 5. η Po 746 W 746 00% 00% 00% P (4 A)(0 ) 880 84.77% i 6 Chapter 4

5. a. P i EI (0 )(.4 A) 88 W P i P o + P lost, P lost P i P o 88 W 50 W 38 W b. η% P o P i 00% 50 W 88 W 00% 7.36% Po 53. P i EI η I P o (3.6 hp)(746 W/hp) ηe (0.76)(0 ) 6.06 A 54. a. P i P o η ( hp)(746 W/hp) 0.9 657.78 W 55. P i b. P i EI 657.78 W (0 )I 657.78 W I 657.78 W 5.07 A 0 c. P o ( hp)(746 W/hp) P i η 0.7 3.43 W P i EI 3.43 W (0 )I 3.43 W I 3.43 W 0 9.38 A I P o η P i E (5 hp)(746 W/hp) 0.9,433.33 W 0 56.5 A,433.33 W 56. η T η η 0.75 0.85 η η 0.88 57. η T η η (0.87)(0.75) 0.655 65.5% 58. η η.08 η T (η )(η ) (0.8)(0.8) 0.64 Wo η T Wo W η T W i (0.64)(60 J) 38.4 J i 59. η T η η 0.7 0.9η η 0.7 0.8 80% 0.9 Chapter 4 7

60. a. η T η η η 3 (0.98)(0.87)(0.) 0.790 7.9% 6. η T b. η T η η η 3 (0.98)(0.87)(0.90) 0.7673 76.73% 76.73% 7.9% 00% 38.66% 7.9% P o P η η η η i Po η η P i η η (0.4) 0.8 η 40%, η 80% η Po 8 W P (400 W) 0.4 i 8 Chapter 4

Chapter 5. a. E and R b. R and R c. E and R d. E and R, R 3 and R 4. a. R T 0. kω + 0.39 kω +. kω.69 kω b. R T. Ω +.7 Ω + 8. Ω. Ω c. R T 8. kω + 0 kω + 9. kω +.8 kω +.7 kω 3.8 kω d. R T 47 Ω + 80 Ω + 9 Ω +. kω 58.0 Ω 3. a. R T. kω + kω +. kω + 3.3 kω 7.7 kω b. R T kω + kω + 3 kω + 4.7 kω + 6.8 kω 7.5 kω 4. a. MΩ b. 00 Ω, kω c. R T 00 Ω + kω + MΩ + 00 kω.0 MΩ vs.. MΩ for part b. 5. a. R T 05 Ω 0 Ω + 33 Ω + R, R 6 Ω b. R T 0 kω. kω + R +.7 kω + 3.3 kω, R.8 kω c. R T 38 kω R + 56 kω + kω + 33 kω, R 7 kω d. R T 9 kω 4 kω + R + 43 kω + R 67 kω + 3R, R 8 kω R 6 kω 6. a.. kω b. 3.3 kω + 4.3 kω 7.6 kω c. 0 Ω d. Ω 7. a. R T 0 Ω + Ω + 8 Ω 40 Ω E 0 b. I s 3 A R T 40 Ω c. I R (3 A)(0 Ω) 30, I R (3 A)( Ω) 36, 3 I 3 R 3 (3 A)(8 Ω) 54 8. a. the most: R 3, the least: R b. R 3, R T. kω + 6.8 kω + 8 kω 90 kω E 45 I s R T 90 kω 0.5 ma c. I R (0.5 ma)(. kω) 0.6, I R (0.5 ma)(6.8 kω) 3.4, 3 I 3 R 3 (0.5 ma)(8 kω) 4, results agree with part (a) 9. a. R T kω + 4 kω + 6 kω kω E IR T (4 ma)( kω) 88 b. R T 8 Ω + 4 Ω + 8 Ω + 40 Ω 80 Ω E IR T (50 ma)(80 Ω) 0 Chapter 5 9

0. a. a. I R 5..3 Ω 4 A b. E IR T (4 A)(9 Ω) 36 c. R T 9 Ω 4.7 Ω +.3 Ω + R, R 3 Ω d. 4.7 Ω (4 A)(4.7 Ω) 8.8.3 Ω (4 A)(.3 Ω) 5. 3 Ω (4 A)(3 Ω) b. a. 6.6 I 3 ma R. kω b. 3.3 kω (3 ma)(3.3 kω) 9.9 E 6.6 + 9 + 9.9 5.5 9 c. R 3 kω I 3 ma d.. kω 6.6, 3 kω 9, 3.3 kω 9.9. a. I E R T 36 4.4 kω 8.8 ma, E (36 ) 8 b. R T kω +.4 kω + 5.6 kω 9 kω E.5 I.5 ma,.5 ma(.4 kω + 5.6 kω) 0 9 kω R T c. R T 0 kω + kω + 33 kω + 0 MΩ 0.065 MΩ E 00 I 9.94 μa 0.065 MΩ R T (9.935 μa)(0 MΩ) 99.35. a. R T 3 kω + kω + kω 6 kω E 0 I s 0 ma R T 6 kω R (0 ma)(3 kω) 60 R (0 ma)( kω) 0 R 3 (0 ma)( kω) 40 b. P I R (0 ma) 3 kω. W R R P I R (0 ma) kω 0.4 W P I 3 R 3 (0 ma) kω 0.8 W R 3 c. P T P + P + P. W + 0.4 W + 0.8 W.4 W R R R3 d. P T EI s (0 )(0 ma).4 W 30 Chapter 5

e. the same f. R the largest g. dissipated h. R : W, R : / W, R 3 : W 3. a. R T Ω + 0 Ω + 47 Ω + 3 Ω 8.0 Ω E 0.5 I s R 50 ma 8.0 Ω T R I R (50 ma)( Ω) 5.50 R I R (50 ma)(0 Ω).50 R 3 I 3 R 3 (50 ma)(47 Ω).75 R 4 I 4 R 4 (50 ma)(3 Ω) 0.75 b. P R I R (50 ma) Ω.38 W P R I R (50 ma) 0 Ω 65.00 mw 3 3 P R I R (50 ma) 47 Ω.94 W 4 4 3 P R I R (50 ma) 3 Ω 87.50 mw 4 c. P T P + P + P + P.38 W + 65.00 mw +.94 W + 87.50 mw 5.3 W R R R3 R4 d. P EI s (0.5 )(50 ma) 5.3 W e. the same f. 47 Ω the largest g. dissipated h. R : W; R : / W, R 3 : 5 W, R 4 : / W 4. a. P W ( A) R, R Ω I R ( A)( Ω), I R ( A)( Ω) 3 I 3 R 3 ( A)( Ω) E + + 3 + + 4 b. P 4 W I Ω, I 4 A P 8 W I R ( A) R, R Ω R T 6 Ω Ω + R + Ω 3 Ω + R, E IR T ( A)(6 Ω) 3 R 3 Ω Chapter 5 3

5. a. R T NR 8 8 Ω 5 Ω 8 E 0 I 0.53 A R T 5 Ω b. P I 8 64 5 R A 8 Ω 5 8 5 8 8 W 8 5 c. IR A Ω 5 8 5 d. All go out! 6. P s P R + P R + P R3 E I I R + I R + 4 (R + R )I E I + 4 0 6I 4 I + 4 0 I 4 I + 4 0 I ( 4) ± ( 4) () 4()(4) 4 ± 6 6 4 A P 4 W ( A) R, R 4 Ω 6 Ω 4 7. a. ab 4 8 + 0 b. ab 4 8 + 6 6 c. ab 0 + 8 6 + 4 4 8. a. E T 6 4 8 4, I 388.35 ma (CCW) 0.3 Ω b. E T 8 4, I 73.9 ma (CW).5 Ω 9. a. P 8 mw I 8 mw 8 mw R, R I ( ma) kω E 0 E I ma (CW), R 3 kω+ kω E 0 T 6 b. I kω E I RT E 4 8 ma, R I E 4 0 E kω +.5 kω.5 kω 8 ma 4 8 ma (CCW) 3.5 kω 3 Chapter 5

0. a. +0 + 4 3 0 4 3 b. +30 + 0 8 0 50 8 4 c. +6 0 4 + 60 0 76 4 6. a. +60 0 0 60 3 8 b. +E 4 6 + 8 0 E 8 4. a. +0 0 0 +0 6 0 4 b. +4 0 0 4 +0 + 8 0 8 3. a. +0 0 0, 9 +0 0, 8 b. + 0 + 6 3 0, +0 3 0, 7 4. 50, R Ω R 00, R 3 Ω R 3 (50 )( Ω ) 00 Ω (00 )( Ω ) 00 Ω 5. a. 8. kω b. 3 : 8. kω: kω 8.: 3 : 8. kω:00 Ω 8: c. R3E (8. kω)(60 ) 3 0.kΩ + kω + 8. kω 5.90 d. R T ( R + R3 ) E R T (kω + 8. kω)(60 ) 59.35 9.3 kω Chapter 5 33

6. a. 40 Ω(30 ) 40 Ω + 0 Ω 0 b. ( kω+ 3 k Ω)(40 ) (5 k Ω)(40 ) 4 kω+ k Ω+ k Ω+ 3 kω 0 kω 0 c. (.5 Ω+ 0.6 Ω+ 0.9 Ω)(0.7 ) (3 Ω)(0.7 ) (.5 Ω+.5 Ω+ 0.6 Ω+ 0.9 Ω+ 0.5 Ω) 6 kω 0.36 7. a. 6 Ω 4 Ω 0, Ω 0, Ω (6 Ω)(0 ) Ω (4 Ω)(0 ) Ω 60 40 E + 0 + 60 + 0 + 40 0 b. 0 80 0, 40 80 0 3 0, 3 70 c. 000 Ω(000 ), 0 00 Ω Ω 00 Ω 000 Ω(000 ), 0 00 Ω Ω 00 Ω E + + 000 0 + 0 + 000 030 d. 6 6 0, 0 6 3 8., kω kω kω( ) kω 4 4, 4 kω 3 kω 3 kω( ) kω 6 I ma kω E + 4 + + 6 4 34 Chapter 5

9. a. 4 R(0 ), R.6 kω kω + 6 kω (6 Ω+ R)40 b. 00 3 Ω+ 6 Ω+ R 300 Ω + 600 Ω + 00R 840 Ω + 40 R 40R 00R 840 Ω + 900 Ω 40R 60 Ω R 60 Ω.5 Ω 40 30. a. 4 0 Ω(4 ) 0 Ω 0 Ω 0 Ω 8 b. 3 E 40 4 8 8 c. 4 8 (8 )(0 Ω) R3 70 Ω 0 Ω R 4 3 8 3. a. R bulb 60 Ω 50 ma Rbulb ( ) 60 Ω( ) bulb 8 R + R x 60 Ω + R x bulb, R x 80 Ω in series with the bulb b. R 8 4, P R (4 ) 80 Ω 0. W, /4 W okay 3. + 7 R R R + R 7 5 7 R + 7, R 60 5. R 60 R 7 60 R 5 kω, R I 4 ma I 4 ma R R 4 ma 3 kω 33. R T R + R + R 3 R 3 + 7R 3 + R 3 0R 3 R3 (60 ) R 3 6, R 0R R3 (6 ), R 7 R 7(6 ) 4 3 3 34. a. R 3 4 R 4(3 R ) R E + 3 + R T R + 3R + R 6R R R R 64 0 ma 6.4 kω R 400 Ω, R 3R. kω, R 3 R 4.8 kω 6 6.4 kω Chapter 5 35

64 6.4 MΩ b. R T 6.4 MΩ, R 400 kω, R. MΩ, R 3 4.8 MΩ 0 μa 6 I 0 ma 0 3 R 400 kω and I 0 μa R 400 Ω 03 also 35. a. a + 8 4 b 8 ab a b 4 ( 8 ) b. a 0 6 4 b +4 ab a b 4 4 0 c. a +0 + 3 3 b +6 ab a b 3 6 7 80 6 36. a. I(CW) 6 Ω+ 3 Ω 54 9 Ω 6 A IR (6 A)(3 Ω) 8 70 0 b. I(CW) 0 Ω+ 0 Ω+ 30 Ω 60 60 Ω A IR ( A)(0 Ω) 0 6 4 37. a. I 0.4 A (CW) 0 Ω+ 0 Ω 30 Ω a 6 I(0 Ω) 6 (0.4 A)(0 Ω) 6 4 IR (0.4 A)(0 Ω) 8 + 0 + 8 30 b. I 5.455 ma. k Ω+ 3.3 k Ω 5.5 k Ω a I(. kω) + 0 (5.455 ma)(. kω) + 0 + 0 0 I(. kω) (5.455 ma)(. kω) 47 0 7 38. I 3 ma (CCW) k Ω+ 3 k Ω+ 4 kω 9 kω kω 6, 3kΩ 9, 4kΩ a. a 0, b 0 + 6 6, c 0 + 6 + 9 35 d, e 0 b. ab 6, dc 47, cb 9 c. ac 5, db 47 + 9 38 36 Chapter 5

39. R I R 4 + 4 8 8 Ω 8 Ω A, R I R 3 R 3 8 4 4 4 Ω I A A 4 8 8 Ω, A A 40. R 48 36 R 36 R.5 kω I 6 ma R 3 0 R3 R 3 0.75 kω I 6 ma R 4 0 R4 0 R 4.5 kω I 6 ma R E R R 3 R4 00 36 0 3 R 3 R kω I 6 ma 44 0 4 4. I ma (CW) k Ω+ 4 k Ω+ 6 k Ω k Ω k Ω IR ( ma)( kω) 4 4k Ω IR ( ma)(4 kω) 8 Ω IR ( ma)(6 kω) 6k a. a 44, b 44 4 40, c 44 4 8 3 d 0 b. ab kω 4, cb 4kΩ 8 cd 6kΩ c. ad a d 44 0 4 ca c a 3 44 4. 0 0 4 + 0, 4 +0 7 4 0 0 3 +6 30 8 67 0 56 6 4 3 6 I.5 A 4Ω 4Ω 4 Ω Chapter 5 37

43. 0 0, 03 0 3 0, ( ma)(3 kω + kω) ( ma)(4 kω) 8 3 3 8 0 8, 0-8, ΣI i ΣI o I i ma + 5 ma + 0 ma 7 ma 44. a. L I L R L ( A)(8 Ω) 56 int 60 56 4 int 4 R int I A Ω b. R NL FL FL 00% 60 56 56 00% 7.4% 45. a. L 3.3 Ω( ) 3.3 Ω + 0.05 Ω.8 b. R NL FL FL 00%.8.8 00%.5% c. I s I L.8 3.3 Ω 3.58 A P s EI s ( )(3.58 A) 4.96 W P int I R int (3.58 A) 0.05 Ω 0.64 W 46. a. I E R T kω + 8 kω 0 kω. ma b. I E R T 0 kω + 0.5 kω 0.5 kω.7 ma c. not for most applications. 38 Chapter 5

Chapter 6. a. R and R 3 b. E and R 3 c. E and R d. R, R 3 and R 4 e. E, R, R, R 3, and R 4 f. E, R, R, and R 3 g. R and R 3. a. R 3 and R 4, R 5 and R 6 b. E and R 3. a. R T (9. Ω)(8 Ω) 9. Ω + 8 Ω 6.04 Ω b. R T + + 0 kω kω 3 kω 545.55 Ω 3.833 0 S c. R T d. R T R T e. R T f. R T 00 90.09 Ω + + Ω kω 8 kω 6 kω 3 (6 kω)(6 MΩ) 6 kω + 6 MΩ 0 kω 5.99 kω Ω 5.5 Ω, R T 4 (5.5 Ω)(5 Ω) R T.6 Ω 5.5 Ω + 5 Ω + + Ω kω 00.00 0 MΩ 3 S S + 0.5 0 3 3 3 0 0 0 Ω 5 Ω 000 0 0.99 Ω S + 0 S + 0.333 0 S + 0. 0 S S. 0 3 3 3 3 S + 0 3 3 3 S + 0.00 0 S S 4. a. R T + + 0 kω. kω 0.3 kω 93.57 Ω 3 5.66 0 S S + 0.833 0 3 3 3 S + 3.333 0 S Chapter 6 39

b. R T kω +. k 3.88 0 3 + Ω S. kω + 304.4 Ω kω 0 S + 0.833 0 S + 0.455 0 3 3 3 3 S + 0 S 5. a. R T 3 Ω 6 Ω Ω ( Ω)( R) R T.6 Ω Ω + R b. R T 6 kω kω 3 ( k, R 8 Ω Ω)( R) R T.8 kω, kω + R R 8 kω c. (0 kω)( R) R T 0 kω, 0 kω + R R 0 kω d. R T 68.93 Ω 3 3 + + 833.33 0 S + + 454.55 0 S. kω R. kω R 8.3 0 3 + 68.93 Ω R 68.93 Ω R 3 8.3 0 3.3 kω R R e. R R R, R 3 R R RR 3 R R T.6 kω R + R R 3 R + 4 R 4(.6 kω) 6.4 kω R R 3 6.4 kω 3. kω 6. a.. kω b. about kω c. R T + + +. kω kω 0 kω. MΩ 6 6 833.333 0 S + 45.455 0 S + 4.545 0 S + 0.455 0.3 kω 6 883.788 0 S d. (. kω)( kω) 0 kω,. MΩ: R T. kω + kω.38 kω e. R T reduced. 6 6 S 40 Chapter 6

7. a. R T ( Ω)(8 Ω) Ω + 8 Ω.6 Ω b. Ω c. Ω d. R T + + 0.5 S + 0.50 S + 0.0 S 0.85 S 4 Ω Ω 0 Ω.8 Ω 8. + + R R R R T 3 + + 3. 0 R 5R R + + Ω R 5 R R R and R 3.(0 Ω) 64 Ω R 5R 5(64 Ω) 30 Ω R 3 64 Ω R 3 Ω 9. 4 Ω 4 Ω Ω + + RT R Ω 0 Ω 0. S R + 0.08333 S + 0.00833 S 0. S R + 0.0967 S R 0. S 0.0967 S 0.00833 S R 0.00833 S 0 Ω 0. a. (8 Ω)(4 Ω) R T 8 Ω + 4 Ω 6 Ω b. R R 36 c. E 36 I s R T 6 Ω 6 A R 36 I R 8 Ω 4.5 A R 36 I R 4 Ω.5 A d. I s I + I 6 A 4.5 A +.5 A 6 A (checks) Chapter 6 4

. a. R T + + Ω 9 Ω 3 36 Ω. Ω 3 47 0 S b. R R R 8 3 E 8 c. I s R. Ω 8.5 A T R 0.333 S + 0.S + 0.08 S R 8 I R 3 Ω 6 A, 8 I R 9 Ω A, 8 3 I3 R3 36 Ω 0.5 A d. I s 8.5 A 6 A + A + 0.5 A 8.5 A (checks). a. R T + + 00 0 S + 833.333 0 S + 47.059 0 0 kω. kω 6.8 kω 95.93 Ω 3.080 0 S b. R R R 4 3 E 4 c. I s R 5.9 ma T 95.93 Ω 4 R R 4 IR.4 ma, I R 0 ma, R 0 kω R. kω R 6 6 6 R 4 3 IR 3.53 ma 3 R3 6.8 kω d. I T 5.9 ma.4 ma + 0 ma + 3.53 ma 5.93 ma (checks) 3. a. R T kω b. R T + + + 0 kω kω. kω 56 kω 6 6 6 6 00 0 S + 45.46 0 S + 833.333 0 S + 7.86 0 S.003 kω, very close 6 996.65 0 S c. I 3 the most, I 4 the least d. R 44 R 44 IR 4.4 ma, I R ma R 0 kω R kω R 44 3 R4 44 I R 36.67 ma, I 3 R 0.79 ma 4 R. kω R 56 kω 3 4 S 4 Chapter 6

4. e. I s E R T 44 43.87 ma.003 kω I s 43.87 ma 4.4 ma + ma + 36.67 ma + 0.79 ma 43.86 ma (checks) f. always greater 5. R T 3 Ω 6 Ω Ω, R T R T R 3 Ω Ω Ω I s I E R T Ω A E I R 4 A R 3 Ω I I I R A 4 A 8 A E (0 Ω)(0.8 A) 6. I 3 9 A 0 Ω + 4 Ω E R I3R3 (9 A)(4 Ω) 36 3 I.3 A 0.8 A.5 A R R I R R 36.5 A 4 Ω 7. a. R T 0 Ω 5 Ω 4 Ω E 30 I s R 4 Ω 7.5 A T CDR: I 5 Ω I s (7.5 A) 5 Ω+ 0 Ω 5.5 A b. 0 kω 0 kω 5 kω R T kω 5 kω 0.833 kω E 8 I s R 9.6 ma 0.833 kω T R T 0 kω kω 0.909 kω RI T s (0.909 k Ω)(9.6 ma) 8.77 ma I R + 0 kω 0.909 kω+ 0 kω 0.909 T 0.8 ma 8. a. I b. 4 c. I s 4 0 kω 4 8 6 4 kω 4 kω 4 ma + 4 ma + 4 kω.4 ma + 4 ma + ma 8.4 ma Chapter 6 43

9. a. R T 6 + + 000 0 S + 30.303 0 S +.95 0 kω 33 kω 8. kω 867.86 Ω 3.5 0 S R 00 R 00 IR 00 ma, I R 3.03 ma R kω R 33 kω b. R 00 3 IR. ma 3 R 8. kω P P P R 3 I (00 )(00 ma) 0 W R R R R I (00 )(3.03 ma) 0.30 W R R I (00 )(. ma). W 3 R3 R3 6 6 c. E 00 I s R T 867.86 Ω 5.3 ma P s E s I s (00 )(5.3 ma).5 W d. P s.5 W 0 W + 0.30 W +. W.5 W (checks) e. R the smallest parallel resistor 0. a. I bulb b. R T c. I s. R T R N E R T E R bulb 0 66.667 ma.8 kω.8 kω 8 0 5 Ω 5 Ω 0.533 A d. (0 ) P R.8 kω 8 W e. P s 8(8 W) 64 W f. none, I s drops by 66.667 ma + + Ω 0 Ω 5 0 Ω.86 Ω 3 350 0 S E 60 I s R.86 Ω 0.98 A T 00 0 P E I s (60 )(0.98 A).6 kw S + 00 0 3 3 3 S + 50 0 S S 44 Chapter 6

. a. 600 W P 0(60 W) 600 W E I 0 I, I 0 5 A 400 W P 400 W 0 I, I 0 3.33 A 00 W P 3 00 W 0 I 3, I 3 0.67 A 0 W P 4 0 W 0 I 4, I 4 0 0.9 A b. I s 5 A + 3.33 A +.67 A + 0.9 A 0.9 A (no) c. E 0 R T 0.99 Ω Is 0.9 A d. P s E I s (0 )(0.9 A).3 kw P s.3 kw 600 W + 400 W + 00 W + 0 W.3 kw (the same) 3. a. 8 Ω Ω 4.8 Ω, 4.8 Ω 4 Ω.8 Ω I 4 + 8.8 Ω 4.67 A (4 + 8 ) b. P 4 56 W R 4 Ω c. I I 4.67 A 4. I.6 ma 8.5 ma 4. ma I 8.5 ma 4 ma 4.5 ma 5. a. 9 A + A + I A, I A A A I + A A + 3 A, I 4 A A 3 A b. 6 A A + I, I 6 A A 4 A 4 A + 5 A I, I 9 A 9 A I 3 + 3 A, I 3 9 A 3 A 6 A 3 A + 0 A I 4, I 4 3 A 6. a. I + 5 ma 8 ma, I 3 ma 5 ma I + 3.5 ma, I.5 ma I 3 ma I 3 + ma, I 3 ma I 4 5 ma b. I 3.5 μa + 0.5 μa.0 μa 6 μa I + I 3 I + μa, I 4 μa I +.5 μa I 4, I 4 4 μa +.5 μa 5.5 μa I 6 μa Chapter 6 45

7. I R 5 ma ma 3 ma E R (3 ma)(4 kω) R R I (9 ma 5 ma) 4 ma R 3 I R T R R3 R3 E I T ma 9 ma 6 kω.33 kω 3 kω 8. a. R E I 0 A 5 Ω I I I 3 A A A E 0 R 0 Ω I A b. E I R ( A)(6 Ω) E I.33 A 9 Ω R P W I 3 A E R 3 Ω I3 A I I + I + I 3 A +.33A + A 4.33 A 64 c. I 64 ma kω 64 I 3 6 ma 4 kω I s I + I + I 3 I I s I I 3 00 ma 64 ma 6 ma 0 ma E 64 R 3. kω I 0 ma I I + I 3 0 ma + 6 ma 36 ma 46 Chapter 6

d. P PR (30 W)(30 Ω ) R E 30 E 30 I A 30 Ω R 30 Because R 3 R, I 3 I, and I s I + I + I 3 I + I A A + I I ( A) 0.5 A I 3 0.5 A E 30 R R 3 60 Ω I 0.5 A 4 Ω 9. I I I A Ω 3 4 Ω I 3 I I A Ω P R I R (0.5 A) 60 Ω 5 W 4 Ω I 4 I I 0.6 A 40 Ω 0 I T I + I + I 3 + I 4 6 A + A + A + 0.6 A 0.6 A 8 kω(0 ma) 30. a. I 6 ma kω + 8 kω I 0 ma 6 ma 4 ma b. R T + + 454.55 0 S + 833.33 0. kω. kω 0. kω 59.03 Ω 6 6,88 0 S RT 59.03 Ω I x I, I (8 ma).30 ma Rx. kω 59.03 Ω I (8 ma).39 ma. kω 59.03 Ω I 3 (8 ma) 4.3 ma 0. kω I 4 8 ma 6 6 6 S + 5000 0 S Chapter 6 47

c. R T 50 0 S + 5 0 + + 4 Ω 8 Ω Ω.8 Ω 3 458.333 0 RT I x I, I.8 Ω (6 A) 3.7 A Rx 4 Ω I.8 Ω (6 A).64 A 8 Ω I 3.8 Ω (6 A).09 A Ω I 4 6 A 0 Ω(9 A) d. I I 6 A 0 Ω + 0 Ω I 3 9 A I 9 A 6 A 3 A I 4 9 A 3 3 3 S + 83.333 0 S 3. a. I 0 9 (0 A) 9 A b. I /I 0 Ω/ Ω 0, I 9 A I 0 0 0.9 A c. I /I 3 kω/ Ω 000, I 3 I /000 9 A/000 9 ma d. I /I 4 00 kω/ Ω 00,000, I 4 I /00,000 9 A/00,000 90 μa e. very little effect, /00,000 f. R T + + + Ω 0 Ω kω 00 kω 3 6 S + 0. S + 0 S + 0 0 S.0 S 0.9 Ω RT I x I, I 0.9 Ω (0 A) 9. A excellent (9 A) R Ω x g. I 0.9 Ω (0 A) 0.9 A excellent (0.9 A) 0 Ω h. I 3 0.9 Ω (0 A) 9. ma excellent (9 ma) kω i. I 4 0.9 Ω (0 A) 9 μa excellent (90 μa) 00 kω 48 Chapter 6

Ω I 3. a. CDR: I 6Ω A Ω + 6 Ω A(8 Ω) I 4 A I Ω I I A 3 A b. I 3 I 7 μa By inspection: I μa I I ( μa) 7 μa 4 μa 3 μa R ( μa)(9 Ω) 8 μ R 8 μ R 6 Ω I 3 μa R 33. a. R 3( kω) 6 kω 6 k Ω(3 ma) b. I 4 ma 6 kω+ kω I 4 ma I 8 ma 3 3 34. 84 ma I + I + I 3 I + I + I I + I + (I ) 84 ma I + I + 4I 7I 84 ma and I ma 7 I I ( ma) 4 ma I 3 I (4 ma) 48 ma R 4 R kω I ma R R I R 3 R 3 I 3 4 kω 4 ma 4 0.5 kω 48 ma 35. a. P L L I L 7 W I L 7 W I L 6 A I 6 A I I L 3 A b. P source EI ( )(3 A) 36 W c. P s + P s 36 W + 36 W 7 W (the same) d. I drain 6 A (twice as much) Chapter 6 49

36. R T 8 Ω 56 Ω 7 Ω E I I 3.7 A R T 7 Ω I I (.7 A) 0.86 A 6 37. I 8 Ω 8 Ω I R 5 A + 3 A 8 A, R A, I 5 A A 3 A I R R 6 8 A Ω 38. a. E I s R T 0. k 0 k.88 ma Ω+ Ω 0. kω L I s R L (.9 ma)(0 kω).90 b. I s 0 ma 00 Ω c. L E 39. a. 4.7 k Ω(9 ) 4.3 L 4.7 kω+. kω 6.9 b. L E 9 c. L E 9 6.3 40. a. I 0 4 Ω 5 A, I 0 A b. 0, 0 c. I s I 5 A kω(0 ) 4. a. 6.48 kω + 4.7 kω b. R T MΩ kω.956 kω.956 kω(0 ) 6.47 (very close to ideal).956 kω + 4.7 kω c. R m 0 [0,000 Ω/] 400 kω R T 400 kω kω 0.853 kω 0.853 kω(0 ) 6.3 (still very close to ideal) 0.853 kω + 4.7 kω d: a. 00 kω(0 ) 00 kω + 00 kω 3.33 b. R T 00 kω MΩ 96.49 kω (96.49 kω)(0 ) 3.5 (very close to ideal) 96.49 kω + 00 kω 50 Chapter 6

c. R m 400 kω R T 400 kω 00 kω 33.333 kω (33.333 kω)(0 ).43 (a.84 drop from R int MΩ level) 33.333 kω + 00 kω e. DMM level of MΩ not a problem for most situations OM level of 400 kω can be a problem for some situations. 4. a. ab 0 MΩ(0 ) b. ab 8.33 MΩ + MΩ c. R m 00 [0,000 Ω/] 4 MΩ 4 MΩ(0 ) ab 6.0 (significant drop from ideal) 4 MΩ + MΩ R m 0 [0,000 Ω/] 400 kω 400 kω(0 ) ab 5.7 (significant error) 400 kω + MΩ 43. not operating properly, 6 kω not connected at both ends 6 R T.7 kω 3.5 ma R T 3 kω 4 kω.7 kω 44. ab E + I 4 kω R 4 kω 4 8 I 4 kω.6 ma kω + 4 kω 5 kω ab 4 + (.6 ma)(4 kω) 4 + 6.4 0.4 4 supply connected in reverse so that + 4 6 I 3. ma kω + 4 kω 5 kω and ab (3. ma)( kω) 3. 8.8 obtained Chapter 6 5

Chapter 7. a. E and R in series; R, R 3 and R 4 in parallel b. E and R in series; R, R 3 and R 4 in parallel c. R and R in series; E, R 3 and R 4 in parallel d. E and R in series, R 4 and R 5 in series; R and R 3 in parallel e. E and R in series, R and R 3 in parallel f. E, R and R 4 in parallel; R 6 and R 7 in series; R and R 5 in parallel. a. R T 4 Ω + 0 Ω + 4 Ω 8 Ω b. 0 Ω R T 0 Ω + 0 Ω + 5 Ω 5 Ω c. R T 4 Ω (4 Ω + 4 Ω) + 0 Ω 4 Ω 8 Ω + 0 Ω.67 Ω + 0 Ω.67 Ω d. R T 0 Ω 3. a. yes b. I I s I 0 A 4 A 6 A c. yes d. 3 E 4 8 6 e. R T 4 Ω Ω.33 Ω, R T 4 Ω 6 Ω.4 Ω R T R T + RT.33 Ω +.4 Ω 3.73 Ω f. R T RT R T + R T 0 Ω + 0 Ω 0 Ω E 0 I s R T 0 Ω A g. P s EI s P absorbed (0 )( A) 0 W 4. a. Ω 6 Ω R T R 3 R 4 6 Ω, R T R R T 3 Ω R T R + R T 4 Ω + 3 Ω 7 Ω b. E 4 A I s A, I I s A 7 Ω R T A I 3 0.5 A c. I 5 A d. I R ( A)(6 Ω) 6 4 6 5. a. R T R R 0 Ω 5 Ω 6 Ω R T R T (R 3 + R 4 ) 6 Ω (0 Ω + Ω) 6 Ω Ω 4 Ω b. I s E R T 36 4 Ω E 9 A, I R T 36 36 Ω + Ω Ω 36 6 Ω E I 3 A R 3 + R 4 0 c. 4 I 4 R 4 I R 4 (3 A)( Ω) 6 6 A 5 Chapter 7

6. a. R T. kω + 6.8 kω 8 kω, R T kω R T kω 8 kω.6 kω R T R T +.4 kω.6 kω +.4 kω 4 kω R T kω R T kω 4 kω 0.8 kω b. E 48 I s R T 0.8 kω 60 ma c. RT E (.6 kω)(48 ) R +.4 k Ω.6 kω +.4 kω 9. T 7. a. R T (R R R 3 ) (R 6 + R 4 R 5 ) ( kω kω 3 kω) (0.4 kω + 9 kω 6 kω) (6 kω 3 kω) (0.4 kω + 3.6 kω) kω 4 kω.75 kω E 8 I s 6 ma, I R T.75 kω R R R R 3 kω R R 6 + R 4 R 5 4 kω R ( I Ω I 6 s ) k (6 ma) ma R + R kω + 4kΩ b. E 8 R R 4 R 5 6 kω 9 kω 3.6 kω 5 I 6 R ( ma)(3.6 kω) 7. R (8 ) 3 c. P 6.33 mw R 3 kω 3 E R 8.33 ma kω 8. a. R R 4 R 5 (R 7 + R 8 ) 4 Ω 8 Ω (6 Ω + Ω) 4 Ω 8 Ω 8 Ω 4 Ω 4 Ω Ω R (R 3 + R ) (R 6 + R 9 ) (8 Ω + Ω) (6 Ω + 4 Ω) 0 Ω 0 Ω 5 Ω R T R (R + R ) 0 Ω (5 Ω + 5 Ω) 0 Ω 0 Ω 5 Ω E 80 I 5 Ω 6 A R T b. 6 A I I R 8 A 8 A I 3 I 9 4 A ( R4 R5)( I3) c. I 8 ( R R ) + ( R + R ) 4 5 7 8 (4 Ω 8 Ω)(4 A) (4 Ω 8 Ω ) + (6 Ω+ Ω) (.67)(4 A) A.67 Ω + 8 Ω Chapter 7 53

d. I 8 R 8 x + I 9 R 9 0 x I 9 R 9 I 8 R 8 (4 A)(4 Ω) ( A)( Ω) 6 4 9. I 0 5 Ω 4 A R T 6 Ω 5 Ω 9.756 Ω 7 I 9.756 Ω 0.7 A 0. a, b. I 4 4 Ω 6 A, I 3 8 0 Ω 0.8 A I 4 + 8 3 Ω Ω 6 A I I + I 6 A + 6 A A. a. R R 4 + R 5 4 Ω + 6 Ω 0 Ω R R R 0 Ω 0 Ω 0 Ω R R + R 0 Ω + 0 Ω 0 Ω R T R 3 R 5 Ω 0 Ω 4 Ω E 0 I s RT 4 Ω 5 A 0 0 0 I R + R 0 Ω+ 0 Ω 0 Ω A I 3 0 5 Ω 4 A I I 4 (since R R ) A 0.5 A b. a I 3 R 3 I 4 R 5 (4 A)(5 Ω) (0.5 A)(6 Ω) 0 3 7 I bc R (0.5 A)(0 Ω) 0. a. E 0 I R + R4 ( R + R3 R 5) 3 Ω+ 3 Ω (3 Ω+ 6 Ω 6 Ω) 0 0 0 3 Ω+ 3 Ω (3 Ω+ 3 Ω) 3 Ω+ 3 Ω 6 Ω 3 Ω+ Ω 4 A 54 Chapter 7

R4( I) 3 Ω(4 A) b. CDR: I R4 + R + R3 R5 3 Ω+ 3 Ω+ 6 Ω 6 Ω A 6 + 3.33 A I I 3 0.67 A c. I 4 I I 4 A.33 A.67 A a I 4 R 4 (.67 A)(3 Ω) 8 b I 3 R 3 (0.67 A)(6 Ω) 4 3. a. E I E R E kω I C I E ma R ( ) 8 (0.7 + ) B CC BE + E b. I B RB RB 0 k Ω 8.7 5.3 4 μa 0 kω 0 kω c. B BE + E.7 C CC I C R C 8 ( ma)(. kω) 8 4.4 3.6 d. CE C E 3.6.6 BC B C.7 3.6 0.9 4. a. 70 k Ω(6 ) I G 0 G 70 k Ω+ 000 kω G GS S 0 S G GS.9 (.75 ) 3.65 6 b. I I 7.05 μa 70 k Ω+ 000 kω S 3.65 I D I S.43 ma R.5 kω S c. DS DD I D R D I S R S DD I D (R D + R S ) since I D I S 6 (.43 ma)(4 kω) 6 9.7 6.8 d. DD I D R D DG G 0 DG DD I D R D G 6 (.43 ma)(.5 kω).9 6 6.08.9 8.0 Chapter 7 55

5. a. Network redrawn: 00 Ω + 0 Ω 30 Ω 400 Ω 600 Ω 40 Ω 400 Ω 0 Ω 4.94 Ω 40 Ω + 4.94 Ω 38.94 Ω R T 30 Ω 38.94 Ω 74. Ω b. a 4.94 Ω(3 ) 4.94 Ω+ 40 Ω.89 c. 3 a 3.89 0. d. a.89 e. I 600Ω 0. 33.5 ma 600 Ω I 0Ω.89 54.05 ma 0 Ω I + I 600Ω I 0Ω I I 00Ω I 600Ω 54.05 ma 33.5 ma 0.53 ma E 6. a. I R + R 9 7 Ω+ 8 Ω 0.6 A 3 b. E + E 0 E + E 9 + 9 8 7. a. R 8 "shorted out" R R 3 + R 4 R 5 + R 6 R 7 0 Ω + 6 Ω 6 Ω + 6 Ω 3 Ω 0 Ω + 3 Ω + Ω 5 Ω R T R + R R 0 Ω + 30 Ω 5 Ω 0 Ω + 0 Ω 0 Ω E 00 I RT 0 Ω 5 A R ( I) (5 Ω)(5 A) I R + R 5 Ω+ 30 Ω.67 A 56 Chapter 7

I 3 I I 5 A 3 A 3 A 3 0 3 Ω A RI 7 3 3 I 6 R7 + R6 3 Ω+ 6 Ω. A I 8 0 A b. 4 I 3 (R 4 R 5 ) 8 0 0 A 3 (3 Ω) 0 8. 8 Ω 8 Ω 4 Ω 30 30 I 4 Ω+ 6 Ω 0 Ω 3 A I(8 Ω 8 Ω) (3 A)(4 Ω) 9. a. All resistors in parallel (between terminals a & b) R T 6 Ω 6 Ω 8 Ω 4 Ω 3 Ω 8 Ω 8 Ω 4 Ω 3 Ω 4 Ω 4 Ω 3 Ω Ω 3 Ω.88 Ω b. All in parallel. Therefore, 4 E 3 c. I 3 3 /R 3 3 /4 Ω 8 A d. I s I + I + I 3 + I 4 + I 5 3 3 3 3 3 + + + + 6 Ω 8 Ω 4 Ω 3 Ω 6 Ω A + 4 A + 8 A + A + A 7 A E 3 R T.88 Ω as above I 7 A s Chapter 7 57

0. a. KL: +6 0 + ab 0 ab +0 6 4 b. I 5Ω 0 5 Ω 4 A ab 4 I Ω Ω Ω 7 A I 3Ω 6 3 Ω A I + I 3Ω I Ω and I I Ω I 3Ω 7 A A 5 A I I + I 5Ω 5 A + 4 A 9 A. a. Applying Kirchoff's voltage law in the CCW direction in the upper "window": +8 + 0 8Ω 0 8Ω 38 I 8Ω 38 8 Ω 4.75 A 8 8 I 3Ω 3 Ω+ 6 Ω 9 Ω A KCL: I 8 4.75 A + A 6.75 A b. (I 3Ω )(6 Ω) + 0 ( A)(6 Ω) + 0 + 0 3 IR 3 3 R3 R3. I R I 3 R 3 and I (since the voltage across parallel elements is the same) R 0 0 R 3 I I + I 3 + 0 R3 KL: 0 I + I 3 R 3 + 0 + R 3 and 0.R 3 + 4 + R 3 3.R 3 96 Ω R 3 96 Ω 30 Ω 3. 58 Chapter 7

3. Assuming I s A, the current I s will divide as determined by the load appearing in each branch. Since balanced I s will split equally between all three branches. 0 A (0 Ω) 3 3 0 A (0 Ω) 6 6 0 3 A (0 Ω) 3 3 0 0 0 E + + 3 + + 8.33 3 6 3 E 8.33 R T 8.33 Ω I A 4. 36 kω 6 kω kω 3.6 kω 3.6 k Ω(45 ) 6.88 7. Therefore, not operating properly! 3.6 k Ω+ 6 k Ω 6 kω resistor "open" R (45) 9 k Ω(45 ) R kω 36 kω 9 kω, R + 6 kω 9 kω+ 6 kω 7 5. a. R T R 5 (R 6 + R 7 ) 6 Ω 3 Ω Ω R T R 3 (R 4 + R T ) 4 Ω ( Ω + Ω) Ω R T R + R + R T 3 Ω + 5 Ω + Ω 0 Ω I 40 0 Ω 4 A b. I 4 I 7 4 Ω( I ) 4 Ω(4A) A 4Ω+ 4Ω 8 Ω 6 Ω( A) 7 A 8 A 6 Ω+ 3 Ω 9 Chapter 7 59

c. 3 I 3 R 3 (I I 4 )R 3 (4 A A)4 Ω 48 5 I 5 R 5 (I 4 I 7 )R 5 (4 A)6 Ω 4 7 I 7 R 7 (8 A) Ω 6 d. P I7R 7 (8 A) Ω 8 W P EI (40 )(4 A) 5760 W 6. a. R T R 4 (R 6 + R 7 + R 8 ) Ω 7 Ω.56 Ω R T R (R 3 + R 5 + R T ) Ω (4 Ω + Ω +.56 Ω).53 Ω R T R + R T 4 Ω +.53 Ω 5.53 Ω b. I /5.53 Ω 36.66 ma Ω( I) Ω(36.66 ma) c. I 3 Ω+ 6.56Ω Ω+ 6.56 Ω I 8 Ω(84.5 ma) 8.78 ma Ω+ 7 Ω 84.50 ma 7. The Ω resistors are in parallel. Network redrawn: R T Ω E 4 I s R Ω A T I s A I Ω A 4 Ω( I ) I Ω Ω A 4 Ω+ Ω 3 P 0Ω (I 0Ω ) 0 Ω A 0 Ω 3 4.44 W 8. a. R 0 + R R Ω + Ω Ω Ω R 4 (R 5 + R 6 ) 0 Ω 0 Ω 5 Ω R + R (R 3 + 5 Ω) 3 Ω + 6 Ω 6 Ω 6 Ω R T Ω 3 Ω 6 Ω Ω Ω Ω I / Ω A b. I /6 Ω A 6 Ω( A) I 3 6 Ω+ 6 Ω A I 4 A 0.5 A c. I 6 I 4 0.5 A d. I 0 A 6 A 60 Chapter 7

9. a. E (40 ma)(.6 kω) 64 b. c. 48 R L ma 4 kω 4 R L 3 8 ma 3 kω I R 7 ma 40 ma 3 ma I R 3 ma ma 0 ma I R 3 0 ma 8 ma ma R 64 48 6 R 0.5 kω IR 3 ma 3 ma R 48 4 4 R. kω IR 0 ma 0 ma R 4 3 R 3 kω I ma R3 30. I R 40 ma I R 40 ma 0 ma 30 ma I R 3 30 ma 0 ma 0 ma I R 5 40 ma I R 4 40 ma 4 ma 36 ma R 0 00 0 R IR 40 ma 40 ma 0.5 kω R 00 40 60 R IR 30 ma 30 ma kω R 40 3 R 3 IR 0 ma 3 4 kω R 36 4 R 4 IR 36 ma 4 kω R 60 36 4 5 R 5 I 40 ma 40 ma 0.6 kω R5 Chapter 7 6

3 3 4 4 P I R (40 ma) 0.5 kω 0.8 W ( watt resistor) P I R (30 ma) kω.8 W ( watt resistor) P 3 I R (0 ma) 4 kω 0.4 W (/ watt or watt resistor) P 4 I R (36 ma) kω.3 W ( watt resistor) P 5 I5R 5 (40 ma) 0.6 kω 0.96 W ( watt resistor) All power levels less than W. Four less than W. 3. a. yes, R L R max (potentiometer) b. DR: R( ) R( ) R 3 R + R k Ω R 3 ( k Ω ) 0.5 kω 50 Ω R kω 0.5 kω 0.75 kω 750 Ω c. R E L 3 9 R ( ) R 9 R + ( R R ) L (Chose R rather than R R since numerator of DR L equation "cleaner") 9R + 9(R R L ) R R 3( R RL ) eq. unk( RL 0 k Ω) R + R k Ω 3RRL 3 R 0 kω R R + RL R + 0 kω and R (R + 0 kω) 30 kω R R R + 0 kω R 30 kω R R + R kω: ( kω R )R + 0 kω ( kω R ) 30 kω R R + 39 kω R 0 kω 0 R 0.55 kω, 39.55 kω R 55 Ω R kω R 745 Ω 80 Ω(40 ) 3. a. ab 3 00 Ω bc 40 3 8 b. 80 Ω kω 74.07 Ω 0 Ω 0 kω 9.96 Ω 74.07 Ω(40 ) ab 74.07 Ω+ 9.96 Ω 3.5 bc 40 3.5 8.49 6 Chapter 7

c. P (3.5 ) (8.49 ) + 80 Ω 0 Ω.4 W + 3.604 W 6.0 W (3 ) (8 ) d. P +.8 W + 3. W 6 W 80 Ω 0 Ω The applied loads dissipate less than 0 mw of power. 33. a. I CS ma b. R shunt RmICS I I max CS (00 Ω)( ma) 0 A ma 0. 0 Ω 5 mω ( k Ω)(50 μa) 34. 5 ma: R shunt 5 ma 0.05 ma ( k Ω)(50 μ A) 50 ma: R shunt 50 ma 0.05 ma 00 ma: R shunt 0.5 Ω Ω Ω max S 5 (50 μa)( k Ω ) 35. a. R s 300 kω I 50 μa CS b. Ω/ /I CS /50 μa 0,000 5 ( ma)(00 Ω ) 36. 5 : R s 4.9 kω ma 50 0. 50 : R s 49.9 kω ma 500 0. 500 : R s 499.9 kω ma 37. 0 MΩ (0.5 )(Ω/) Ω/ 0 0 6 I CS /(Ω/) 0.05 μa 6 0 0 38. a. R s E zero adjust 3 R m kω k 8 kω I 00 μa Ω m Chapter 7 63

b. xi m R unk E R series E xi m + R m + zero adjust + R unk zero adjust Rseries + R m + 3 30 kω x00 μa 3 30 0 x 30 0 3 x 3 4, R unk 0 kω; x, R unk 30 kω; x 4, R unk 90 kω 39. 40. a. Carefully redrawing the network will reveal that all three resistors are in parallel R Ω and R T 4 Ω N 3 b. Again, all three resistors are in parallel and R T R 8 Ω 6 Ω N 3 64 Chapter 7

Chapter 8. a. I I 3 0 ma b. I R (0 ma)( kω) 0 c. R T kω +. kω + 0.56 kω 3.76 kω s IR T (0 ma)(3.76 kω) 37.6. a. Rs ( I) 0 kω(4 A) I 3.996 A, I I Rs + R + R 0 kω + 0 Ω b. I R (3.996 A)(6 Ω) 3.98 c. s I (R + R ) (3.996 A)(0 Ω) 39.96 3. R IR (6 A)(3 Ω) 8 E + R s 0, s E + R 0 + 8 8 4. a. s E 4 E 4 4 b. I 6 A R + R Ω + 3 Ω 4 Ω c. I + I s I, I s I I 6 A A 4 A 5. s IR T 0.6 A[6 Ω 4 Ω 4 Ω] 0.6 A[6 Ω Ω].4.4 I 0. A R 4 Ω 3 R3 s 6 Ω(.4 ).6 R + R 4 Ω 3 4 6. a. E 4 I R Ω A, E 4 4 Ω I R R + R3 6 Ω+ Ω 8 Ω 3 A KCL: I + I s I I R 0 I s I + I R I A + 3 A 4 A A b. s E 4 RE 3 Ω(4 ) 48 DR: 3 R + R 6 Ω+ Ω 8 Ω 6 3 7. a. I b. I E 8 R 6 Ω 3 A, R p R s 6 Ω s E 9 R. kω 4.09 ma, R p R s. kω s CHAPTER 8 65

8. a. E IR s (.5 A)(3 Ω) 4.5, R s 3 Ω b. E IR s (6 ma)(4.7 kω) 8., R s 4.7 kω 9. a. CDR: I L Rs ( I) 00 Ω( A) R + R 00 Ω+ Ω.76 A, I L I s L b. E s IR ( A)(00 Ω). k R s 00 Ω Es. k I R+R 00 Ω+ Ω.76 A s L 0. a. E IR ( A)(6.8 Ω) 3.6, R 6.8 Ω b. I (CW) ( + 3.6 )/(0 Ω + 6.8 Ω + 39 Ω) 5.6 55.8 Ω c. ab I R 3 (458.78 ma)(39 Ω) 7.89 +. a. I T 6.8 A. A 3.6 A A b. s I T R ( A)(4 Ω) 8. I T 7 A 3 A 4 A R ( I ) 6 (4 A) CDR: I T Ω R+ R 4 Ω+ 6 Ω.4 A I R (.4 A)(4 Ω) 9.6 3. a. Conversions: I E /R 9 /3 Ω 3 A, R 3 Ω I E /R 0 / Ω 0 A, R Ω b. I T 0 A 3A 7 A, R T 3 Ω 6 Ω Ω Ω Ω Ω Ω Ω Ω 0.9 Ω ab + ab I T R T (7 A)(0.9 Ω) 6.44 c. I 3 6.44 6 Ω.07 A 458.78 ma 4. a. I E R. k Ω 5.45 ma, R p. kω 66 CHAPTER 8

b. I T 8 ma + 5.45 ma 3 ma 0.45 ma R 6.8 kω. kω.66 kω I T R (0.45 ma)(.66 kω) 7.35 c. + 7.35 5.35 5.35 d. I R. k Ω.43 ma 5. a. 4 4I 8I 3 0 6 I 8I 3 0 I + I I 3 I A, I A, I3 A 7 7 7 5 4 IR I A, IR I A, IR I 3 3 A 7 7 7 b. 0 + 3I 3 4I 0 I 3.06 A 3I 3 I 0 I 0.9 A I + I I 3 I 3 3.5 A I I I 3.06 A, R I 3.5 A R 3 3 I I 0.9 A R 6. (I): 0 I 5.6 kω I 3. kω + 0 0 0 + I 3. kω + I 3.3 kω 30 0 I + I I 3 I I R.45 ma, I I R 8.5 ma, I 3 (II):. kω I + 9 8. kω I 3 0 0. kω I + 8. kω I 3 + 6 0 I + I 3 I I.03 ma, I.3 ma, I 3 0.8 ma I R I.03 ma I I 3 0.8 ma I R R I I.3 ma R 3 4 I R 3 9.96 ma CHAPTER 8 67

7. (I): 5 I 3I 3 + 60 0 60 + 3I 3 + 6 5I 0 0 I I + I 3 I 8.55 A ab + 0 I 5 Ω 0 (8.55 A)(5 Ω).75 (II): Source conversion: E IR (3 A)(3 Ω) 9, R 3 Ω 9 + 6 3I 4I 6I 4 0 + 6I 4 8I 3 4 0 I I 3 + I 4 I.7 A ab + I 4 Ω 6 (.7 A)4 Ω 6 0.9 8. I I 5 I R (CW), I I R 5 (CW) I R (down), I 3 I R 3 (right), I 4 I R 4 (down) a. E I R I R 0 I R I 3 R 3 I 4 R 4 0 I 4 R 4 I 5 R 5 E 0 I I + I 3 I 3 I 4 + I 5 b. E I (R + R ) I 3 R 0 I R I 3 (R 3 + R 4 ) + I 5 R 4 0 I 3 R 4 I 5 (R 4 + R 5 ) E 0 c. I (R + R ) + I 3 R + 0 E I (R ) I 3 (R 3 + R 4 ) + I 5 R 4 0 0 + I 3 R 4 I 5 (R 4 + R 5 ) E 3I + I 3 + 0 0 I 9I 3 + 5I 5 0 0 + 5I 3 8I 5 6 d. I 3 I R 63.69 ma 3 68 CHAPTER 8

9. a. 0 I B (70 kω) 0.7 I E (0.5 kω) 0 I E (0.5 kω) + 8 + I C (. kω) 0 0 I E I B + I C I B 63.0 μa, I C 4.4 ma, I E 4.48 ma b. B 0 I B (70 kω) 0 (63.0 μa)(70 kω) 0 7.0.98 E I E R E (4.48 ma)(50 Ω).8 C 0 I C (. kω) 0 (4.4 ma)(. kω) 0 9.7 0.8 c. β I C /I B 4.4 ma/63.0 μa 70.4 0. a. 4 4I 8(I I ) 0 8(I I ) I 6 0 I A, I 7 A I R I I R I I R 3 I I 5 A 7 7 5 A 7 A 7 5 A 7 4 A (dir. of I ) 7 b. 0 4I 3(I I ) 0 3(I I ) I 0 I 3.06 A, I 0.9 A I R I 3.06 A I R 3 I 0.9 A I R I I ( 3.06 A) (0.9 A) 3.5 A. (I): 0 I (5.6 kω). kω(i I ) + 0 0 0. kω(i I ) I 3.3 kω 30 0 I.45 ma, I 8.5 ma I I.45 ma, I I 8.5 ma R I R 3 I I 7.06 ma (direction of I ) R CHAPTER 8 69

(II): I (. kω) + 9 8. kω(i I ) 0 I (. kω) + 6 I (9. kω) 8. kω(i I ) 0 I.03 ma, I.3 ma I I.03 ma, I I I.3 ma R R3 R4 IR I I.03 ma.3 ma 0.80 ma (direction of I ). (I): 5 I 3(I I ) + 60 0 60 3(I I ) + 6 5I 0 0 I.87 A, I 8.55 A ab + 0 I 5 0 (8.55 A)(5) 0 4.75.75 (II): Source conversion: E 9, R 3 Ω 9 3I 4I + 6 6(I I 3 ) 0 6(I 3 I ) 8I 3 4 0 I.7 A, I 3 0.6 A ab + 3. (a): 0 I (I I ) 0 (I I ) I 4 5(I I 3 ) 0 5(I 3 I ) I 3 3 6 0 3I I + 0 0 I + 0I 5I 3 0 0 5I + 8I 6 I 3 I R 3 63.69 ma 4. a. I 4 5I + 6 (I I ) 0 (I I ) 6 3I 5 0I 0 I I 5Ω 7.6 ma a 4 (7.6 ma)(6 Ω) 4 0.433 4.43 I 4 6 (.7 A)(4 Ω) 6 5.08 6 0.9 70 CHAPTER 8

b. Network redrawn: 6I 4(I I ) 0 4(I I ) 5I (I I 3 ) + 6 0 6 (I 3 I ) 3I 3 0 I I 5Ω.95 A a (I 3 )(3 Ω) (.4 ma)(3 Ω) 7.6 5. (I): I (. kω + 9. kω) 9. kω I 8 I (9. kω + 7.5 kω + 6.8 kω) 9. kω I 6.8 kω I 3 8 I 3 (6.8 kω + 3.3 kω) I 6.8 kω 3 I. ma, I 0.48 ma, I 3 0.6 ma (II): 6 4I 3(I I ) 4(I I 3 ) 0 3(I I ) 0 I 5 4(I I 3 ) 0 6 4(I 3 I ) 4(I 3 I ) 7I 3 0 I 0.4 A, I 0.5 A, I 3.8 A 6. a. 6.8 kω I 4.7 kω(i I ) + 6. kω(i I 4 ) 0 6 4.7 kω(i I ).7 kω I 8. kω (I I 3 ) 0. kω I 3 kω(i 3 I 4 ) 8. kω(i 3 I ) 9 0 5. kω I 4. kω(i 4 I ) kω(i 4 I 3 ) 0 I 0.03 ma, I 0.88 ma, I 3 0.97 ma, I 4 0.64 ma b. Network redrawn: I 6 4I + 4I 0 4I + 4I I + I 3 6 0 I 3 + I + 6 8I 3 0 I 3.8 A, I 4.0 A, I 3 0.0 A CHAPTER 8 7

7. a. I 4 I 6Ω I 0Ω I 3 A (CW) I 4Ω 3 A (CCW) 4 6I 4I 0I + 0 and 6I + 4I 36 I I 6 A I I + 6 A 6[I + 6 A] + 4I 36 6I + 96 + 4I 36 0I 60 I 3 A I I + 6 A 3 A + 6 A 3 A b. 0 4I 6(I I ) 8(I 3 I ) I 3 0 0I 4I + 9I 3 0 I 3 I 3 A I 8 A 0I 4(8 A) + 9[I + 3 A] 0 9I 05 I 5.56 A I 3 I + 3 A 5.56 A + 3 A 8.56 A I 8 A I 0 I 4Ω 5.53 A (dir. of I ) I 6Ω I I.47 A (dir. of I ) I 8Ω I 3 I 0.53 A (dir. of I 3 ) I Ω 8.53 A (dir. of I 3 ) 7 CHAPTER 8

8. a. b. (4 + 8)I 8I 4 (8 + )I 8I 6 I A, I 7 5 A 7 (4 + 3)I 3I 0 (3 + )I 3I I 3.06 A, I 0.9 A 9. (I): a. I (5.6 kω +. kω). kω (I ) 0 + 0 I (. kω + 3.3 kω). kω (I ) 0 30 b. I.45 ma, I 8.5 ma c. I R I.45 ma, I R I 8.5 ma I R 3 I + I 8.5 ma +.44 ma 9.96 ma (direction of I ) (II): a. I (. kω + 8. kω) 8. kω I 9 I (8. kω +. kω + 9. kω) 8. kω I 6 b. I.03 ma, I.3 ma c. I R I.03 ma, IR I 3 R I 4.3 ma I I I.03 ma.3 ma 0.80 ma (direction of I ) R 30. (I): ( + 3)I 3I 5 + 60 (3 + 5)I 3I 60 + 6 0 b. I.87 A, I 8.55 A c. I R I.87 A, I R I 8.55 A I R 3 I I.87 A ( 8.55 A) 0.4 A (direction of I ) (II): a. (3 + 4 + 6)I 6I 3 9 + 6 (6 + 8)I 3 6I 4 CHAPTER 8 73

b. I.7 A, I 3 0.6 A c. I R I.7 A, I R 3 I 3 0.6 A I R 4 I I 3.7 A 0.6 A.0 A I R 3 A I 3 A.7 A.73 A 3. I ( + ) I 0 I ( + 4 + 5) I 5I 3 0 I 3 (5 + 3) 5I 6 I I 63.69 ma (exact match with problem 8) R 3 3. From Sol. 4(b) I (6 + 4) 4I I (4 + 5 + ) 4I I 3 + 6 I 3 ( + 3) I 6 I 5Ω I.95 A I 3.4 A, a (I 3 )(3 Ω) (.4 A)(3 Ω) 7.6 33. (I): (. kω + 9. kω)i 9. kωi 8 (9. kω + 7.5 kω + 6.8 kω)i 9. kω I 6.8 kωi 3 8 (6.8 kω + 3.3 kω)i 3 6.8 kωi 3 I. ma, I 0.48 ma, I 3 0.6 ma (II): (4 Ω + 4 Ω + 3 Ω)I 3 Ω I 4 Ω I 3 6 (4 Ω + 3 Ω + 0 Ω)I 3I 4 Ω I 3 5 (4 Ω + 4 Ω + 7 Ω)I 3 4I 4I 6 I 0.4 A, I 0.5 A, I 3.8 A 34. a. I (6.8 kω + 4.7 kω +. kω) 4.7 kω I. kω I 4 6 I (.7 kω + 8. kω + 4.7 kω) 4.7 kω I 8. kω I 3 6 I 3 (8. kω +. kω + kω) kω I 4 8. kω I 9 I 4 (. kω + kω +. kω). kω I kω I 3 5 I 0.03 ma, I 0.88 ma, I 3 0.97 ma, I 4 0.64 ma b. From Sol. 6(b): I ( + 4) 4I 6 I (4 + ) 4I I 3 6 I 3 ( + 8) I 6 I 3.8 A, I 4.0 A, I 3 0.0 A 74 CHAPTER 8

35. a. 8.08 + + 5 5 9.39 + 3 4 Symmetry is present b. 4.80 + 4 4 4 6.40 + + 4 0 5 4 Symmetry is present 36. (I): + + 5 3 3 6 4 4 + 3 4 8 4 4 4.86,.57 4.86 R R 4 R.57 + +.57 4.86 9.7 R3 (II): + + 6 5 3 3 + + + 7 3 4 8 3.56, 4.03.56 R R R 5 4.03 R 4 R 3 4.03 +.56 6.59 CHAPTER 8 75

37. (I): a. + +.98 ma. k 9. k 7.5 k Ω Ω Ω 7.5 kω + + 0.9 ma 7.5 k 6.8 k 3.3 k Ω Ω Ω 7.5 kω b..65, 0.95 c. (+) ( ) R 3.65, R 5 0.95, R 4 3.60 R R + 8.65 5.35 R R + 3 0.95.05 (II): a. + + 3 4 4 7 4 4 4 + + 3 4.5 4 3 0 + 4 3 3 + + 3 4 4 4 3 4 4 3 b. 8.88, 9.83, 3 3.0 c. R 6 8.88, R R 4 3 3.0, R 5 + R 6 + 3 4. R ( + ) ( ) 0.95 + R 3 0.84 R R R 3 - + 5 R3 5.7 76 CHAPTER 8

38. (I): + + 3 5 3 6 6 6 6 + + 3 3 6 4 5 6 5 3 + + 0 6 5 7 5 6 7.4,.45, 3.4 (II): Source conversion: I 4 A, R 4 Ω + + 3 9 0 0 0 0 + + 3 0 0 0 8 0 0 3 + + 4 0 0 4 0 0 6.64,.9, 3 0.66 39. (I) + 0 5 + + + + 3 0 9 7 + + 3 5 4 5.3, 0.6, 3 3.75 CHAPTER 8 77

(II) + 3 5 6 6 5 4 3 + 6 5 6 6.9,, 3.3 40. a. ΣI i ΣI o Node : A + 6Ω 0Ω Supernode, 3 : 3 0 + + 0 Ω 4 Ω Ω Independent source: 3 4 or 3 4 eq. unknowns: + 6Ω 0Ω A 4 + + 0 Ω 4 Ω Ω 0 0.67 0. +0. 0.433 0.08, 6.94 3 4 7.06 78 CHAPTER 8

b. Supernode: eq. unk. ΣI i ΣI o 3 A + 4 A 3 A + + 0 Ω 40 Ω 4 A + 0 Ω 40 Ω 6 4. a. + + 5 5 + 3 4 8.08, 9.39 Symmetry present + 4 4 4 + + 4 0 5 4 4.8, 6.4 b. Symmetry present Subt. 6 + (6 + ) 4 A + 0 Ω 40 Ω and 48 6 + 64 CHAPTER 8 79

4. (I): a. Note the solution to problem 36(I). b. 4.86,.57 c. (II): a. R 4.86, R 4 + R 3 R 3 R.57 R 3 + ( 4.86 ) (.57 ) + 9.7 Note the solution to problem 36(II). b..56, 4.03 c. R.56, R R 5 4.03 (+) ( ) 6.59 R R 3 4 43. (I): a. Source conversion: I 5 A, R 3 Ω + + 3 5 3 6 6 6 6 + + 3 3 6 4 5 6 5 3 + + 0 6 5 7 5 6 b. 7.4,.45, 3.4 c. R R 5 7.4 7.76 + R.45, R 3 3.4 (+) ( ) R 4 3.4 (.45 ) 3.86 R 5 7.4 (.45 ) 9.69 R 6 3 7.4.4 5.83 80 CHAPTER 8

(II): a. Source conversion: I 4 A, R 4 Ω + + 3 9 0 0 0 0 + + 3 0 0 0 8 0 0 3 + + 4 0 0 4 0 0 b. 6.64,.9, 3 0.66 c. R R 6.64, R R 3.9, R 5 (+) ( ) R 4 + (+) ( ) 6 0.66 5.34.9 ( 6.64 ) 7.93 3 0.66.9 9.37 R 6 (+) ( ) 3 0.66 ( 6.64 ) 7.30 44. a. Note the solution to problem 39(I). 5.3, 0.6, 3 3.75 5A 5.3 b. Note the solution to problem 39(II). 6.9,, 3.3 (+) ( ) (+) ( ) A 3 9.7, 5A 8.9 45. a. I (6 + 5 + 0) 5I 0I 3 6 I (5 + 5 + 5) 5I 5I 3 0 I 3 (5 + 0 + 0) 0I 5I 0 I 0.39 A, I 0.8 A, I 3 0.4 A b. I 5 I I 3 40 ma (direction of I ) c, d. no CHAPTER 8 8

46. Source conversion: I A, R 6 Ω + + 3 6 5 5 5 5 + + 3 0 5 5 0 5 5 + + 3 0 5 5 0 5 5 96.70 m, no R 5 47. a. I ( kω + 33 kω + 3.3 kω) 33 kω I 3.3 kω I 3 4 I (33 kω + 56 kω + 36 kω) 33 kω I 36 kω I 3 0 I 3 (3.3 kω + 36 kω + 5.6 kω) 36 kω I 3.3 kω I 0 I 0.97 ma, I I 3 0.36 ma b. I 5 I I 3 0.36 ma 0.36 ma 0 c, d. yes 48. Source conversion: I A, R kω + + 3 k 33 k 56 k Ω Ω Ω 56 kω 33 kω + + 3 0 56 k 36 k 5.6 k Ω Ω Ω 56 kω 36 kω + + 3 0 33 k 3.3 k 36 k Ω Ω Ω 33 kω 36 kω I 0 A, yes R 5 49. Source conversion: I 9 ma, R kω + + 3 4 ma k 00 k 00 k Ω Ω Ω 00 kω 00 kω + + 3 9 ma 00 k 00 k k Ω Ω Ω 00 kω kω 3 + + 9 ma 00 k 00 k k Ω Ω Ω 00 kω kω 8 CHAPTER 8

50. a. ( kω + kω + kω)i kω I kω I 3 0 ( kω + kω + kω)i kω I kω I 3 0 ( kω + kω + kω)i 3 kω I kω I 0 I I 0 3.33 ma Source conversion: I 0 / kω 0 ma, R kω + + 3 0 ma k k k Ω Ω Ω kω kω + + 3 k k k Ω Ω Ω kω kω 0 3 + + 0 k k k Ω Ω Ω kω kω 6.67 E IR s 0 I( kω) I 0 6.67 k Ω 3.33 ma b. Source conversion: E 0, R 0 Ω (0 + 0 + 0)I 0I 0I 3 0 (0 + 0 + 0)I 0I 0I 3 0 (0 + 0 + 0)I 3 0I 0I 0 I I 0 0.83 A 0 8.3.7 I s.70 R 0 Ω.7A s + + 3 0 0 0 0 0 + + 3 0 0 0 0 0 0 3 + + 0 0 0 0 0 0 I.7 A R R s s CHAPTER 8 83