ΦΥΣ. 211 Τελική Εξέταση 20-Μάη-2016

Σχετικά έγγραφα
ΦΥΣ. 211 Τελική Εξέταση 20-Μάη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Μάρτη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 7-Μάρτη-2015

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ η ΠΡΟΟΔΟΣ 8-Μάρτη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 10-Μάη-2014

ΦΥΣ. 211 Τελική Εξέταση 11-Μάη-2015

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016

ΦΥΣ η ΠΡΟΟΔΟΣ 2-Απρίλη-2016

ΦΥΣ. 111 Τελική Εξέταση: 17-Δεκεµβρίου-2017

( )U 1 ( θ )U 3 ( ) = U 3. ( ) όπου U j περιγράφει περιστροφή ως προς! e j. Γωνίες Euler. ω i. ω = ϕ ( ) = ei = U ij ej j

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2

Το ελαστικο κωνικο εκκρεμε ς

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017

ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΣ Τελική Εξέταση: 11-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική I 2 Σεπτεμβρίου 2010

Β ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 19-Νοεµβρίου-2011

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).

Ενότητα 4: Κεντρικές διατηρητικές δυνάμεις

ΦΥΣ. 131 Τελική εξέταση: 10-Δεκεμβρίου-2005

ΦΥΣ Τελική Εξέταση: 10-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Τελική Εξέταση: 10-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

( ) ) V(x, y, z) Παραδείγματα. dt + "z ˆk + z d ˆk. v 2 =!x 2 +!y 2 +!z 2. F =! "p. T = 1 2 m (!x2 +!y 2 +!z 2

ΣΕΙΡΑ: 3 Κύματα: αρμονικό έως στάσιμο, Στερεό: κινηματική έως διατήρηση στροφορμής

Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004

Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # 10

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ η ΠΡΟΟΔΟΣ 5-Απρίλη-2014


ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Νοεµβρίου-2008

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.


( ) = ke r/a όπου k και α θετικές σταθερές

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΙΟΥΝΙΟΣ 2013 ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΕΜ: (ΠΤΥΧΙΟ)

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΔΕΚΕΜΒΡΙΟΥ 2019 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΙI Φεβρουάριος Απαντήστε και στα 4 θέματα με σαφήνεια και συντομία. Καλή σας επιτυχία.

Reynolds. du 1 ξ2 sin 2 u. (2n)!! ( ( videos/bulletproof-balloons) n=0

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Κεφάλαιο M11. Στροφορµή

ΦΥΣ Τελική Εξέταση: 16-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Τελική Εξέταση: 16-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέμβριος 2012

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Απρίλιος 2015

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003


6ο Πρόχειρο Τεστ Γ Τάξης Λυκείου Θεµελιώδης Νόµος Στροφικής Κίνησης Σύνολο Σελίδων: πέντε (5) - ιάρκεια Εξέτασης: 90 min Βαθµολογία % Ονοµατεπώνυµο:

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΤΕΛΙΚΟ ΔΙΑΓΩΝΙΣΜΑ:

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009

K K. 1 2 mr. Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο. Τμήμα ΘΕΜΑ 1

Μηχανική Στερεού Ασκήσεις Εμπέδωσης

ΦΥΣ η Πρόοδος: 5-Νοεμβρίου-2006

Ασκήσεις (διάφορες, στροφορμής και δυναμικής συστήματος σωματιδίων)

v = r r + r θ θ = ur + ωutθ r = r cos θi + r sin θj v = u 1 + ω 2 t 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι. Οκτώβριος 2002 Τμήμα Πέτρου Ιωάννου και Θεοχάρη Αποστολάτου

ΑΣΚΗΣΗ 5.1 Το διάνυσμα θέσης ενός σώματος μάζας m=0,5kgr δίνεται από τη σχέση: 3 j οπότε το μέτρο της ταχύτητας θα είναι:

Γ.Κονδύλη 1 & Όθωνος-Μ αρούσι Τ ηλ. Κέντρο: , /

ΦΥΣ η Πρόοδος: 14-Οκτωβρίου-2017

ΦΥΣ η Πρόοδος: 14-Οκτωβρίου-2017

5ο ιαγώνισµα - Επαναληπτικό ΙΙ. Θέµα Α

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση (Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο

Εφαρμογή της γενικής λύσης

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ασκήσεις στροφικής κίνησης στερεού σώµατος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ

ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΘΕΜΑΤΑ Κάθε απάντηση επιστηµονικά τεκµηριωµένη είναι δεκτή

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. 22 Μαΐου 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

( ) Απειροστές περιστροφές και γωνιακή ταχύτητα ( ) = d! r dt = d! u P. = ω! r

6ο ιαγώνισµα - Μηχανική Στερεού Σώµατος Ι. Θέµα Α

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική ΙI 11 Ιουνίου 2012


ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ,

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο

ΦΥΣ. 131 ΕΡΓΑΣΙΑ # (α) Ένα µικρό σώµα πηγαινοέρχεται γλιστρώντας στο κατώτερο µέρος ενός κυλινδρικού αυλακιού ακτίνας R. Ποια είναι η περίοδος

Transcript:

ΦΥΣ. 11 Τελική Εξέταση 0-Μάη-016 Πριν ξεκινήσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο, αριθµό ταυτότητας) στο πάνω µέρος της σελίδας αυτής. Για τις λύσεις των ασκήσεων θα πρέπει να χρησιµοποιήσετε µόνο τις σελίδες που δίνονται και µην κόψετε καµιά από τις σελίδες. Προσπαθήστε να δείξετε τη σκέψη σας και να γράψετε καθαρές εξισώσεις. Για πλήρη ή µερική βαθµολόγηση θα πρέπει να φαίνεται καθαρά αυτό που προσπαθείτε να δείξετε. Αν δεν µπορώ να διαβάσω τι γράφετε αυτόµατα θα υποθέσω ότι είναι λάθος. Απαντήστε σε 7 από τις 8 ασκήσεις που σας δίνονται µε σύνολο 70 µονάδων. Θα µετρήσουν οι 7 ασκήσεις που σας δίνουν τη µεγαλύτερη συνολική βαθµολογία. Η σειρά των ασκήσεων δεν είναι αντιπροσωπευτική της δυσκολίας τους. Πριν ξεκινήσετε διαβάστε όλες τις ασκήσεις και σκεφτείτε τι χρειάζεται να κάνετε. Η διάρκεια της εξέτασης είναι 4 ώρες. Καλή επιτυχία και καλό καλοκαίρι.

Διανύσµατα: C = A B = iˆ A B x x ˆj A B y y kˆ A B z z, A A = 0, Τυπολόγιο A ( A B) ( B C) = ( A B) C, A ( B C) = B( A C) ( A B)C = 0, A Ανάπτυγµα Taylor συνάρτησης ως προς σηµείο α: 1 1 3 f ( z) = f ( a) + ( z a) f ( a) + ( z a) f ( a) + ( z a) f ( a) + 3 Σειρά διωνύµου: n( n 1) ( 1 + z) n = 1 + nz + z + για z <1 Στροφορµή: Κέντρο µάζας: n n L L r p I 1 = i = i i = ω RCM = miri, M = mi ή i i M i= 1 i= 1 L = L CM + L d n L εξ ως, CM = [ r i F i ] dt i Τανυστής αδράνειας N ( ) 1 R CM = rdm M I ij = m ra a δ ij r a a i r j ή I ij = d 3 r ρ r και I c ij = I CM ij + M c δ ij c i c j a=1 { ( )} ( ) r δ ij ( r e i ) r e j ( ) Συνθήκες για µια δύναµη να είναι συντηρητική: F = U (r) και F = 0 όπου = iˆ + ˆj + kˆ x y z Euler-Lagrange εξισώσεις: x f d f S = f [ y( x), y ( x), x]dx είναι στάσιµο κατά µήκος της y = y( x) αν = 0 x1 y dx y Lagrangian: Αρχή Hamilton: t L = Τ V S = L dt t1 Κυλινδρικές συντεταγµένες: Σφαιρικές συντεταγµένες: m = ( ρ + ρ m L φ + z ) U( ρφz) L = ( r + r θ + r φ sin θ ) U( rθφ) Εξισώσεις Lagrange: Εξισώσεις Lagrange µε πολλαπλασιαστές: m d L L d L L f k = 0 k t i s dt q i q i dt = ( ) = 1,,3, q λ i qi k= 1 qi Γενικευµένη ορµή: Αγνοήσιµη ή κυκλική συντεταγµένη: pi = L L = 0 q i q i Hamiltonian: Εξισώσεις Hamilton: H ( qi, pi, t) = p q i i L( qi, q i, t) q" = H [ i = 1,, n] i i p i L H H = p" = [ i = 1,, n] t t i q i ( )

Ανηγµένη µάζα: Ενεργό δυναµικό: m1m l µ = U eff ( r) = U( r) + U cf ( r) = U( r) + m1 + m µ r Μετασχηµατισµένη ακτινική Δ.Ε. τροχιάς: Ενέργεια τροχιάς: d u µ 1 1 1 1 l + u + F = 0, όπου u = E = µ r + dφ l u u r µ r + U( r) Τροχιές Kepler: m1m γ c l F = G = λύση ακτινικής εξίσωσης είναι: r ( φ) =, µε c = r r 1 + e cosφ γµ γ µ Εκκεντρότητα (e): E = ( e 1) όπου E = Ενέργεια l Εκκεντρότητα Ενέργεια Είδος Τροχιάς e = 0 E < 0 κυκλική 0< e < 1 E < 0 ελλειπτική e = 1 E = 0 παραβολική e > 1 E > 0 υπερβολική Περιήλιο: r min = c 1+ e Αφήλιο: c c rmax = Μεγάλος ηµιάξ.: a = Μικρός ηµιάξ.: b = 1 e 1 e 1 e Νόµοι Kepler: 1 ος νόµος: τροχιές πλανητών είναι ελλείψεις µε τον ήλιο σε µια από τις εστίες της έλλειψης ος da l νόµος: = 3 ος 4π 3 νόµος: Τ = a dt µ GM H Συζευγµένοι ταλαντωτές: 1 xa, i xa, i 1 U T = M jkq jq k M jk = ma U = V jkq jqk V jk = q q q q j, k a q1 Mq = Vq q = ιδιοσυχνότητες: det( M) = 0 q n q ( t) = a η ( t) Κανονικές συντεταγµένες: η ( t) = β e j r jr r Ορθοκανονικότητα: M jk a jr a kr = δ rs = j,k Tαλαντώσεις: q + ω q = 0 µε λύσεις: ω < 0 q t j k j, k V ω ιδιοδιανύσµατα: ( V ω M ) a = 0 0 r s 1 r = s r r iω t ( ) = Acos( ωt) + Bcos( ωt) ή αν ω > 0 q( t) = Ae + ω t + Be ω t q + ω Q q + ω q = 0 µε λύσεις: q( t) = Ae a + t + Be + a t όπου a = a ± = iω ( ) = Ae ωt q t 1 Q iω 1 4Q e t q + ω 0 Q q + ω q = F cosωt q t 0 Περιστρεφόµενα συστήµατα a = a σωµ. + ω υ σωµ + ω ω r µε Q > 1 και q( t) = Ae ωt + Bte ωt για Q = 1 ( ) = Ae iδt e iωt + q οµογ tanδ = ωω 0 Q ω 0 ω ( ) r j j jk Q ± ω 1 1 4Q και Q < 1 A = ( ) + ω " r "rαδρ. = d r dt = "r σωµ i + r i ω i ( ) e i k r F 0 jk jr ( ω 0 ω ) + ω ω 0 Q = " rσωµ + ω r

Εξισώσεις Euler: I 1 ω 1 + ω ω 3 I 3 I ( ) = τ 1 ( ) = τ ( ) = τ 3 I ω + ω 1 ω 3 I 1 I 3 I 3 ω 3 + ω 1 ω I I 1 Συµµετρική σβούρα: Συχνότητα µετάπτωσης (χωρίς εξωτερική δύναµη): Ω = ω 3 I 1 I 3 I 1 Mετάπτωση χωρίς κλόνηση (βαριά σβούρα): I 3 ω 3 > 4MglI 1 cosθ 0 Γωνιακή ταχύτητα: ω "ϕ sinψ sinθ + θ " cosψ ω 1 = "ϕ cosψ sinθ θ " sinψ = ω "ϕ cosθ + ψ" ω 3 Τριγωνοµετρικές ταυτότητες: ( ) = 1 cos( a) ( ) = 1 sin( a) ( ) = cos a ( ) = sin a sec a csc a cos a ± b sin a ± b ( )cos b ( )cos b ( ) sin a ( ) ± cos a sin( a) + sin( b) = sin a + b sin( a) sin b ( ) = cos a + b cos( a) + cos( b) = cos a + b cos( a) cos b ( )sin b ( )sin b ( ) ( ) cos a b sin a b cos a b sin a b ( ) = sin a + b Ροπές αδράνειας σωµάτων: Ράβδου ως προς το CM: 1 1 ml Δίσκου ως προς το CM: 1 mr και ως προς διάµετρο του δίσκου: 1 4 mr Στεφανιού: mr Μεγέθη σε διάφορα συστήµατα συντεταγµένων: Καρτεσιανό Σφαιρικό Κυλινδρικό d s = dx 1 ê 1 + dx ê + dx 3 ê 3 d s = drê r + rdθê θ + rsinθdϕê ϕ d s = drê r + rdϕê ϕ + dzê z ds = dx 1 + dx + dx 3 υ = x 1 + x + x 3 υ = "x 1 ê 1 + "x ê + "x 3 ê 3 ds = dr + r dθ + r sin θdϕ ds = dr + r dϕ + dz υ = r + r θ + r sin θ ϕ υ = r + r ϕ + z υ = "rê r + r "θê θ + rsinθ "ϕê ϕ υ = "rê r + r "ϕê ϕ + "zê z

1. (10µ συνολικά) Θεωρήστε ένα φορτισµένο σωµατίδιο σε ένα ηλεκτρικό πεδίο. Η Lagrangian µπορεί να γραφεί µε την µορφή: L = 1 mx + QE 0 x, όπου Q είναι το φορτίο του σωµατιδίου και Ε 0 η ένταση του ηλεκτρικού πεδίου. (α) Ποια η Hamiltonian του συστήµατος; [3µ] (β) Ποιες οι εξισώσεις Hamilton; [µ] (γ) Το σώµα ξεκινά από την θέση x = 0 τη χρονική στιγµή t = 0. Σχεδιάστε τη µετέπειτα διαδροµή του σωµατιδίου στο φασικό χώρο. [5µ]

. (10µ συνολικά) Μια αράχνη κρέµεται µέσω µιας λεπτής κλωστής του ιστού της από το κλαδί ενός δέντρου στην Πανεπιστηµιούπολη στην Αγλαντζιά. Βρείτε το προσανατολισµό και τιµή της γωνίας που σχηµατίζει η κλωστή µε την κατακόρυφο διεύθυνση (π.χ. τη διεύθυνση της βαρύτητας) λαµβάνοντας υπόψη την περιστροφή της Γης. Θεωρήστε ότι το γεωγραφικό πλάτος στο οποίο βρίσκεται η Πανεπιστηµιούπολη είναι θ ~ 35 ο και η ακτίνα της Γης είναι R ~ 6400km.

3. (10π συνολικά) Θεωρήστε ένα ορειβάτη ο οποίος θέλει να αναρριχηθεί σε µια πλαγιά κωνικού σχήµατος που περιγράφεται από την εξίσωση z = x + y. Δυστυχώς η µετερεωλογική εταιρεία προβλέπει την ύπαρξη καταιγίδας και θα πρέπει ο ορειβάτης να βρει γρήγορα το καταφύγιο πριν πληγεί από την καταιγίδα. Να βρεθεί η ακριβής εξίσωση της συντοµότερης διαδροµής στο καταφύγιο που βρίσκεται στην θέση µε συντεταγµένες (-1,0,-1) αν την στιγµή που πήρε την ειδοποίηση για την καταιγίδα βρίσκονταν στην θέση µε συντεταγµένες (1,0,-1). Υπόδειξη: Πιθανόν να σας φανεί χρήσιµο να αντικαταστήσετε την συντεταγµένη, w, ως προς την οποία βρίσκετε την διαφορική εξίσωση, µε µια νέα µεταβλητή u = 1 w, και να χρησιµοποιήσετε τριγωνοµετρικές ταυτότητες για να απλουστεύσετε την απάντησή σας.

4. (10µ συνολικά) Τροχιές γύρω από µια µαύρη τρύπα µάζας M µπορούν να περιγραφούν µε βάση ένα ενεργό δυναµικό της µορφής: U eff ( r) = 1 r + l r l, όπου l είναι η στροφορµή της τροχιάς. Ως 3 r προς το κλασικό Keplerian δυναµικό, η µοναδική τροποποίηση είναι ο τελευταίος όρος 1 r 3 ενώ για χάρη απλότητας υποθέτουµε ότι η ανηγµένη µάζα είναι µ = 1 και η σταθερά του πεδίου είναι G N = 1. Το δυναµικό αυτό µπορεί να ερµηνευτεί και χρησιµοποιηθεί µε τον συνήθη τρόπο, ότι δηλαδή, η ακτινική εξίσωση της κίνησης για ένα σωµατίδιο που κινείται γύρω από την µαύρη τρύπα προέρχεται από µια Lagrangian της µορφής L = 1 r U eff ( r). (α) Δείξτε ότι για l < 1 δεν υπάρχουν κυκλικές τροχιές, ενώ για l > 1 υπάρχουν δύο κυκλικές τροχιές. [µ] (β) Σχεδιάστε το ενεργό δυναµικό, U eff (r), για l < 1 και l > 1. [4µ] (γ) Περιγράψτε ποιοτικά τις πιθανές τροχιές για l < 1 και l > 1. [4µ]

5. (10µ συνολικά) Μια συµπαγής σφαίρα ακτίνας R και µάζας M βρίσκεται πάνω σε µια λεπτή ράβδο που είναι στερεωµένη και παραµένει ακίνητη. Η σφαίρα ξεκινά από την κατάσταση της ηρεµίας να κυλά πάνω στη ράβδο χωρίς να ολισθαίνει ώσπου τελικά πέφτει από την ράβδο. (α) Ποιος δεσµός υπάρχει για το σύστηµα; [µ] (β) Χρησιµοποιώντας την µέθοδο των πολλαπλασιαστών Lagrange, να υπολογίσετε την γωνία, θ, που η σφαίρα χάνει επαφή µε τη ράβδο. [8µ] Η ροπή αδράνειας της σφαίρας ισούται µε I CM Αρχική θέση σφαίρας (ακίνητη) Άξονας σφαίρας Ράβδος (άξονας έξω από τη σελίδα) σϕ = MR 5. Υπόδειξη: Θα µπορούσε να βοηθήσει στην επίλυση της εξίσωσης που θα καταλήξετε η χρήση διατήρησης της ενέργειας. R Θέση της σφαίρας όταν πέφτει από την ράβδο θ

6. (10µ συνολικά) Μια κούνια µάζας m έχει σχήµα τόξου ακτίνας R και κρέµεται από σηµείο στήριξης µέσω σχοινιών στα άκρα της (δείτε το διπλανό σχήµα). Ένα στεφάνι ακτίνας α, ίδιας µάζας m όπως και η κούνια και ροπής αδράνειας Ι = mα, κυλά χωρίς να ολισθαίνει στην επιφάνεια της κούνιας. Η κίνηση του στεφανιού και της κούνιας δεν υπόκεινται σε απώλειες λόγω τριβών ενώ συµβαίνουν κάτω από την επίδραση της βαρυτικής δύναµης F g = mgĵ. Βρείτε όλες τις δυνατές συχνότητες ταλαντώσεων του συστήµατος για µικρές αποκλίσεις από την ισορροπία θεωρώντας ότι a R 1. Υπόδειξη: Η γωνιακή αποµάκρυνση, θ, του κέντρου µάζας του στεφανιού και η γωνιακή αποµάκρυνση, φ, της κούνιας ως προς το σηµείο Ο δεν είναι ίδιες γιατί τότε το στεφάνι θα ήταν ακίνητο σχετικά µε την κούνια. Το στεφάνι επίσης περιστρέφεται ως προς το CM λόγω κύλησης. Ο

7. (10µ συνολικά) Η διπλανή διάταξη αποτελείται από µάζες m που συνδέονται µεταξύ τους µε βραχίονες αµελητέας µάζας και µήκους l ο καθένας, και µια µάζα, M, στο κατώτερο µέρος της διάταξης. Η διάταξη είναι περιορισµένη να κινείται ως προς κατακόρυφο άξονα πάνω στον οποίο η µάζα M µπορεί να κινείται κατακόρυφα χωρίς τριβές. Αγνοήστε τριβές και αντιστάσεις του αέρα, καθώς και τις διαστάσεις της µάζας Μ. Υποθέστε ακόµα ότι ο άξονας περιστροφής περιστρέφεται µε σταθερή γωνιακή ταχύτητα ω 0. (α) Εκφράστε τις θέσεις των µαζών συναρτήσει των µηκών, l, των βραχιόνων και της γωνίας θ. [1µ] (β) Βρείτε την εξίσωση κίνησης του συστήµατος. [3µ] (γ) Υπολογίστε το ύψος στο οποίο ισορροπεί η µάζα M. Το ύψος αυτό αντιστοιχεί σε κάποια συγκεκριµένη γωνία θ ο, την οποία µπορούµε να θεωρήσουµε σαν γωνία ισορροπίας. [3µ] (δ) Θεωρώντας µικρές γωνιακές αποκλίσεις, θ, από τη γωνία ισορροπίας, θ ο, και κρατώντας µόνο όρους 1 ης τάξης ως προς θ στην εξίσωση κίνησης, υπολογίστε την συχνότητα των µικρών ταλαντώσεων γύρω από την θέση αυτή ισορροπίας. [3µ] Υπόδειξη: Προσέξτε ότι το σύστηµα της διάταξης αποτελεί µη αδρανειακό σύστηµα αναφοράς. m l l z θ θ 0 θ ω ο θ M ω ο l l y x m

8. (10µ συνολικά) Μια συµµετρική «σβούρα» αποτελείται από λεπτό οµοιογενή δίσκο µάζας 4m και ακτίνας R=3α. Μια λεπτή συµπαγής ράβδος µήκους l=4α και µάζας m είναι στερεωµένη στο κέντρο του δίσκου όπως φαίνεται στο διπλανό σχήµα. Η ράβδος είναι κάθετη στο επίπεδο του δίσκου. Η «σβούρα» στηρίζεται στην κορυφή ενός κωνικού στηρίγµατος, όπως φαίνεται στο σχήµα. Επιλέξτε ένα σύστηµα συντεταγµένων σώµατος τέτοιο ώστε ο άξονας ˆx 3 να έχει διεύθυνση κατά µήκος K θ της ράβδου. Ως υπευνθύµιση, οι γωνίες Euler ορίζονται µε τον ακόλουθο τρόπο: φ αντιπροσωπεύει περιστροφή ως προς τον ˆx 3 - άξονα, θ αντιπροσωπεύει περιστροφή ως προς τον νέο ˆx 1 - άξονα ( xˆ 1 - άξονας) που προκύπτει από την περιστροφή ως προς φ, ενώ η γωνία ψ αντιπροσωπεύει περιστροφή ως προς τον ˆx 3 - άξονα ( xˆ e - άξονας) που προκύπτει µετά την περιστροφή κατά θ. Οι εξισώσεις κίνησης για τις συνιστώσες της γωνιακής ταχύτητας σώµατος ω 1, ω, ω 3 συναρτήσει των γωνιών Euler, θ, φ, και ψ, είναι: ω 1 = ϕ sinθ sinψ + θ cosψ ω = ϕ sinθ cosψ θ sinψ και ω 3 = ϕ cosθ + ψ (α) Βρείτε την θέση του κέντρου µάζας του συστήµατος και τις ροπές αδράνειας, Ι 1, Ι, Ι 3 κατά µήκος των αξόνων ˆx 1, ˆx και ˆx 3 ως προς την κορυφή του στηρίγµατος Κ. [4µ] (β) Η σβούρα µπορεί να περιστρέφεται ελεύθερα (χωρίς τριβές) ως προς το σηµείο στήριξης στην κορυφή του κωνικού στηρίγµατος, και υπόκειται στη σταθερή βαρυτική επιτάχυνση g. Βρείτε την Lagrangian του συστήµατος συναρτήσει των γωνιών Euler φ, θ και ψ. Δεν χρειάζεται να γνωρίζετε ακριβώς τις τιµές των κύριων ροπών αδράνειας Ι 1, Ι, Ι 3. [µ] (γ) Βρείτε τις εξισώσεις κίνησης για τις γωνίες Euler. Προσδιορίστε τυχόν διατηρήσιµες ποσότητες. Όπως και στο ερώτηµα (β) δεν χρειάζεται να ξέρετε ακριβώς τις Ι 1, Ι, Ι 3. [µ] (δ) Προσδιορίστε την ελάχιστη ταχύτητα περιστροφής του δίσκου ως προς την ράβδο (σπιν), τέτοια ώστε η σβούρα να µεταπίπτει σε σταθερή κατάσταση κίνησης (steady state) όπου θ = 0 = θ = ϕ = ψ, ϕ = Ω και το χαµηλότερο σηµείο της περιφέρειας του δίσκου να είναι στο ίδιο οριζόντιο επίπεδο µε την κορυφή του στηρίγµατος, όπως φαίνεται στο σχήµα. [µ] ράβδος δίσκος l=4a R=3α