1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =

Σχετικά έγγραφα
1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)

θ p = deg ε n = με ε t = με γ nt = μrad

Chapter 7 Transformations of Stress and Strain

MECHANICAL PROPERTIES OF MATERIALS

Strain gauge and rosettes

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in


Dr. D. Dinev, Department of Structural Mechanics, UACEG

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

The logic of the Mechanics of Materials

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Spherical Coordinates

Lecture 6 Mohr s Circle for Plane Stress

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Homework 8 Model Solution Section

ADVANCED STRUCTURAL MECHANICS

Mechanics of Materials Lab

(Mechanical Properties)

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Cross sectional area, square inches or square millimeters

ΚΕΦΑΛΑΙΟ 1 Ο 1.1. ΕΛΑΣΤΙΚΟ ΣΤΕΡΕΟ

5.0 DESIGN CALCULATIONS

Trigonometric Formula Sheet

Section 8.2 Graphs of Polar Equations

Aerodynamics & Aeroelasticity: Beam Theory

Μιχάλης ΚΛΟΥΒΑΣ 1, Χρήστος ΖΕΡΗΣ 2

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Chapter 2. Stress, Principal Stresses, Strain Energy

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Areas and Lengths in Polar Coordinates

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Consolidated Drained

Chapter 5 Stress Strain Relation

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Areas and Lengths in Polar Coordinates

Lecture 8 Plane Strain and Measurement of Strain

MATH 150 Pre-Calculus

Statics and Strength of Materials

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

the total number of electrons passing through the lamp.

CYLINDRICAL & SPHERICAL COORDINATES

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

PhysicsAndMathsTutor.com

= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain

Properties of Nikon i-line Glass Series

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Συνοπτική περιγραφή των συνηθέστερων εργαστηριακών δοκιµών Βραχοµηχανικής Εδαφοµηχανικής

Lecture 5 Plane Stress Transformation Equations

Math 6 SL Probability Distributions Practice Test Mark Scheme

[1] P Q. Fig. 3.1

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

COMPOSITE INSULATOR. ANSI Standard Type COMPOSITE LONGE ROD SUSPENSION INSULATOR. PDI 16mm Diameter Rod Deadend Insulators


DuPont Suva 95 Refrigerant

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

( ) 2 and compare to M.

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Solution to Review Problems for Midterm III

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Rectangular Polar Parametric

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

ΣΤΡΙΨΗ ΜΕΘΟΔΟΙ ΠΡΟΣΔΟΣΗΣ ΤΗΣ ΣΤΡΙΨΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓ ΑΣΙΑ. για την απόκτηση Πτυχίου ΚΛΩΣΤΟΥΦΑΝΤΟΥΡΓΙΑΣ. με την συνεργασία του Επίκουρου καθηγητή

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

σ zz Stresses in 3-D σ yy τ yx σ xx z τ zy τ zx τ yz τ xz τ xy

DuPont Suva 95 Refrigerant

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

CONSULTING Engineering Calculation Sheet

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

Section 9.2 Polar Equations and Graphs

Section 8.3 Trigonometric Equations

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

Answers to practice exercises

Second Order RLC Filters

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Answer sheet: Third Midterm for Math 2339

Sampling Basics (1B) Young Won Lim 9/21/13

HSS Hollow. Structural Sections LRFD COLUMN LOAD TABLES HSS: TECHNICAL BROCHURE

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

1 String with massive end-points

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lifting Entry (continued)

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018

Transcript:

IDE S8 Test 6 Name:. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = = ΣF y = = ΣM A = = (counter-clockwise as positie). Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = = ΣF y = = ΣM A = = (counter-clockwise as positie)

. For the beam and loading shown, derie an expression for the reaction at support A. Assume that EI is constant for the beam. ( points) A y =. A timber [E =,8 ksi] beam is loaded and supported as shown. The cross section of the timber beam is in. wide and 8 in. deep. The beam is supported at B by a.5-inch-diameter steel [E =, ksi] rod, which has no load before the distributed load is applied to the beam. After a distributed load of 9 lb/ft is applied to the beam, determine the force carried by the steel rod. ( points) B = kips

5. What is the correct alue of the normal stress shown on the stress element? ( points) - - + + 6. What is the correct alue of the shear stress shown on the stress element in the preious problem? ( points) - - + + 7. The stresses shown act at a point in a stressed body. Determine the normal and shear stresses at this point on the inclined plane shown. Show these on an appropriate sketch. ( points)

8. Consider a point in a structural member that is subjected to plane stress. Normal and shear stresses acting on horizontal and ertical planes at the point are shown. Determine the principal stresses acting at the point. Show these stresses on an appropriate sketch. ( points) 9. Mohr s circle is shown for a point in a physical object that is subjected to plane stress. Determine the following alues. (6 points) σ x = ksi σ y = ksi τ xy = ksi p = deg σ = ksi σ = ksi τ in-plane = ksi τ absolute = ksi

. Sketch Mohr s circle for the following state of stress. ( points) σ x = MPa σ y = -5 MPa τ xy = 5 MPa. Determine the following alues from the Mohr s circle in the preious problem. ( points) σ center = MPa radius = MPa σ = MPa σ = MPa τ in-plane = MPa

TRIGONOMETRY sin = opp / hyp cos = adj / hyp tan = opp / adj STATICS Symbol Meaning Equation Units x, y, z centroid position y = Σy i A i / ΣA i in, m I moment of inertia I = Σ(I i + d i A i ) in, m J N V M J solid circular shaft polar = πd / moment J of inertia hollow circular shaft = π(d o - d i )/ normal force shear force bending moment equilibrium V = -w(x) dx M = V(x) dx ΣF = ΣM (any point) = in, m lb, N lb, N in-lb, Nm lb, N in-lb, Nm MECHANICS OF MATERIALS Topic Symbol Meaning Equation Units σ axial = N/A σ, sigma normal stress τ cutting = V/A σ bearing = F b /A b axial ε, epsilon normal strain ε axial = ΔL/L o = δ/l o ε transerse = Δd/d in/in, m/m γ, gamma shear strain γ = change in angle, γ = c rad E Young's modulus, modulus of elasticity σ = Eε (one-dimensional only) G shear modulus, modulus of rigidity G = τ/γ = E / (+ν) ν, nu Poisson's ratio ν = -ε'/ε δ, delta deformation, elongation, deflection in, m δ = NL o /EA + αδtl o α, alpha coefficient of thermal expansion (CTE) in/inf, m/mc F.S. factor of safety F.S. = actual strength / design strength

Topic Symbol Meaning Equation Units τ, tau shear stress τ torsion = Tc/J torsion φ, phi angle of twist φ = TL/GJ rad, degrees, theta angle of twist per unit length, rate of twist = φ / L rad/in, rad/m P power P = Tω r T = r T watts = Nm/s hp=66 in-lb/s ω, r ω angular speed, speed of rotation = r ω rad/s omega f frequency ω = πf Hz = re/s K stress concentration factor τ = KTc/J flexure σ, sigma σ, sigma τ, tau normal stress σ beam = -My/I composite beams, n = E B /E A σ A = -My / I T σ B = -nmy / I T shear stress τ beam = VQ/Ib where Q = Σ(y bar i A i ) q shear flow q = V beam Q/I = nv fastener /s or y beam deflection = M(x) dx / EI in, m Topic Equations Units stress transformation planar rotations σ u +σ y )/ + (σ x )/ cos() + τ xy sin() σ +σ y )/ - (σ x )/ cos() - τ xy sin() τ u = -(σ x )/ sin() + τ xy cos() principals and in-plane shear tan( p ) = τ xy / (σ x ), s = p ± 5 o σ, +σ y )/ ± sqrt { [ (σ x )/ ] + τ xy } τ = sqrt { [ (σ x )/ ] + τ xy } = (σ -σ )/ σ ag +σ y )/ = (σ +σ )/ strain transformation planar rotations ε u = (ε x )/ + (ε x )/ cos() + γ xy / sin() ε = (ε x )/ - (ε x )/ cos() - γ xy / sin() γ u / = -(ε x )/ sin() + γ xy / cos() ε z = -ν (ε x + ε y ) / (-ν) principals and in-plane shear tan( p ) = γ xy / (ε x ), s = p ± 5 o ε, = (ε x )/ ± sqrt { [ (ε x )/ ] + (γ xy /) } γ / = sqrt { [ (ε x )/ ] + (γ xy /) } ε ag = (ε x )/ in/in, m/m Hooke's law D strain to stress σ = Eε D strain to stress σ x = E(ε x +νε y ) / (-ν ) σ y = E(ε y +νε x ) / (-ν ) τ xy = Gγ xy = Eγ xy / (+ν) D stress to strain ε x -νσ y ) / E ε y = (σ y -νσ x ) / E ε z = -ν(ε x ) / (-ν) γ xy = τ xy /G = (+ν)τ xy / E in/in, m/m pressure σ spherical = pr/t σ cylindrical, hoop = pr/t σ cylindrical, axial = pr/t imum principal stress theory σ, < σ yp σ radial, outside = σ radial, inside = -p failure theories imum shear stress theory τ <.5 σ yp

CANTILEVER BEAMS Beam Slope Deflection Elastic Cure PL EI PL EI Px = ( L x) 6EI EI EI Mx EI 6EI 8EI wx L Lx+ x EI (6 ) EI EI wx L L x+ Lx x LEI ( 5 )

SIMPLY SUPPORTED BEAMS Beam Slope Deflection Elastic Cure PL 6EI PL 8EI Px (L x ) 8EI for x L Pb L 6LEI Pa L =+ 6LEI ( b ) ( a ) EI =+ 6EI Pba ( ) 6LEI x= a L b a 6LEI 9 EI @ x= L Pbx ( L b x ) for x a Mx L Lx+ x 6LEI ( ) EI 5 8EI wx L Lx + x EI ( ) wa ( L a) LEI wa =+ L a LEI 7 6EI =+ 5EI ( ) wa a al L x= a LEI + ( 7 ).65 EI @ x=.59l wx ( a a L+ a L + a x LEI alx + Lx ) for x a wa a L+ L x+ a x Lx + x LEI for a x L ( 6 ) wx L L x + x 6LEI (7 )