Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Σχετικά έγγραφα
Homework 8 Model Solution Section

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Μηχανική Μάθηση Hypothesis Testing

2 Composition. Invertible Mappings

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Homework 3 Solutions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Matrices and Determinants

Example Sheet 3 Solutions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Quadratic Expressions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

New bounds for spherical two-distance sets and equiangular lines

D Alembert s Solution to the Wave Equation

Second Order Partial Differential Equations

Section 8.3 Trigonometric Equations

Section 9.2 Polar Equations and Graphs

The ε-pseudospectrum of a Matrix

derivation of the Laplacian from rectangular to spherical coordinates

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Solution to Review Problems for Midterm III

C.S. 430 Assignment 6, Sample Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Other Test Constructions: Likelihood Ratio & Bayes Tests

Statistical Inference I Locally most powerful tests

The Simply Typed Lambda Calculus

Inverse trigonometric functions & General Solution of Trigonometric Equations

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Finite Field Problems: Solutions

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Areas and Lengths in Polar Coordinates

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ιστορία της μετάφρασης

Areas and Lengths in Polar Coordinates

EE512: Error Control Coding

Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ηλεκτρονικοί Υπολογιστές IV

( y) Partial Differential Equations

Parametrized Surfaces

Reminders: linear functions

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Solutions to Exercise Sheet 5

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Κλασσική Θεωρία Ελέγχου

Εκκλησιαστικό Δίκαιο

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Concrete Mathematics Exercises from 30 September 2016

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Congruence Classes of Invertible Matrices of Order 3 over F 2

Ανάκτηση Πληροφορίας

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Section 7.6 Double and Half Angle Formulas

Tridiagonal matrices. Gérard MEURANT. October, 2008

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Μοντέρνα Θεωρία Ελέγχου

4.6 Autoregressive Moving Average Model ARMA(1,1)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Διοικητική Λογιστική

Εκκλησιαστικό Δίκαιο

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ST5224: Advanced Statistical Theory II

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Partial Differential Equations in Biology The boundary element method. March 26, 2013

( ) 2 and compare to M.

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Μηχανολογικό Σχέδιο Ι

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Srednicki Chapter 55

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Approximation of distance between locations on earth given by latitude and longitude

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ηλεκτρονικοί Υπολογιστές IV

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Μοντέρνα Θεωρία Ελέγχου

Ιστορία νεότερων Μαθηματικών

Εισαγωγή στους Αλγορίθμους

Παράκτια Τεχνικά Έργα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Problem Set 3: Solutions

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών Νίκος Καραμπετάκης

Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Maximum-Minimum Problems of One Variable Functions. Absolute Maximum-Minimum. Constrained Problems. Maximum-Minimum Problems of Two Variable Functions. Absolute Maximum-Minimum. Matrix Theory. 4

Βελτιστοποίηση συναρτήσεων μιας μεταβλητής. Βελτιστοποίηση συναρτήσεων πολλών μεταβλητών. 5

A function f x has a relative maximum f(a) at the point a, f(a) if f(a) f(x) for all x in some open interval containing a. A function f x has a relative minimum f(a) at the point a, f(a) if f(a) f(x) for all x in some open interval containing a. Relative minimum f a 0 f a 0 f (a) = 0 f a+h f a h f a+h f a h 0 if h > 0 0 if h < 0 6

Theorem 1. If f(x) is differentiable at a and is defined on an open interval containing a and f(a) is either a relative maximum or a relative minimum of f(x) THEN f a = 0. Example 1. Find the relative minimum-maximum of f x = x 3 3x + 2, x + Since f(x) is differentiable on R and f (x) = 3x 2 3 = 3 x 1 x + 1 then we possibly (since Theorem 1 does not give necessary and sufficient conditions ) have a relative minimum-maximum at x = ±1. 7

10 5 4 2 2 4 x 3 3 x 2 5 10 8

Find the relative minimum-maximum of The derivative of f(x)is f x = x 2/3, 2 x +3 f x = 2 3 x2 3 1 = 2 3 The derivative does not exist at x = 0. Nowhere f x = 0. Are there any relative maximum-minimum? Note that the theorem does not say anything about the points: Where there is no derivative. The boundaries of our domain. 1 x 1 3 9

2.0 1.5 1.0 3 x 2 0.5 3 2 1 1 2 3 10

Find the relative minimum-maximum of f x = x 3, 3 x +3 The derivative of f(x)is f x = 3x 2 Note that f x = 0 x = 0 but we don t have any relative minimum-maximum at x = 0. Note: The converse of the Theorem 1 is not always True! 11

1.0 0.5 3 2 1 1 2 3 x 3 0.5 1.0 12

Let a be a critical value of f(x) and suppose that f(x) is differentiable for all values of x near to a (but not necessarily at a). For values of x near a, A. If f (x) 0 for x < a and f (x) 0 for x > a, then f(a) is a relative maximum. B. If f (x) 0 for x < a and f (x) 0 for x > a, then f(a) is a relative minimum. C. If f (x) has the same sign on both sides of x = a, then f(a) is neither minimum nor maximum. 13

Find the relative minimum-maximum of f x = x 3 3x + 2, x + Since f(x) is differentiable on R and f (x) = 3x 2 3 = 3 x 1 x + 1 f (x) 0, x (, 1] f x = 1 (maximum) (x) 0 x 1,1 f (x) 0, x 1,1 f x = 1 (minimum) (x) 0 x 1, + ) 14

15

Find the relative minimum-maximum of The derivative of f(x)is f x = x 3, 3 x +3 f x = 3x 2 0 Since f x has the same sign on both sides of x = 0, then f 0 is neither minimum or maximum. 16

Suppose that f(x) is twice differentiable function in some interval about a and suppose that f a = 0. A. If f a < 0 then f(a) is a relative maximum of f x. B. If f a > 0 then f(a) is a relative minimum of f x. C. If f a = 0 then the test is inconclusive. I. If f a = f a = = f n 1 a = 0, f n (a) 0 then a) a is an extreme point iff n is even (like f x = x 2 ). Further when n is even, there is a relative maximum at x = a if f n a < 0 and a relative minimum if f n a > 0. b) a is an inflexion if is odd (like f x = x 3 ). 17

Find the relative minimum-maximum of f x = x 3 3x + 2, x + Since f(x) is differentiable on R and f x = 3x 2 3 f 1 = f 1 = 0 f x = 6x f 1 = 6 < 0 f 1 = 6 > 0 f 1 relative maximum f 1 relative minimum 18

The absolute maximum of the function f(x) is a value f(a) such that f a f(x) for all values of x in the domain of f(x). The absolute minimum of the function f(x) is a value f(a) such that f a f(x) for all values of x in the domain of f(x). How to find the absolute maximum-minimum of the continuous function f(x) on a, b? 19

1. Find all the critical values of f(x) i.e. f x = 0. 2. Find the values f a, f(b). 3. Find the values of f(x) for the points where there is no derivative of f(x). 4. Of the above values, the largest is the absolute maximum, and the smallest is the absolute minimum. 20

A manufacturing company plans to make microwave-safe cake pans by cutting squares out of the corners of a 12-inch by 12-inch piece of plastic, and then bending the sides up. The seam along each corner will be fused to finish the pan. The manufacturer wishes to determine what size square should be cut from the corners to make a pan of the greatest possible volume. 21

Step 1. Understand the problem V=volume of the pan. x= the length of a side of the square base. h=the length of a side of the corner to be cut out=the height of the pan V = x 2 h and x + 2h = 12 Step 2. Form a mathematical statement of the problem. x = 12 2h V h = 12 2h 2 h, 0 h 6 We seek the maximum value of V h for 0 h 6. 22

Step 3. Determine the maximum- minimum Find the derivative of V h : V h = 2 12 2h 2 h + 12 2h 2 = 12 2h 4h + 12 2h = 12 2h 6h + 12 Therefore V h = 0 for h 2,6. We have also that: V h = 2 6h + 12 + 12 2h 6 = = 24h 96 = 24(h 4) and thus V 2 = 48 < 0, V 6 = 48 > 0. 23

Therefore we have a relative maximum for x = 2. We have also that V 0 = 0, V 6 = 0. Thus the largest of the values V 0, V 2, V 6 is V 12 2 2 2 2 = 8 2 2 = 128in 3 which is the absolute maximum. Step 4. Answer the question Since we have the absolute maximum for we have that and therefore the dimensions of the largest tray are 8 inches by 8 inches, a very common size for microwave trays and cake pans. What about a non-square base? 24

What is the rectangle of largest area that can be cut from a circle of radius 20 inches? Step 1. Understand the problem. Let be one of the corners of the rectangle, as shown below. (-x,y) 20 (x,y) 10 20 10 10 20 10 (-x,-y) (x,-y) 20 25

What is the rectangle of largest area that can be cut from a circle of radius 20 inches? Step 1. Understand the problem. Let be one of the corners of the rectangle, as shown below. (-x,y) 20 (x,y) 10 20 10 10 20 10 (-x,-y) (x,-y) 20 x 2 + y 2 = 20 2 E = 2x 2y = 4xy 26

Step 2. Form a mathematical statement of the problem. x = 20 2 y 2, 0 y 20 E y = 4xy = 4y 20 2 y 2 We seek the maximum value of E y for 0 y 20. Step 3. Determine the maximum-minimum. Find the derivative of E y : E y = 4 20 2 y 2 + 4y 1 2 = 4 20 2 y 2 4y 2 1 20 2 y 2 2y = 20 2 y 2 = 4 202 y2 4y2 20 2 y 2 = 4 202 2y2 20 2 y 2 27

Thus E y = 0 20 2 2y 2 = 0 y = ±10 2 We also have that E y = 4 202 2y 2 20 2 y 2 = 8y y2 600 400 y 2 3 2 and thus E 10 2 = 16 < 0, E 10 2 = 16 > 0 Therefore we have a relative maximum for y = 10 2. We have also that E 0 = 0, E 20 = 0. Thus the largest of the values E 0, E 10 2, E 20 is E 10 2 = 800in 2 which is the absolute maximum. 28

Step 4. Answer the question. Since we have the absolute maximum for y = 10 2, we have that x = x = 20 y 2 = 10 2 and therefore the dimension of the rectangle are 10 2 inches by 10 2 inches (square). 29

Minimize-Maximize Q x, y subject to constraints C x, y = K R. Minimize-Maximize Q x, y x subject to constraints C x, y x = K R. d dx Q x, y x = 0, d dx C x, y x = 0 30

Minimize subject to constraints E = 2x 2y = 4xy x 2 + y 2 = 20 2. Solution. We have that E x, y x = 4xy(x) and x 2 + y(x) 2 = 20 2, and thus d dy E x, y x = 0 4y x + 4x dx dx = 0 d dx x2 + y x 2 = d dx 202 2x + 2y x dy dx = 0 The cases x = 0 and y = 0 do not produce maxima, so we may 31

assume that x > 0 and y x > 0. With these assumptions the two equations become dy = y(x) dx x dy and = x dx y(x) respectively. Thus dy y x = dx x = x y x x2 = y 2 (x) The only first-quadrant solution of the equations x 2 = y 2 (x) and x 2 + y(x) 2 = 20 2 is the point 10 2, 10 2 which determines a square with edge length 20 2. (the same solution with previous example) 32

A function f x, y has a relative maximum f(a, b) at the point a, b, f(a, b) if f(a, b) f(x, y) for all (x, y) in some rectangular region about (a, b). A function f x, y has a relative minimum f(a, b) at the point a, b, f(a, b) if f(a, b) f(x, y) for all (x, y) in some rectangular region about (a, b). 33

Theorem 2. (Necessary Conditions) Suppose that f x, y attains a relative maximum or a relative minimum value at the point (a, b) and the partial derivatives both exist. Then f x (a, b) and f y (a, b) f x a, b = 0 = f y (a, b) 34

Find the relative minimum-maximum of f x, y = x 2 + y 2, x, y + Since the partial derivatives both exist and f x = f x = 2x and f y = f y = 2y f x = f y = 0 x, y = 0,0 Then we possible (since Theorem 2 does not give necessary and sufficient conditions ) have a relative a relative minimummaximum at x, y = 0,0. Since f x, y f 0,0 = x 2 + y 2 0 = x 2 + y 2 0 35

we have that f x, y f 0,0 Thus we have a minimum at x, y = 0,0. x 2 y 2 36

Find the relative minimum-maximum of f x, y = x 2 y 2, x, y + Since the partial derivatives f x = f x = 2x and f y = f y = 2y both exist and f x = f y = 0 x, y = 0,0 Then we possible (since Theorem 2 does not give necessary and sufficient conditions ) have a relative a relative minimummaximum at x, y = 0,0. 37

Example 9 (2) x 2 y 2 Note. The theorem gives necessary but not sufficient conditions 38

Suppose that z = f x, y has partial derivatives at all points near a point (a, b) and that (a, b) is a critical point of f x, y so that f x a, b = 0 = f y (a, b) Let A = f xx a, b = B = f xy a, b = 2 f x 2 a,b 2 f y x a,b,, C= f yy a, b = 2 f y 2 a,b 39

Rule 1. f(a, b) is a relative maximum if AC B 2 > 0 and A < 0. Rule 2. f(a, b) is a relative minimum if AC B 2 > 0 and A > 0. Rule 3. a, b, f(a, b) is a saddle point if AC B 2 < 0. Rule 4. The test gives no information about the type of critical point if AC B 2 = 0. Note. The values of A, B, C depend upon the point (a, b) and must be determined independently for each critical point. 40

Find the relative minimum-maximum of f x, y = x 2 + y 2, x, y + Since the partial derivatives both exist and f x = f x = 2x and f y = f y = 2y f x = f y = 0 x, y = 0,0 A = f xx 0,0 = 2 f x 2 0,0 = 2 > 0, B = f xy 0,0 = 2 f y x 0,0 = 0, 41

and C = f yy 0,0 = 2 f y 2 0,0 = 2 f 0,0 = 0 2 + 0 2 = 0 is a relative minimum since AC B 2 = 2 2 0 2 = 4 > 0 and A = 2 > 0 42

Find the relative minimum-maximum of f x, y = x 2 y 2, x, y + Since the partial derivatives both exist and f x = f x = 2x and f y = f y = 2y f x = f y = 0 x, y = 0,0 A = f xx 0,0 = 2 f x 2 0,0 = 2 > 0, B = f xy 0,0 = 2 f y x 0,0 = 0, 43

and C = f yy 0,0 = 2 f y 2 0,0 = 2 ( 0,0, f 0,0 = 0) is a saddle point since AC B 2 = 2 2 0 2 = 4 < 0 44

The absolute maximum of the function f(x, y) is a value f(a, b) such that f(a, b) f(x, y) for all values of x, y in the domain of f(x, y). The absolute minimum of the function f(x, y) is a value f(a, b) such that f(a, b) f(x, y) for all values of x, y in the domain of f(x, y). Question: How to find the absolute maximum-minimum of the continuous function f(x, y) on a closed curve R? 45

1. Find all the critical values of f(x, y) i.e. f x a, b = 0 = f y (a, b) 2. Find the maximum of the values of f(x, y) on the boundaries of R. 3. Find the values of f(x, y) for the points where there is no partial derivative of f(x, y). 4. Of the above values, the largest is the absolute maximum, and the smallest is the absolute minimum. 46

Find the dimensions of a rectangular box (with no top) of volume 64in 3, that has the minimum surface area. Step 1. Understand the problem V = volume of the box E = surface area of the box no top x = the length of the first side y = the length of the second side h = the heigth of the box V = xyh = 64 E = xy + 2xh + 2yh 47

Step 2.Form a mathematical statement of the problem. h = 64 xy E x, y = xy + 2x 64 64 128 + 2y = xy + xy xy y + 128 x, 0 < x, y We seek the maximum value of E x, y for 0 < x, y. Step 3. Determine the maximum-minimum Find the derivative of E(x, y): E x x, y = y 128 x 2 = yx2 128 x 2 48

Note also that E y x, y = x 128 y 2 = xy2 128 y 2 E y x, y = 0 xy 2 128 = 0 x 128 x 2 2 128 = 0 128 = x 3 x = 3 128 = 4 3 2 y = 128 x 2 = 128 4 3 2 2 = 43 2 A = E xx 4 3 2, 4 3 2 = 2 128 x 3 4 3 2,4 3 2 = 2 > 0 49

B = E xy 4 3 2, 4 3 2 = 2 E y x 4 3 2,4 3 2 = 1, C= E yy 4 3 2, 4 3 2 = 2 128 y 3 4 3 2,4 3 2 = 2 > 0 f 4 3 2, 4 3 2 = xy + 128 y + 128 x 4 3 2,4 3 2 = 48 3 4 is a relative minimum since AC B 2 = 2 2 1 2 = 3 > 0 and A = 2 > 0. 50

Step 4. Answer the question. Since we have the absolute maximum for 4 3 2, 4 3 2, we have that h = 128 = 128 xy 4 3 2 4 3 = 2 43 2 and therefore the dimensions of the box with the maximum surface area are 4 3 2 inches by 4 3 2 inches by 4 3 2 inches. Note. Find the dimensions of a rectangular box (with no top) with surface area of 64in 2, that has the maximum volume. 51

Find the line y = ax + b that best fits the data points x i, y i, i = 1,, n. Solution We define the deviation between the ith point and the line to be: d i = y i (ax i + b) We need to minimize the function f a, b = n i=1 d i 2 = n i=1 y i ax i b 2 52

10 8 6 4 di Pi(x,y) y=ax+b 2 0.5 1.0 1.5 2.0 2.5 3.0 53

n f a a, b = a i=1 = = 2a y i ax i b 2 = n i=1 n 2 y i ax i b x i = n n x 2 i + 2b x i 2 x i y i i=1 i=1 i=1 54

n f b a, b = b i=1 y i ax i b 2 = n = 2 y i ax i b 1 = i=1 n n n = 2a x i + 2b 1 2 i=1 i=1 i=1 Solve f a a, b = f b a, b = 0 or equivalently y i 55

or n n n a x 2 i + b x i = x i y i n 2 x i i=1 n x i i=1 i=1 i=1 i=1 n n a x i + bn = y i i=1 i=1 n n x i i=1 n x i y i a b = i=1 n y i i=1 56

a b = 1 n n i=1 x 2 i i=1 a = n i=1 n n x i 2 n n i=1 x i y i n i=1 n n i=1 x i n i=1 x i n 2 x i i=1 x i ( n i=1 y i ) n 2, x i x 2 i i=1 b = i=1 n x n i i=1 x i y i + n i=1 x 2 n i i=1 n n i=1 x 2 i n 2 i=1 x i n i=1 n i=1 x i y i Note. Use the second derivative test in order to show that we have a minimum for these (a,b). y i y i 57

Minimize-Maximize Q x, y subject to constraints C x, y = 0. Define the Lagrange function as L x, y, λ = Q x, y + λc x, y Then all the relative minimum and maximum points of Q x, y with x and y constrained to satisfy the equation C x, y = 0 will be among those points x 0, y 0 for which x 0, y 0, λ 0 is a maximum or minimum point of L x, y, λ. 58

These points x 0, y 0, λ 0 simultaneous equations will be solutions of the system of L x x, y, λ = 0 L y x, y, λ = 0 L λ x, y, λ = 0(this is just C x, y = 0) We assume that all partial derivatives exist. 59

Minimize E = 2x 2y = 4xy subject to constraints x 2 + y 2 = 20 2. Define the Lagrange function L x, y, λ = 4xy + λ x 2 + y 2 20 2 Find the points that satisfy the system of simultaneous equations L x x, y, λ = 4y + 2λx = 0 L y x, y, λ = 4x + 2λy = 0 L λ x, y, λ = x 2 + y 2 20 2 = 0 or 60

equivalently y = 1 2 λx x = 1 2 λy x = 1 2 λ 1 2 λx = 1 4 λ2 x 1 λ2 4 x = 0 x = 0 λ = ±2 For x = 0 we have that y = 0 but 0 2 + 0 2 20 2. Therefore x = y for λ = 2 (or y = x for λ = 2) and x 2 + y 2 20 2 = 0 x 2 + x 2 20 2 = 0 2x 2 = 20 2 x = ±10 2 61

and thus (respectively y = x = ±10 2) y = x = 10 2 Thus the only candidates for minimum-maximum points of the constrained optimization problem are the pairs ±10 2, ±10 2 and ±10 2, 10 2. The values of the function E = 2x 2y = 4xy at these points are respectively and E = ±10 2, ±10 2 = 800 62

E = ±10 2, 10 2 = 800 Therefore we have a minimum for the pair 10 2, 10 2 (and 10 2, 10 2 ) and maximum for the pair 10 2, 10 2 (and 10 2, 10 2 ). 63

Let P, S be real symmetric matrices. If y T Py > 0 y 0 then P is called positive-definite matrix. If y T Py 0 y 0 then S is called positive semi-definite matrix. Notes. If P is positive definite matrix then P is invertible. If P is positive definite and S is positive semi-definite then P + S is positive definite. The real symmetric matrix P is positive definite (semidefinite) iff the eigenvalues of P are positive (non negative) 64

Let P, S be real symmetric matrices. If y T Py < 0 y 0 then P is called negative-definite matrix. If y T Py 0 y 0 then S is called negative semi-definite matrix. Notes. If P is negative definite matrix then P is invertible. If P is negative definite and S is negative semi-definite then P + S is negative definite. The real symmetric matrix P is negative definite (semi-definite) iff the eigenvalues of P are negative (non positive). 65

The matrix P is positive definite iff p 11 > 0, P = and negative definite iff p 11 < 0, p 11 p 12 p 21 p 22 > 0, p 11 p 12 p 21 p 22 > 0, p 11 p 12 p 13 p 21 p 22 p 23 p 31 p 32 p 33 p 11 p 12 p 13 p 21 p 22 p 23 > 0 p 31 p 32 p 33 p 11 p 12 p 13 p 21 p 22 p 23 < 0(sign changes) p 31 p 32 p 33 66

The matrix P P = is positive semi-definite iff p 11 0, p 11 p 12 p 21 p 22 0, and negative semi-definite iff p 11 0, p 11 p 12 p 21 p 22 0, p 11 p 12 p 13 p 21 p 22 p 23 p 31 p 32 p 33 p 11 p 12 p 13 p 21 p 22 p 23 0 p 31 p 32 p 33 p 11 p 12 p 13 p 21 p 22 p 23 0(sign changes) p 31 p 32 p 33 67

Consider the function f(x 1, x 2,, x n ). We define the gradient of f: R n R with respect to x as f x f x = f x = x 1 f x 2 f x n where x = x 1, x 2,, x n T. 68

The total differential of a function f: R m R n is defined by the Jacobian matrix f x = f 1 f 2 x 1 x 1 f 1 f 2 x 2 x 2 f 1 f 2 f n x 1 f n x 2 f n x m x m x m 69

1. x T c x = x 1c 1 +x 2 c 2 + +x m c m x = c 2. 3. Ax x x T A x = x = A a 11 x 1 + a 12 x 2 + + a 1m x m a 21 x 1 + a 22 x 2 + + a 2m x m = a n1 x 1 + a n2 x 2 + + a nm x m a 11 a 21 a n1 a 12 a 22 a n1 = = A T a 1m a 2m a mn 70

4. x T Mx x = x T Mx c1 x + M T x c2 x T x = x T Mx x T M T x = x c 1 + c 2 x = Mx + M T x If is M real symmetric matrix then xt Mx x = 2Mx. 71

We define the Hessian matrix of f x as f xx = 2 f x 2 = 2 f x x = 2 f x 1 2 2 f x 2 x 1 2 f x m x 1 2 f x 1 x 2 2 f x 2 2 2 f x m x 2 2 f x 1 x m 2 f x 2 x m 2 f x m 2 72

Properties 1. 2 x T Mx = M+MT x x 2 x = xt M T +M x 2. If is a real symmetric matrix then 2 x T Mx x 2 3. f = f x t, y t df = f x T dx + f 4. f = f x t, y t, t, y t = y x t, t df = f + yt dx x x f y = M + M T. y = 2M. T dy f = f + yt t x x f y T x t + f y T y + f t t 73

f x = f x 0 + f x + 1 2! x x T 0 T x x 0 x=x 0 2 f x 2 x x 0 + O 3 x=x 0 f x = f x T x=x 0 dx + 1 2! dxt 2 f x 2 x=x 0 dx + O 3 74

A function f: D R, D R n has a relative maximum f(a) at the point a, f(a) if f a f x for all x in some region containing a. A function f: D R, D R n has a relative minimum f(a) at the point a, f(a) if f a f x for all x in some region containing a. Theorem 3. (Necessary Conditions) Suppose that f x attains a relative minimum value (resp. relative maximum) at the point a and the gradient x f exists. Then 1) x f x=a = 0 f x i xi =a i = 0 75

2) K = k ij = 2 f(x) = x 2 x=a f xx x=a is a positive semidefinite (resp. negative semi-definite) Sufficient Condition: K is positive definite (resp. negative definite) Notes: If x T Kx change signs at x = a then a is a saddle point. If K is positive semi-definite or negative semi-definite then we need more information in order to decide if the point is minimum or maximum (terms of order 3). The point a is called singular. 76

Find the relative minimum-maximum of f x, y, z = x 2 + y 2 + z 2, x, y, z + Since the partial derivatives exist and f x = f x = 2x, f y = f y = 2y, f z = f z = 2z 1. f x = f y = f z = 0 x, y, z = 0,0,0 2. K = 2 f x 2 2 f y x 2 f z x 2 f x y 2 f y 2 2 f z y 2 f x z 2 f y z 2 f z 2 = 2 0 0 0 2 0 0 0 2 > 0 77

Thus we have a relative minimum at x, y, z = 0,0,0 f x, y, z f 0,0,0 = x 2 + y 2 + z 2 0 = = x 2 + y 2 + z 2 0 f x, y, z f 0,0,0 0 f x, y, z f 0,0,0 78

Find the relative minimum-maximum of f x, y = x 2 y 2, x, y + Since the partial derivatives both exist and f x = f x = 2x, f y = f y = 2y 1. f x = f y = 0 x, y = 0,0 2. K = 2 f x 2 2 f y x 2 f x y = 2 f y 2 2 0 0 2 79

We have a saddle point at x, y = 0,0 since K has positive and negative eigenvalues. x 2 y 2 80

Let J x, u : R n R and f: R n R m, f x, u = 0 where u t R r, x(t) R n. Problem. Find the minimum-maximum of J(x, u) under the constraints f x, u = 0. 1 st solution. Solve the second equation and substitute in the function J x, u. Then apply the known criteria. 2 nd solution. Lagrange multipliers. From the function L x, u, λ = J x, u + λf x, u λ = λ 1, λ 2,.., λ m, λ i : Lagrange multipliers L x, u, λ : Lagrangian 81

Then all the relative minimum and maximum points of J x, u, with x and y constrained to satisfy the equation f x, u = 0, will be among those points for which x 0, u 0, λ 0 L x, u, λ. x 0, u 0 is a maximum or minimum point of These points x 0, u 0, λ 0 will be the solutions of the system of simultaneous equations L x x, y, λ = 0 L y x, y, λ = 0 L λ x, y, λ = 0(this is just f x, y = 0) 82

Find the point on the plane x + 2y + 2z = 4 that is closest to the origin or equivalently minimize f x, y, z = x 2 + y 2 + z 2 Subject to constraint x + 2y + 2z = 4 83

Define the Lagrangian L x, y, z, λ = x 2 + y 2 + z 2 + λ x + 2y + 2z 4 The necessary conditions are L = 2x + λ = 0 x L = 2y + 2λ = 0 y x = 4 L 9, y = 8 9, z = 8 9, l = 8 9 = 2z + 2λ = 0 z L = x + 2y + 2z 4 = 0 λ 84

Let D φ x = Τ φ1 Τ φ2 φm the Jacobian of the constraints and Τ = f x T φ x = ξ: D φ x ξ = 0 be the tangent plane at the point x on the surface defined by the constraints. Then T f u T 85

Suppose f x, φ 1 x, φ 2 x,, φ m x have continuous second partial derivatives in R n and let x, λ be a stationary point of the Lagrangian L x, λ. If ξ T L xx x, λ ξ > 0, ξ( 0) T φ (x ) then x is a strong local minimiser of f x subject to constraints φ 1 x = φ 2 x = = φ m x = 0. 86

T φ x = ξ: D φ x ξ = 0 = = f x T f u T ξ 2 ξ: f x T f u T ξ 1 ξ 2 = 0 ξ 2 ξ T L xx x, λ ξ = = ξ 2 Τ f u f x 1 Ι L xx x, λ f J uu ξ 2 ( 0) f x T I f u T ξ 2 > 0 87

L x, y, z, λ = x 2 + y 2 + z 2 + λ x + 2y + 2z 4 D φ x = φ1 = 1 2 2 T φ x = ξ: 1 2 2 ξ = 0 = 2ξ 2 2ξ 3 ξ 2 ξ T L xx x, λ ξ L xx = 2 0 0 0 2 0 0 0 2 = 2ξ 2 2ξ 3 ξ 2 ξ 3 0 2 0 2 0 0 0 0 2 ξ 3 > 0 2ξ 2 2ξ 3 ξ 2 ξ 3 = 88

= 2 ξ 2 ξ 3 2 + 2 ξ 2 2 + 2 ξ 3 2 > 0, ξ 0 Therefore x = 4 9, y = 8 9, z = 8 9, l = 8 9 minimize the function f x, y, z = x 2 + y 2 + z 2 subject to constraint x + 2y + 2z = 4 89

Ron Larson, Bruce H. Edwards, 2013, Calculus, Cengage Learning (10 edition) 90

Copyright, Νικόλαος Καραμπετάκης. «. Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών». Έκδοση: 1.0. Θεσσαλονίκη 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs288/

Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/

Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Εαρινό εξάμηνο 2013-2014