Treatment of Boundary Conditions. Advanced CFD 03

Σχετικά έγγραφα
Eulerian Simulation of Large Deformations

Discretization of Generalized Convection-Diffusion

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Lifting Entry (continued)

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9

Discretization of the Convection Term

Α Ρ Ι Θ Μ Ο Σ : 6.913

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Tridiagonal matrices. Gérard MEURANT. October, 2008

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Διαδικασία Προμήθειας: Απευθείας Ανάθεση με κριτήριο κατακύρωσης την πλέον συμφέρουσα προσφορά από οικονομική άποψη, βάσει τιμής.

Development of Finer Spray Atomization for Fuel Injectors of Gasoline Engines

FEM Method 2/5/13. FEM Method. We will explore: 1 D linear & higher order elements 2 D triangular & rectangular elements

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

EE512: Error Control Coding

Thin Film Chip Resistors

INTERVAL ARITHMETIC APPLIED TO STRUCTURAL DESIGN OF UNCERTAIN MECHANICAL SYSTEMS

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Computing the Gradient

Oscillatory Gap Damping

Iterated trilinear fourier integrals with arbitrary symbols

Development of Simulation Method for Multiphase Flows : Application to Gas-Liquid and Gas-Solid Two Phase Flows

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2

Swirl diffusers, Variable swirl diffusers Swirl diffusers

6.642 Continuum Electromechanics

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

FU JOW PAI UNION 20YEARS 2012 BUDA FORM ΠΟΡΤΟΚΑΛΙ ΖΩΝΗ 7-8 ΕΤΩΝ 1η θέση Βασίλογλου Δανάη 2η θέση Βάσου Ειρήνη 3η θέση Καρράς Άρης

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

1 String with massive end-points

DEVELOPMENT OF ATTENUATION RELATIONS FOR PEAK PARTICLE VELOCITY AND DISPLACEMENT A PEARL REPORT. PG&E/CEC/Caltrans

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Srednicki Chapter 55

Forced Pendulum Numerical approach

SPARE PARTS LIST. for. Infrared oil heater. Model. Daystar. Type. PH5 for 120V 60Hz. May, 2017

Ceramic PTC Thermistor Overload Protection

A Lambda Model Characterizing Computational Behaviours of Terms

Πολυκαρβονικά Φύλλα - Κυψελωτά & Συμπαγή

From a car-following model with reaction time to a macroscopic convection-diffusion traffic flow model

Defroster Nozzle Shape Optimization Using the Continuous Adjoint Method

DATA SHEET Surface mount NTC thermistors. BCcomponents

MIDAS IT (Seoul) Japan (Tokyo) China (Beijing) Shenyang

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

Stabilized finite element for MHD with applications to magnetic confinement fusion

FT-63 SINGLE TURN CERMET TRIMMERS. F T E T V 5 k Ω ( ) FEATURES PART NUMBER DESIGNATION

The wave equation in elastodynamic

A Discre)za)on of Deep Atmospheric Model Dynamics for NCEP Global Forecast System


( ) Sine wave travelling to the right side

= Unit outward normal to the interface contained within the cross section ( to

derivation of the Laplacian from rectangular to spherical coordinates

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΝΑΜΟΡΦΩΣΗ ΠΠΣ

Χειμερινό εξάμηνο

ΕΘΝΙΚΟ!ΜΕΤΣΟΒΙΟ!ΠΟΛΥΤΕΧΝΕΙΟ! ΣΧΟΛΗ!ΧΗΜΙΚΩΝ!ΜΗΧΑΝΙΚΩΝ!!

Μηχανές Ηλεκτροσύντηξης & Μετ. Συγκόλλησης Εξαρτήματα Ηλεκτροσύντηξης & Μετωπικής Συγκόλλησης PΕ100 Υδρόμετρα Αντλίες

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

TUBO LED T8 LLUMOR PROLED ULTRA 25W 150CM

ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Aluminum Electrolytic Capacitors

4.6 Autoregressive Moving Average Model ARMA(1,1)

Aluminum Electrolytic Capacitors (Large Can Type)

Grey Cast Irons. Technical Data

Engineering Data High-wall Type (3 series) Indoor Unit. Contents MMK-AP0073H MMK-AP0093H MMK-AP0123H MMK-AP0153H MMK-AP0183H MMK-AP0243H.

Ανάπτυξη ενός «μηχανικού» εργαλείου διαχείρισης της ποιότητας του ελαιόλαδου

6.4 Superposition of Linear Plane Progressive Waves

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

Finite difference method for 2-D heat equation

Group 30. Contents.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Pos. Article Completion Voltage Art.-/SAP-No. 101 SP Steam Outlet Hose, RS lbs/hr

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

Διδάσκων: Κωνσταντίνος Κώστα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Time dependent Convection vs. frozen convection approximations. Plan

Differential forms and the de Rham cohomology - Part I

Εργαστήριο Τεχνολογίας Χημικών Εγκαταστάσεων. Τμήμα Χημικών Μηχανικών, ΑΠΘ, Τ.Θ. 455, 54124, Θεσσαλονίκη, Ελλάδα.

Spatial Modeling with Spatially Varying Coefficient Processes

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 1: Εξισώσεις διατήρησης

Πρότυπα Επιτροπής Θερµοµόνωσης TE-31

Problem Set 3: Solutions

Second Order RLC Filters

ISM 868 MHz Ceramic Antenna Ground cleared under antenna, clearance area mm x 8.25 mm. Pulse Part Number: W3013

5V/9V/12V Output QC2.0+USB Auto Detect+USB-PD Type-C Application Report ACT4529

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Ferrite Chip Beads For Automotive Use

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

using advanced personalized patient models and advanced interventions»

Transcript:

Treatment of Boundary Conditions Advanced CFD 03

Momentum BCs ( ρv) ( ρvv) = τ p B t semi-discretized form ( ρv) ( ρv) t discretization type element discretization ( ρv) ρv ( ) t oundary terms Ω Ω ( m f v f ) = Ω τ f S f f ~n() ( ) f ~n() m f v f face discretization element discretization = Ω f ~n() ( ) ( ) f ~n() τ f S f face discretization loop over elements loop over oundary faces ( m f v f ) f ~n() face discretization ( τ f S f ) f ~n() face discretization ( ) f ~int erior n() = m f v f m v ( ) f ~int erior n() = τ f S f oundary term τ S = oundary term ( τ f S f ) F f ~int erior n() oundary term loop over interior faces

No-Slip Wall F = F F = F F F = τ wall S v v! v = v ( v e )e v! v! wall wall d! d d e! e = S S! wall τ wall = µ v d! wall S v = v x ( v x e x v y e y )e x v y ( v x e x v y e y )e y F = µ S d v x ( v x e v e x y y )e x v y ( v x e x v y e y )e y

No-Slip Wall treatment for x-component ( ρv x ) ρv x ( ) t Ω ( m f v x, f ) = i f ~int erior n() ( )Ω τ f S f f ~int erior n() ( ) i µ S d ( v x ( v x e x v y e y )e x ) a a µ S d µ S d 2 ( 1 e x ) v y e y e x µ S 2 v x 1 e x 2 d v y 1 e y ( ) v y e y e x ( ) v x e x e y similar treatment for y-component

Inlet

Outlet

ressure BCs ρ t ρv semi-discretized form ( ) = 0 ρ ρ Ω t discretization type ( ρv S) f = 0 f ~n() loop over elements element discretization ρ ρ Ω t oundary terms ρ ρ Ω t ( ) f f ~n() ρv S face discretization ( ρv S) f f ~int erior n() = 0 ( ) ρv S = 0 oundary term loop over oundary faces loop over interior faces

Boundary Terms Contriution ρ ρ ρ t ( ) f ( v ) f S f Ω ρ ρ v ρ ρ v = 0 f ~int erior n() ( ) ( v ) S oundary term V C ρ C ρ, f a p = m (n) Δt ρ,0 f ρ (n) f D f f =n() f f =n() elements contriution int erior faces contriution? oundary face contriution wall p a F = m f,0 C ρ, f ρ (n) (n) f D f ρ f ( ) = ρ (n) ρ V Δt int erior faces contriution elements contriution (n) m f ρ f ( D f p f ) T f f =n() f =n() int erior faces contriution? oundary face contriution S

No-Slip Wall ( ρv S) = 0 oundary contriution = 0 V C ρ C ρ, f a p = m (n) Δt ρ,0 f ρ (n) f D f f =n() f f =n() elements contriution int erior faces contriution wall a F = m f,0 C ρ, f ρ (n) (n) f D f ρ f int erior faces contriution p S ( ) = ρ (n) ρ V Δt elements contriution (n) m f ρ f ( D f p f ) T f f =n() f =n() int erior faces contriution

Boundary Vallues using Rhie-Chow interpolation ( ρv S) = 0 ρ (n) v ρ (n) D ( p p ) = 0 = ρ (n) v ρ (n) D ( p ) = 0 wall D p (n) (n) ( ) = 0 p = D (n) (n 1) ( ) ( D p ) T D p S assuming a profile p = cons tant profile d linear profile

Susonic Inlet Specified Velocity ( ρ ρ ) ( v v ) = ρ v ρ v ρ v ρ v oundary term == m m ρ ρ p =? m = ρv specified S

Contriutions a p = V C ρ Δt C ρ, f m (n) f ρ,0 ρ (n) f D f f =n() f f =n() int erior faces contriution C ρ, m * ρ (n) oundary face contriution p =? m = ρv specified S ( ) = ρ (n) ρ V Δt elements contriution (n) m f ρ f ( D f p f ) T f m f =n() f =n() int erior faces contriution oundary face contriution

Specified Velocity using Rhie-Chow interpolation m = ρ (n) v ρ (n) D ( p p ) p =? = m = ρ (n) v ρ (n) D ( p ) D p (n) (n) ( ) = m ρ v (n) m = ρv specified S p = m ρ v S D p (n) (n 1) (n) ( ) ( D p ) T D assuming a profile p = cons tant profile d linear profile

Susonic Inlet Specified ressure ( ρ ρ ) ( v v ) S = ρ v S ρ v ρ v ρ v = m ρ v oundary term v = ρ v ρ (n) D ( p p ) = = ρ (n) D ( p ) ρ p = 0 = ρ (n) D p ( ) D ( p T ) v =? p = p specified

Contriutions a p = V C ρ Δt C ρ, f m (n) f ρ,0 ρ (n) f D f ρ (n) D f =n() f f =n() int erior faces contriution oundary face contriution v =? a F = m f,0 C ρ, f ρ (n) (n) f D f ρ f int erior faces contriution ( ) = ρ (n) ρ V Δt elements contriution (n) m f ρ f ( D f p f ) T f m D ( p T ) f =n() f =n() oundary face contriution int erior faces contriution p = p specified

Boundary Values m = ρ (n) v ρ (n) D ( p (n) (n) p ) v = m ( (n) e v S )ρ v =? p = p specified

Susonic Outlet m = ρ (n) v ρ (n) D p (n) (n) ( ) V C ρ ( n ρ ) ( n f D f ρ ) D incompressile Δt f =n( ) oundary face contriution int erior faces contriution a p = V C ρ C ρ, f ( n) m * ( n f,0 ρ ) f D f C ρ, ( n) m * ( n ρ ) D compressile Δt f =n( ) ρ f f =n( ) ρ int erior faces contriution oundary face contriution

Susonic Outlet Specified ressure ρ ρ ρ t ( ) f ( v ) f S f Ω ρ ρ v ρ ρ v = 0 f ~int erior n() ( ) ( v ) oundary term = 0 ρ = 0 = ( ) v = v D ( ) v = D = D E D ( S E ) d ( ρ ρ ) ( v v ) = ρ v ρ v = m ρ v oundary term ρ D E ρ D ( S E ) ρ d