Εὐκλείδης Στοιχεῖα Einige Einblicke auf der Grundlage der kommentierten Auswahl von Lucius Hartmann Zusammenstellung: Theo Wirth

Σχετικά έγγραφα
δ [4]. Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφʹ ἑαυτῆς σημείοις κεῖται.

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εὐκλείδης. Στοιχεῖα. Lucius Hartmann

Σημείο Επίπεδο ο χώρος η ευθεία η έννοια του σημείου μεταξύ δύο άλλων σημείων και η έννοια της ισότητας δύο σχημάτων.

LOOK. Ein Bilderbuch. Gabriele und Otto Hamborg

Hauptseminar Mathematische Logik Pcf Theorie (S2A2) Das Galvin-Hajnal Theorem

Θέμα: Αποδείξεις της τριγωνικής ανισότητας

Λίγα λόγια για τα Πλατωνικά και Αρχιµήδεια Στερεά

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

3 Lösungen zu Kapitel 3

Formelsammlung zur sphärischen Trigonometrie

Griechische und roemische Rechtsgeschichte

ἀξιόω! στερέω! ψεύδομαι! συγγιγνώσκω!

Geometrische Methoden zur Analyse dynamischer Systeme

Wenn ihr nicht werdet wie die Kinder...

Aufgabe 1 Dreierkette Legt mit den Bild- und Wortkarten eine Dreierkette. Τρεις στη σειρά. Σχηματίστε τριάδες με εικόνες και λέξεις που ταιριάζουν.

Επιμέλεια Μετάφρασης: Αποστολάκη Μαρία Α.Μ Βεϊζη Αρίων Α.Μ Μουτζιάνου Γεώργιος Α.Μ Παντελάκη Άννα Α.Μ.3341

MATERIALIEN ZUR VORBEREITUNG AUF DIE KLAUSUR INFORMATIK II FÜR VERKEHRSINGENIEURWESEN ANTEIL VON PROF. VOGLER IM WINTERSEMESTER 2011/12

Το σύστημα των αξιών της ελληνικής κοινωνίας μέσα στα σχολικά εγχειρίδια της Λογοτεχνίας του Δημοτικού Σχολείου

DEUTSCHE SCHULE ATHEN ΓΕΡΜΑΝΙΚΗ ΣΧΟΛΗ ΑΘΗΝΩΝ

cos(2α) τ xy sin(2α) (7) cos(2(α π/2)) τ xy sin(2(α π/2)) cos(2α) + τ xy sin(2α) (8) (1 + ν) cos(2α) + τ xy (1 + ν) sin(2α) (9)

Griechisches Staatszertifikat - Deutsch

Ρ Η Μ Α Τ Ι Κ Η Δ Ι Α Κ Ο Ι Ν Ω Σ Η

Griechisches Staatszertifikat - Deutsch

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

ΕΡΓΑΖΟΜΕΝΩΝ Bildung älterer Arbeitnehmer

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ HÖRVERSTEHEN. Mai 2012

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 26 Πειράµατα µε τον χρόνο

Strukturgleichungsmodellierung

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 22 Έλα τώρα, κουνήσου

Griechische und römische Rechtsgeschichte

Auswandern Dokumente Dokumente - Allgemeines Griechisch Koreanisch Dokumente - Persönliche Informationen

ΜΗΝΙΑΙΑ ΕΦΗΜΕΡΙΔΑ ΓΙΑ ΤΟΝ ΕΛΛΗΝΙΣΜΟ ΓΕΡΜΑΝΙΑ ΚΑΙ ΕΥΡΩΠΗ GRIECHISCH-DEUTSCHE MONATSZEITUNG DEUTSCHLAND UND EUROPA

DEUTSCHE SCHULE ATHEN ΓΕΡΜΑΝΙΚΗ ΣΧΟΛΗ ΑΘΗΝΩΝ

ηµήτριος I. Μπουνάκης Σχολικός Σύµβουλος Μαθηµατικών

Griechisches Staatszertifikat - Deutsch

Auswandern Studieren Studieren - Universität Griechisch Θα ήθελα να εγγραφώ σε πανεπιστήμιο. Angeben, dass man sich einschreiben will Japanisch Θα ήθε

Niveau A1 & A2 PHASE 3 ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ, ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

Übungen zu Teilchenphysik 2 SS Fierz Identität. Handout. Datum: von Christoph Saulder

Fragen, ob Gebühren anfallen, wenn man in einem bestimmten Land Geld abhebt

Auswandern Wohnen. Wohnen - Mieten. Θα ήθελα να ενοικιάσω ένα. Äußern dass man etwas mieten möchte. δωμάτιο Art der Unterbringung

Η παράσταση αυτή ήταν πολύ καλή και οργανωµένη, να συνεχίσουµε έτσι. Langer ( ιευθύντρια του Albrecht-Ernst Gymnasium)

Klausur Strömungsmechanik II Dichte des Fluids ρ F. Viskosität des Fluids η F. Sinkgeschwindigkeit v s. Erdbeschleunigung g

ἡ πάλαι γλῶττα ἡ Ἑλληνικὴ, κατὰ τὸν αὐτὸμορφον τρόπον ὑπὸ Ἰακώβου τοῦ Δονάλδοῦ γέγραπται

Εαρινό Εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Auswandern Dokumente. Dokumente - Allgemeines. Fragen wo man ein Formular findet. Fragen wann ein Dokument ausgestellt wurde

Auswandern Dokumente. Dokumente - Allgemeines. Dokumente - Persönliche Informationen. Fragen wo man ein Formular findet

Η προβληματική της Protention στη φαινομενολογία του χρόνου του Husserl

Simon Schiffel Implizite Ausfallwahrscheinlichkeiten von Unternehmensanleihen

Rotationen und Translationen

Die Adjektivdeklination Η κλίςη των επιθέτων

Griechisches Staatszertifikat - Deutsch

Griechische und römische Rechtsgeschichte

ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 11 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΑΙΑ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Sonata op. 11 for Guitar. Giacomo Monzino. Edition Panitz

Εὐκλείδεια Γεωµετρία

1. Βρες το σωστό αντικείμενο και συμπλήρωσε το σε αιτιατική. 2. Μπορείς να το πεις κι αλλιώς. Χρησιμοποίησε τα ρήματα schmecken και gefallen


Ιστορία των Μαθηματικών

Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία

Griechisches Staatszertifikat - Deutsch

Intersection Types. Matthias Putz. Sommersemester 2011

Εὐκλείδεια Γεωµετρία

18. Normale Endomorphismen

22 είκοσι δύο. Κύπρος. Ελλάδα. Ελβετία. Αυστρία. Γερμανία. Από πού είσαι; Είμαι από τη Γερμανία. Εσύ; Από την Κύπρο. Από πού είσαι; Είμαι από

Herzlich Willkommen zu unserem 1. Elternabend für Kindergarten und Vorschule

PASSANT A: Ja, guten Tag. Ich suche den Alexanderplatz. Können Sie mir helfen?

Δωρικές και Ολυμπιακές Μελέτες

EUCLID S ELEMENTS OF GEOMETRY

STAATLICHE BEIHILFEN ZYPERN

Weihnachtsbrief aus Kindergarten und Vorschule Χριστουγεννιάτικο γράμμα από το προνηπιακό/νηπιακό τμήμα

Logik und Beweisbarkeit

Ι ΑΓΜΕΝΟ ΚΕΙΜΕΝΟ Αριστοτέλους Ηθικά Νικομάχεια Β 1,5-8

Griechisches Staatszertifikat - Deutsch


ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Η αξιωματική θεμελίωση της Ευκλείδειας γεωμετρίας κατά Hilbert στο πνεύμα των Στοιχείων του Ευκλείδη»

Griechische und römische Rechtsgeschichte

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 23 Θα τα πούµε µετά

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 13 Βοήθεια εκ Θεού

Μεταγραφή ηχητικού κειμένου. Έναρξη δοκιμασίας κατανόησης προφορικού λόγου Anfang des Testteils Hörverstehen AUFGABE 1

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

ΠΡΑΚΤΙΚΗ Γ Ε Ω Μ Ε Τ Ρ Ι Α

ΤΟ HISTORISCHES WÖRTERBUCH DER PHILOSOPHIE * THEO KOBUSCH Ruhr Universität Bochum

EDU IT i Ny Testamente på Teologi. Adjunkt, ph.d. Jacob P.B. Mortensen

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

2. Σε καθεμία από ηις παρακάηφ προηάζεις σπάρτει ένα οσζιαζηικό ζε αιηιαηική ή ζε δοηική. Υπογράμμιζε ηο και ζσμπλήρφζε ηο ζε ονομαζηική

Mission Berlin. Deutsch lernen und unterrichten Arbeitsmaterialien. Mission Berlin 24 Το ρολόι χτυπάει

FLASHBACK: Warten Sie, Anna! Ich möchte Ihnen helfen. Ich möchte Ihnen helfen. Wir müssen Berlin retten!

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

Dr. Christiane Döll Leiterin Luft & Lärm im Umweltamt

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based

Ο ΜΥΘΟΣ ΤΗΣ ΛΟΡΕΛΑΪ DIE LORELEY FABEL

Technisches Handbuch. Pergola Top Star 120X70. metaform Bescha ungssysteme

English PDFsharp is a.net library for creating and processing PDF documents 'on the fly'. The library is completely written in C# and based

*1 +3*1 - +3*1. - Ideen zu einer reinen Phänomenologie und Phänomenologischen Philosophie. Zweites Buch., Husserliana

Transcript:

Εὐκλείδης Στοιχεῖα Einige Einblicke auf der Grundlage der kommentierten Auswahl von Lucius Hartmann Zusammenstellung: Theo Wirth

Inhalt Biographie und Werke Euklids... 3 "Stoicheia" (Elemente): Vorbemerkungen, Auswahl, Begründung...4 Texte und Kommentar: Geometrie (1. Buch)... 4 10 Wörter : Geometrie (1. Buch)... 11 13 Skizzen : Geometrie (1. Buch)...14 Euklid, Elemente 2

Biographie und Werke Euklids Biographie Kleiner Pauly s.v. "Eukleides", Auszug: "E. wurde durch sein Werk Στοιχεῖα zum Mathematiklehrer aller Völker und Generationen bis heute. Schon aus dem 5. Jh. sind lateinische Übersetzungen und Bearbeitungen bekannt, im 12. Jh. wurde E. aus dem Arabischen ins Lateinische übertragen. Sicheres über sein Leben erfährt man nur von Proklos (In Eucl. El. I p. 68, 6-20 Friedlein)." Proklos lebte im 5. Jhdt. n. Chr. (Text s. unten; hier eine Zusammenfassung): jünger als Plat. und dessen direkte Schüler, älter als Archimedes (287-212) -> E. um 300 v.chr. Ausbildung (philosophisch und mathematisch) in Athen Wirken und Lehre in Alexandria. Überlieferte Werke Στοιχεῖα (Elemente, 13 Bücher); στοιχεῖα: elementare Sätze: Definitionen, Postulate, Axiome; aus ihnen werden deduktiv weitere Sätze abgeleitet, in Form von Aufgaben/Konstruktionen (problhvmata) und Lehrsätzen (qewrhvmata). 1 4: ebene Trigonometrie bis zur Konstruktion des regul. 15-Ecks in gegebenem Kreis 5 6: Proportionen 7 10: Arithmetik 11 13: räumliche Geometrie bis zur Konstruktion der regulären Polyeder (der platonischen Körper, Ziel des Werkes) "Data" (planimetrische Probleme) "Phaenomena" (Sphärik) "Optica" (Perspektive) "Sectio canonis" (math. Musiktheorie). Antike Angabe zu Biographie und Werk: Proklos, Eucl. El. p. 68, 6 p. 69, 7 Friedlein (Auszug) Οὐ πόλυ δὲ τούτων μαθητῶν τοῦ Πλάτωνος νεώτερός ἐστιν Εὐκλείδης ὁ τὰ στοιχεῖα συναγαγὼν καὶ πολλὰ μὲν τῶν Εὐδόξου συντάξας, πολλὰ δὲ τῶν Θεαιτήτου τελεωσάμενος, ἔτι δὲ τὰ μαλακώτερον δεικνύμενα τοῖς ἔμπροσθεν εἰς ἀνελέγκτους ἀποδείξεις ἀναγαγών. Γέγονε δὲ οὗτος ὁ ἀνὴρ ἐπὶ τοῦ πρώτου Πτολεμαίου (...) καί φασιν ὅτι Πτολεμαῖος ἤρετό ποτε αὐτόν, εἴ τίς ἐστιν περὶ γεωμετρίαν ὁδὸς συντομωτέρα τῆς στοιχειώσεως ὁ δὲ ἀπεκρίνατο, μὴ εἶναι βασιλικὴν ἀτραπὸν ἐπὶ γεωμετρίαν. Νεώτερος μὲν οὖν ἐστι τῶν περὶ Πλάτωνα, πρεσβύτερος δὲ Ἐρατοσθένους καὶ Ἀρχιμήδους. Οὗτοι γὰρ σύγχρονοι ἀλλήλοις, ὥς πού φησιν Ἐρατοσθένης. Καὶ τῇ προαιρέσει δὲ Πλατωνικός ἐστι καὶ τῇ φιλοσοφίᾳ ταύτῃ οἰκεῖος, ὅθεν δὴ καὶ τῆς συμπάσης στοιχειώσεως τέλος προεστήσατο τὴν τῶν καλουμένων Πλατωνικῶν σχημάτων σύστασιν. Πολλὰ μὲν οὖν καὶ ἄλλα τοῦ ἀνδρὸς τούτου μαθηματικὰ συγγράμματα θαυμαστῆς ἀκριβείας καί ἐπιστημονικῆς θεωρίας μεστά. (...) Διαφερόντως δ' ἄν τις αὐτὸν ἀγασθείη κατὰ τὴν γεωμετρικὴν στοιχείωσιν τῆς τάξεως ἕνεκα καὶ τῆς ἐκλογῆς τῶν πρὸς τὰ στοιχεῖα πεποιημένων θεωρημάτων τε καὶ προβλημάτων. Euklid, Elemente 3

Στοιχεῖα ("Elemente") Vorbemerkungen Aufbau: Definitionen, Postulate, Axiome, Problemata, Theoremata, Porismata (Folgerungen), Lemmata (Hilfssätze) sehr starke geometrische Orientierung fehlende Algebra (von den Arabern erfunden) Exaktheit des Aufbaus bis heute gültige Terminologie. Auswahl der Texte (alle aus dem 1. Buch) Die Definitionen, Postulate und Axiome Beweisschema anhand eines Problema; ein weiteres Problema, ein Theorema Satz von Pythagoras (Theorema). Begründung der Euklid-Lektüre axiomatischer Aufbau der Mathematik exakte Wissenschaft (teilweise bis heute gültig!) Wirkung bis ins Mittelalter und in die Neuzeit Terminologie (u.a. auch) ins Deutsche übernommen Lektüre bekannter Sätze im Original logische Struktur der griech. Sprache (v.a. Konnektoren); Griechisch als Wissenschaftssprache. Geometrie (Στοιχεῖα, 1. Buch) Definitionen: OPOI Kommentar: α' Σημεῖόν ἐστιν, οὗ μέρος οὐθέν. Punkt β' Γραμμὴ δὲ μῆκος ἀπλατές. Linie γ' Γραμμῆς δὲ πέρατα σημεῖα. Begrenzung der Linie: keine neue Definition, sondern Verknüpfung zwischen α'. und β'. δ' Εὐθεῖα γραμμή ἐστιν, ἥτις ἐξ ἴσου τοῖς ἐφ' ἑαυτῆς σημείοις κεῖται. ε' Ἐπιφάνεια δέ ἐστιν, ὃ μῆκος καὶ πλάτος μόνον ἔχει. Fläche Gerade, Strecke; sprachlich schwierig und auch umstritten: ἐξ ἴσου bedeutet in gleicher Weise. Sinn der Definition: Eine Gerade ist in allen Punkten gleich, kein Punkt ist durch Asymmetrie hervorgehoben. Moderne Definition: Eine Gerade ist die kürzeste Verbindung zwischen 2 Punkten. Euklid, Elemente 4

ς' Ἐπιφανείας δὲ πέρατα γραμμαί. Begrenzung der Fläche: keine neue Definition, sondern Verknüpfung zwischen ε'. und β'. ζ' Ἐπίπεδος ἐπιφάνειά ἐστιν, ἥτις ἐξ ἴσου ταῖς ἐφ' ἑαυτῆς εὐθείαις κεῖται. Ebene; vgl. δ'. η' θ' ι' Ἐπίπεδος δὲ γωνία ἐστὶν ἡ ἐν ἐπιπέδῳ δύο γραμμῶν ἁπτομένων ἀλλήλων καὶ μὴ ἐπ' εὐθείας κειμένων πρὸς ἀλλήλας (τῶν γραμμῶν) κλίσις. Ὅταν δὲ αἱ περιέχουσαι τὴν γωνίαν γραμμαὶ εὐθεῖαι ὦσιν, "εὐθύγραμμος" καλεῖται ἡ γωνία. Ὅταν δὲ εὐθεῖα ἐπ' εὐθεῖαν σταθεῖσα τὰς ἐφεξῆς γωνίας ἴσας ἀλλήλαις ποιῇ, ὀρθὴ ἑκατέρα τῶν ἴσων γωνιῶν ἐστι, καὶ ἡ ἐφεστηκυῖα εὐθεῖα "κάθετος" καλεῖται, ἐφ' ἣν ἐφέστηκεν. ια' Ἀμβλεῖα γωνία ἐστὶν ἡ μείζων ὀρθῆς. Winkel zwischen beliebigen Kurven; s. θ' Winkel; Winkel werden heute nur noch mit Geraden (bei Kurven mit Tangenten) definiert. Rechter Winkel: Die Existenz von rechten Winkel in Problema I, 11 bewiesen. Stumpfer Winkel ιβ' Ὀξεῖα δὲ ἡ ἐλάσσων ὀρθῆς. Spitzer Winkel ιγ' Ὅρος ἐστίν, ὅ τινός ἐστι πέρας. Begrenzung: πέρας = ὅρος ιδ' ιε' Σχῆμά ἐστι τὸ ὑπὸ τινος ἤ τινων ὅρων περιεχόμενον. Figur: Geraden u.winkel sind ausgeschlossen. Κύκλος ἐστὶ σχῆμα ἐπίπεδον ὑπὸ μιᾶς γραμμῆς περιεχόμενον ἣ καλεῖται "περιφέρεια", πρὸς ἣν ἀφ' ἑνὸς σημείου τῶν ἐντὸς τοῦ σχήματος κειμένων πᾶσαι αἱ προσπίπτουσαι εὐθεῖαι (πρὸς τὴν τοῦ κύκλου περιφέρειαν) ἴσαι ἀλλήλαις εἰσίν. ις' "Κέντρον δὲ τοῦ κύκλου" τὸ σημεῖον καλεῖται. Mittelpunkt ιζ' ιη' Διάμετρος δὲ τοῦ κύκλου ἐστὶν εὐθεῖά τις διὰ τοῦ κέντρου ἠγμένη καὶ περατουμένη ἐφ' ἑκάτερα τὰ μέρη ὑπὸ τῆς τοῦ κύκλου περιφερείας, ἥτις καὶ δίχα τέμνει τὸν κύκλον. Ἡμικύκλιον δέ ἐστι τὸ περιεχόμενον σχῆμα ὑπό τε τῆς διαμέτρου καὶ τῆς ἀπολαμβανομένης ὑπ' αὐτῆς περιφερείας. Κέντρον δὲ τοῦ ἡμικυκλίου τὸ αὐτό, ὃ καὶ τοῦ κύκλου ἐστίν. ιθ' Σχήματα εὐθύγραμμά ἐστι τὰ ὑπὸ εὐθειῶν περιεχόμενα, τρίπλευρα μὲν τὰ ὑπὸ τριῶν, τετράπλευρα δὲ τὰ ὑπὸ τεσσάρων, πολύπλευρα δὲ τὰ ὑπὸ πλειόνων ἢ τεσσάρων εὐθειῶν περιεχόμενα. κ' Τῶν δὲ τριπλεύρων σχημάτων ἰσόπλευρον μὲν τρίγωνόν ἐστι τὸ τὰς τρεῖς ἴσας ἔχον πλευράς, ἰσοσκελὲς δὲ τὸ τὰς δύο μόνας ἴσας ἔχον πλευράς, σκαληνὸν δὲ τὸ τὰς τρεῖς ἀνίσους ἔχον πλευράς. κα' Ἔτι δὲ τῶν τριπλεύρων σχημάτων ὀρθογώνιον μὲν Kreis: als Punktmenge definiert: k = {P MP = r} Durchmesser Halbkreis Vielecke Dreiecke Winkel in Dreiecken Euklid, Elemente 5

τρίγωνόν ἐστι τὸ ἔχον ὀρθὴν γωνίαν, ἀμβλυγώνιον δὲ τὸ ἔχον ἀμβλεῖαν γωνίαν, ὀξυγώνιον δὲ τὸ τὰς τρεῖς ὀξείας ἔχον γωνίας. κβ' Τῶν δὲ τετραπλεύρων σχημάτων τετράγωνον μέν ἐστιν, ὃ ἰσόπλευρόν τέ ἐστι καὶ ὀρθογώνιον, ἑτερόμηκες δέ, ὃ ὀρθογώνιον μέν, οὐκ ἰσόπλευρον δέ, ῥόμβος δέ, ὃ ἰσόπλευρον μέν, οὐκ ὀρθογώνιον δέ, ῥομβοειδὲς δὲ τὸ τὰς ἀπεναντίον πλευράς τε καὶ γωνίας ἴσας ἀλλήλαις ἔχον, ὃ οὔτε ἰσόπλευρόν ἐστιν οὔτε ὀρθογώνιον τὰ δὲ παρὰ ταῦτα τετράπλευρα "τραπέζια" καλείσθω. κγ' Παράλληλοί εἰσιν εὐθεῖαι, αἵτινες ἐν τᾠ αὐτᾠ ἐπιπέδῳ οὖσαι καὶ ἐκβαλλόμεναι εἰς ἄπειρον ἐφ' ἑκάτερα τὰ μέρη ἐπὶ μηδέτερα συμπίπτουσιν ἀλλήλαις. Vierecke; Begriff Parallelogramm, der später immer wieder gebraucht wird, fällt hier nicht, da die Eigenschaft parallel noch nicht definiert wurde. Parallelen Postulate: AITHMATA Ἠιτήσθω α' β' γ' ἀπὸ παντὸς σημείου ἐπὶ πᾶν σημεῖον εὐθεῖαν γραμμὴν ἀγαγεῖν. Καὶ πεπερασμένην εὐθεῖαν κατὰ τὸ συνεχὲς ἐπ' εὐθείας ἐκβαλεῖν. Καὶ παντὶ κέντρῳ καὶ διαστήματι κύκλον γράφεσθαι. hier nur die Existenz, die Eindeutigkeit folgt aus Axiom 9. Verlängerung einer Strecke Existenz eines Kreises δ' Καὶ πάσας τὰς ὀρθὰς γωνίας ἴσας ἀλλήλαις εἶναι. Rechte Winkel als Invariante ε' Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ' ἄπειρον συμπίπτειν, ἐφ' ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες. sog. Parallelenaxiom, viele vergebliche Versuche, dieses Postulat als Theorem zu beweisen (Ptolemaios, Proklos; bis in die Neuzeit). Axiome: KOINAI ENNOIAI α' Τὰ τᾠ αὐτᾠ ἴσα καὶ ἀλλήλοις ἐστὶν ἴσα. Transitivität der Gleichheit (a = c und b = c a = b) β' Καὶ ἐὰν ἴσοις ἴσα προστεθῇ, τὰ ὅλα ἴσα. a = c, b = d a + b = c + d γ' [δ' Καὶ ἐὰν ἀπὸ ἴσων ἴσα ἀφαιρεθῇ, τὰ καταλειπόμενά ἐστιν ἴσα. Καὶ ἐὰν ἀνίσοις ἴσα προστεθῇ, τὰ ὅλα ἐστὶν ἄνισα.] a = c, b = d a c, b = d [ε' Καὶ τὰ τοῦ αὐτοῦ διπλάσια ἴσα ἀλλήλοις ἐστίν.] a = b 2 a = 2 b a - b = c - d a + b c + d Euklid, Elemente 6

[ς' Καὶ τὰ τοῦ αὐτοῦ ἡμίση ἴσα ἀλλήλοις ἐστίν.] a = b 0.5 a = 0.5 b ζ' Καὶ τὰ ἐφαρμόζοντα ἐπ' ἄλληλα ἴσα ἀλλήλοις ἐστίν. Kongruentes ist gleich (flächen-) η' Καὶ τὸ ὅλον τοῦ μέρους μεῖζόν ἐστίν. Ganzes > Teil θ' Καὶ δύο εὐθεῖαι χωρίον οὐ περιέχουσιν. Keine Fläche zwischen zwei Geraden. Dies trifft nur für die Euklidische Geometrie (die normale Geometrie) zu, in der sphärischen Geometrie (= Geometrie auf der Kugel) umschliessen zwei Geraden, die nicht gleich sind, immer eine Fläche (nämlich die Fläche zwischen zwei Grosskreisen). allgemeines Beweisschema (das Fettgedruckte ist immer vorhanden) Πρόβλημα Ι, α'. Ἐπὶ τῆς δοθείσης εὐθείας πεπερασμένης τρίγωνον ἰσόπλευρον συστήσασθαι. Ἔστω ἡ δοθεῖσα εὐθεῖα πεπερασμένη ἡ ΑΒ. Δεῖ δὴ ἐπὶ τῆς ΑΒ εὐθείας τρίγωνον ἰσόπλευρον συστήσασθαι. 5 Κέντρῳ μὲν τᾠ Α διαστήματι δὲ τᾠ ΑΒ κύκλος γεγράφθω ὁ ΒΓΔ, καὶ πάλιν κέντρῳ μὲν τᾠ Β διαστήματι δὲ τᾠ ΒΑ κύκλος γεγράφθω ὁ ΑΓΕ, καὶ ἀπὸ τοῦ Γ σημείου, καθ' ὃν τέμνουσιν ἀλλήλους οἱ κύκλοι, ἐπὶ τὰ Α, Β σημεῖα ἐπεζεύχθωσαν εὐθεῖαι αἱ ΓΑ, ΓΒ. Καὶ ἐπεὶ τὸ Α σημεῖον κέντρον ἐστὶ τοῦ ΓΔΒ κύκλου, ἴση 10 ἐστὶν ἡ ΑΓ τῇ ΑΒ πάλιν, ἐπεὶ τὸ Β σημεῖον κέντρον ἐστὶ τοῦ ΓΑΕ κύκλου, ἴση ἐστὶν ἡ ΒΓ τῇ ΒΑ. Ἐδείχθη δὲ καὶ ἡ ΓΑ τῇ ΑΒ ἴση ἑκατέρα ἄρα τῶν ΓΑ, ΓΒ τῇ ΑΒ ἐστὶν ἴση. Τὰ δὲ τᾠ αὐτᾠ ἴσα καὶ ἀλλήλοις ἐστὶν ἴσα καὶ ἡ ΓΑ ἄρα τῇ ΓΒ ἐστὶν ἴση αἱ τρεῖς ἄρα αἱ ΓΑ, ΑΒ, ΒΓ ἴσαι ἀλλήλαις εἰσίν. 15 Ἰσόπλευρον ἄρα ἐστὶ τὸ ΑΒΓ τρίγωνον, καὶ συνέσταται ἐπὶ τῆς δοθείσης εὐθείας πεπερασμένης τῆς ΑΒ. Ἐπὶ τῆς δοθείσης ἄρα εὐθείας πεπερασμένης τρίγωνον ἰσόπλευρον συνέσταται ὅπερ ἔδει ποιῆσαι. Konstruktion eines gleichseitigen Dreieckes i) πρότασις: allgemeine Behauptung ii) ἔκθεσις: Bezeichnung der gegebenen und der gesuchten Teile iii) διορισμός: Behauptung mit den bezeichneten Teilen formuliert (Problema: δεῖ; Theorema: λέγω, ὅτι) iv) κατασκευή: Konstruktion des Gesuchten oder von Hilfslinien oder -punkten v) ἀπόδειξις: Beweis vi) συμπέρασμα: Folgerung i) Euklid, Elemente 7

Πρόβλημα Ι, β'. (...) (Eine gegebene Strecke in einen gegebenen Punkt verschieben) Πρόβλημα Ι, γ'. Eine kleinere Strecke von einer grösseren abziehen 5 10 Δύο δοθεισῶν εὐθειῶν ἀνίσων ἀπὸ τῆς μείζονος τῇ ἐλάσσονι ἴσην εὐθεῖαν ἀφελεῖν. Ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι ἄνισοι αἱ ΑΒ, Γ, ὧν μείζων ἔστω ἡ ΑΒ δεῖ δὴ ἀπὸ τῆς μείζονος τῆς ΑΒ τῇ ἐλάσσονι τῇ Γ ἴσην εὐθεῖαν ἀφελεῖν. Κείσθω πρὸς τᾠ Α σημείῳ τῇ Γ εὐθείᾳ ἴση ἡ ΑΔ καὶ κέντρῳ μὲν τᾠ Α διαστήματι δὲ τᾠ ΑΔ κύκλος γεγράφθω ὁ ΔΕΖ. Καὶ ἐπεὶ τὸ Α σημεῖον κέντρον ἐστὶ τοῦ ΔΕΖ κύκλου, ἴση ἐστὶν ἡ ΑΕ τῇ ΑΔ ἀλλὰ καὶ ἡ Γ τῇ ΑΔ ἐστιν ἴση. ἑκατέρα ἄρα τῶν ΑΕ, Γ τῇ ΑΔ ἐστιν ἴση ὥστε καὶ ἡ ΑΕ τῇ Γ ἐστιν ἴση. Δύο ἄρα δοθεισῶν εὐθειῶν ἀνίσων τῶν ΑΒ, Γ ἀπὸ τῆς μείζονος τῆς ΑΒ τῇ ἐλάσσονι τῇ Γ ἴση ἀφῄρηται ἡ ΑΕ ὅπερ ἔδει ποιῆσαι. Θεώρημα δ'. sws, indirekter Beweis 5 10 Ἐὰν δύο τρίγωνα τὰς δύο πλευρὰς ταῖς δυσὶ πλευραῖς ἴσας ἔχῃ - ἑκατέραν ἑκατέρᾳ - καὶ τὴν γωνίαν τῇ γωνίᾳ ἴσην ἔχῃ τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῇ βάσει ἴσην ἕξει καὶ τὸ τρίγωνον τᾠ τριγώνῳ ἴσον ἔσται καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ' ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν. Ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ τὰς δύο πλευρὰς τὰς ΑΒ, ΑΓ ταῖς δυσὶ πλευραῖς ταῖς ΔΕ, ΔΖ ἴσας ἔχοντα ἑκατέραν ἑκατέρᾳ τὴν μὲν ΑΒ τῇ ΔΕ τὴν δὲ ΑΓ τῇ ΔΖ καὶ γωνίαν τὴν ὑπὸ ΒΑΓ γωνίᾳ τῇ ὑπὸ ΕΔΖ ἴσην. Λέγω, ὅτι καὶ βάσις ἡ ΒΓ βάσει τῇ ΕΖ ἴση ἐστίν, καὶ τὸ ΑΒΓ τρίγωνον τᾠ ΔΕΖ τριγώνῳ ἴσον ἔσται, καὶ αἱ λοιπαὶ Euklid, Elemente 8

15 γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ' ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν, ἡ μὲν ὑπὸ ΑΒΓ τῇ ὑπὸ ΔΕΖ, ἡ δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ. 20 25 30 35 Ἐφαρμοζομένου γὰρ τοῦ ΑΒΓ τριγώνου ἐπὶ τὸ ΔΕΖ τρίγωνον καὶ τιθεμένου τοῦ μὲν Α σημείου ἐπὶ τὸ Δ σημεῖον, τῆς δὲ ΑΒ εὐθείας ἐπὶ τὴν ΔΕ, ἐφαρμόσει καὶ τὸ Β σημεῖον ἐπὶ τὸ Ε διὰ τὸ ἴσην εἶναι τὴν ΑΒ τῇ ΔΕ ἐφαρμοσάσης δὴ τῆς ΑΒ ἐπὶ τὴν ΔΕ ἐφαρμόσει καὶ ἡ ΑΓ εὐθεῖα ἐπὶ τὴν ΔΖ διὰ τὸ ἴσην εἶναι τὴν ὑπὸ ΒΑΓ γωνίαν τῇ ὑπὸ ΕΔΖ ὥστε καὶ τὸ Γ σημεῖον ἐπὶ τὸ Ζ σημεῖον ἐφαρμόσει διὰ τὸ ἴσην πάλιν εἶναι τὴν ΑΓ τῇ ΔΖ. Ἀλλὰ μὴν καὶ τὸ Β ἐπὶ τὸ Ε ἐφηρμόκει ὥστε βάσις ἡ ΒΓ ἐπὶ βάσιν τὴν ΕΖ ἐφαρμόσει. Εἰ(!!) γὰρ τοῦ μὲν Β ἐπὶ τὸ Ε ἐφαρμόσαντος, τοῦ δὲ Γ ἐπὶ τὸ Ζ ἡ ΒΓ βάσις ἐπὶ τὴν ΕΖ οὐκ ἐφαρμόσει, δύο εὐθεῖαι χωρίον περιέξουσιν ὅπερ ἐστὶν ἀδύνατον. Ἐφαρμόσει ἄρα ἡ ΒΓ βάσις ἐπὶ τὴν ΕΖ καὶ ἴση αὐτῇ ἔσται ὥστε καὶ ὅλον τὸ ΑΒΓ τρίγωνον ἐπὶ ὅλον τὸ ΔΕΖ τρίγωνον ἐφαρμόσει καὶ ἴσον αὐτᾠ ἔσται, καὶ αἱ λοιπαὶ γωνίαι ἐπὶ τὰς λοιπὰς γωνίας ἐφαρμόσουσι καὶ ἴσαι αὐταῖς ἔσονται, ἡ μὲν ὑπὸ ΑΒΓ τῇ ὑπὸ ΔΕΖ ἡ δὲ ὑπὸ ΑΓΒ τῇ ὑπὸ ΔΖΕ. Ἐὰν ἄρα δύο τρίγωνα τὰς δύο πλευρὰς ταῖς δύο πλευραῖς ἴσας ἔχῃ - ἑκατέραν ἑκατέρᾳ - καὶ τὴν γωνίαν τῇ γωνίᾳ ἴσην ἔχῃ τὴν ὑπὸ τῶν ἴσων εὐθειῶν περιεχομένην, καὶ τὴν βάσιν τῇ βάσει ἴσην ἔξει καὶ τὸ τρίγωνον τᾠ τριγώνῳ ἴσον ἔσται καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται ἑκατέρα ἑκατέρᾳ, ὑφ' ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν ὅπερ ἔδει δεῖξαι. Satz von Pythagoras Θεώρημα μζ'. Proklos p. 426, 6 9 Friedlein: Wenn wir auf diejenigen hören, die das Alte erforschen wollen, können wir solche finden, die dieses Theorem auf Pythagoras zurückführen und die sagen, dass er bei der Entdeckung einen Stier geopfert habe. Pythagoras soll also einen Stier geopfert haben für die Entdeckung (und den Beweis?) dieses Satzes. Proklos spricht im folgenden seine Bewunderung auch für Euklid aus. Ἐν τοῖς ὀρθογωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς Voraussetzung für den Beweis: Scherung (in Theorema Euklid, Elemente 9

5 τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις. Ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν λέγω, ὅτι τὸ ἀπὸ τῆς ΒΓ τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΒΑ,ΑΓ τετραγώνοις. μα'). Satz stammt sicher von Pythagoras, dieser wird ihn jedoch vom Orient her übernommen haben; zusammen mit dem Satz kommt natürlich auch die Existenz des Irrationalen (insbes. von 2) in den Bereich der Griechen. Euklid, Elemente 10

10 15 20 25 30 35 Ἀναγεγράφθω γὰρ ἀπὸ μὲν τῆς ΒΓ τετράγωνον τὸ ΒΔΕΓ, ἀπὸ δὲ τῶν ΒΑ, ΑΓ τὰ ΗΒ, ΘΓ, καὶ διὰ τοῦ Α ὁποτέρᾳ τῶν ΒΔ, ΓΕ παράλληλος ἤχθω ἡ ΑΛ καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΖΓ. Καὶ ἐπεὶ ὀρθή ἐστιν ἑκατέρα τῶν ὑπὸ ΒΑΓ, ΒΑΗ γωνιῶν, πρὸς δή τινι εὐθείᾳ τῇ ΒΑ καὶ τᾠ πρὸς αὐτῇ σημείῳ τᾠ Α δύο εὐθεῖαι αἱ ΑΓ, ΑΗ μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας δυσὶν ὀρθαῖς ἴσας ποιοῦσιν ἐπ' εὐθείας ἄρα ἐστὶν ἡ ΓΑ τῇ ΑΗ. Διὰ τὰ αὐτὰ δὴ καὶ ἡ ΒΑ τῇ ΑΘ ἐστιν ἐπ' εὐθείας. Καὶ ἐπεὶ ἴση ἐστὶν ἡ ὑπὸ ΔΒΓ γωνία τῇ ὑπὸ ΖΒΑ ὀρθὴ γὰρ ἑκατέρα κοινὴ προσκείσθω ἡ ὑπὸ ΑΒΓ ὅλη ἄρα ἡ ὑπὸ ΔΒΑ ὅλῃ τῇ ὑπὸ ΖΒΓ ἐστιν ἴση. Καὶ ἐπεὶ ἴση ἐστὶν ἡ μὲν ΔΒ τῇ ΒΓ, ἡ δὲ ΖΒ τῇ ΒΑ, δύο δὴ αἱ ΔΒ, ΒΑ δύο ταῖς ΖΒ, ΒΓ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ καὶ γωνία ἡ ὑπὸ ΔΒΑ γωνίᾳ τῇ ὑπὸ ΖΒΓ ἴση βάσις ἄρα ἡ ΑΔ βάσει τῇ ΖΓ [ἐστιν] ἴση, καὶ τὸ ΑΒΔ τρίγωνον τᾠ ΖΒΓ τριγώνῳ ἐστὶν ἴσον καὶ [ἐστὶ] τοῦ μὲν ΑΒΔ τριγώνου διπλάσιον τὸ ΒΛ παραλληλόγραμμον βάσιν τε γὰρ τὴν αὐτὴν ἔχουσι τὴν ΒΔ καὶ ἐν ταῖς αὐταῖς εἰσι παραλλήλοις ταῖς ΒΔ, ΑΛ τοῦ δὲ ΖΒΓ τριγώνου διπλάσιον τὸ ΗΒ τετράγωνον βάσιν τε γὰρ πάλιν τὴν αὐτὴν ἔχουσι τὴν ΖΒ καὶ ἐν ταῖς αὐταῖς εἰσι παραλλήλοις ταῖς ΖΒ, ΗΓ. [Τὰ δὲ τῶν ἴσων διπλάσια ἴσα ἀλλήλοις ἐστίν ] ἴσον ἄρα ἐστὶ καὶ τὸ ΒΛ παραλληλόγραμμον τᾠ ΗΒ τετραγώνῳ. Ὁμοίως δὴ ἐπιζευγνυμένων τῶν ΑΕ, ΒΚ δειχθήσεται καὶ τὸ ΓΛ παραλληλόγραμμον ἴσον τᾠ ΘΓ τετραγώνῳ ὅλον ἄρα τὸ ΒΔΕΓ τετράγωνον δυσὶ τοῖς ΗΒ, ΘΓ τετραγώνοις ἴσον ἐστίν. Καί ἐστι τὸ μὲν ΒΔΕΓ τετράγωνον ἀπὸ τῆς ΒΓ ἀναγραφέν, τὰ δὲ ΗΒ, ΘΓ ἀπὸ τῶν ΒΑ, ΑΓ. Τὸ ἄρα ἀπὸ τῆς ΒΓ πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΒΑ, ΑΓ πλευρῶν τετραγώνοις. Ἐν ἄρα τοῖς ὀρθογωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις ὅπερ ἔδει δεῖξαι. Euklid, Elemente 11

Wörter Wörter in Anführungszeichen ( ) sind Lehnübersetzungen. Lern- Wörter Nichtlern- Wörter Proklos τὸ στοιχεῖον Buchstabe; Element συνάγω verfassen μαλακός weich, sanft; nachlässig συντάσσω τελεόω ordnen vollenden τοῖς ἔμπροσθεν Dat. auctoris!! ἀνέλεγκτος unwiderlegbar ἡ ἀπόδειξις Beweis ἐπιβαλών darauf τὸ σχῆμα, ατος συν-ίστημι ἡ σύ-στασις τὸ θεώρημα τὸ πρόβλημα Haltung; Gestalt, math. Figur konstruieren Konstruktion Satz (math. Aussage) Aufgabe, Konstruktion σύντομος ἡ ἀτραπός ἡ προαίρεσις τέλος προίστημι διαφερόντως ἡ ἐκλογή kurz Weg wissenschaftliche Richtung, Gesinnung als Ziel festlegen besonders Auswahl Geometrie Definitionen α' τὸ σημεῖον Zeichen; math. Punkt οὐθέν = οὐδέν β' ἡ γραμμή Linie τὸ πλάτος Breite ἀ-πλατής, ές ohne Breite τὸ μῆκος γ' τὸ πέρας Ende Ausdehnung, Länge; Breite δ' ἡ εὐθεῖα (γραμμή) Gerade ἐξ ἴσου τινί in gleicher Weise in bezug auf etw. Euklid, Elemente 12

ε' ἡ ἐπιφάνεια Erscheinung; Aussenseite; math. Fläche ζ' ἐπίπεδος, ον eben ἡ ἐπίπεδος (ἐπιφάνεια) Ebene η' ἡ γωνία Winkel θ' ἅπτομαί τινος ἐπ' εὐθείας sich berühren -> sich schneiden in der Verlängerung ι' ἐφεξῆς aufeinander folgend ὀρθὴ γωνία ἡ κάθετος < καθίημι rechter Winkel Lot, Senkblei; math. Kathete : (heruntergelassen ->) senkrecht zu εὐθύγραμμος, ον geradlinig ια' ἀμβλύς, εῖα, ύ stumpf ; stumpf, schwach, stumpfsinnig ιβ' ὀξύς, εῖα, ύ spitz ; scharf, heftig, scharfsinnig ιδ' τὸ σχῆμα, ατος Haltung; Gestalt,math.Figur ιε' ὁ κύκλος Kreis ἡ περιφέρεια Peripherie, Umfang ἐντός beim Gen. innerhalb ις' τὸ κέντρον Stachel; math. Mittelpunkt, Zentrum ιζ' ἡ διάμετρος Durchmesser εὐθεῖαν ἄγω eine Gerade ziehen δίχα entzwei ιθ' ἡ πλευρά τρί-πλευρος, ον Seite, Flanke dreiseitig κ' ἰσό-πλευρος, ον gleichseitig τὸ τρί-γωνον τὸ σκέλος ἰσο-σκελής, ες "Dreieck" Schenkel; Bein gleichschenklig σκαληνός, ον schief κα' ὀρθο-γώνιος, ον rechtwinklig ἀμβλυγώνιος, ον stumpfwinklig ὀξυ-γώνιος, ον spitzwinklig κβ' τὸ τετρά-γωνον Quadrat τὸ ἑτερό-μηκες Rechteck ὁ ῥόμβος Rhombus τὸ ῥομβο-ειδές Parallelogramm ἀπεναντίον gegenüberliegend Euklid, Elemente 13

-σθω κγ' παράλληλος, ον ἐκβάλλω s. unten Postulate, Anfang parallel verlängern Postulate αἰτέω bitten, fordern oft -τω, -σθω Imperat. 3.Sg. A, MP -ντων, -σθων Imperat. 3.Pl. A, MP -τωσαν Imperat. 3.Pl. A (spät) β' περαίνω (τὸ πέρας) beenden, math. begrenzen κατὰ τὸ συνεχές unaufhörlich γ' τὸ διάστημα Abstand, Radius Axiome ε' διπλάσιος, ον doppelt ζ' τὰ ἐφαρμόζοντα ἐπ' ἄλληλα θ' τὸ χωρίον Fläche kongruierend Beweisschema P r o b l e m a t a α' δοθείς, θεῖσα, θέν gegeben τέμνω κατά τι in etw. schneiden ἐπιζεύγνυμι verbinden; math. eine Verbindungslinie ziehen T h e o r e m a t a δ' ὑποτείνω (ὑπό) τι einem Winkel gegenüberliegen (vgl. Hypotenuse ) ὑπό ΑΒΓ ἐφαρμόττω/ζω Winkel ΑΒΓ trans.: anpassen; math. auf etw. legen intr.: auf etw. fallen, math. kongruieren Satz von Pythagoras μζ' τὸ ἀπὸ πλευρᾶς das von einer Seite Euklid, Elemente 14

τετράγωνον ἀναγράφω ἐπιζεύγνυμι aufgespannte Quadrat, das Quadrat über einer Seite konstruieren verbinden; math. eine Verbindungslinie ziehen Euklid, Elemente 15

Skizzen P r o b l e m a I, α' P r o b l e m a I, γ' T h e o r e m a I, δ' T h e o r e m a I, μ ζ ' Euklid, Elemente 16