Κλασική Ηλεκτροδυναμική

Σχετικά έγγραφα
Κλασική Ηλεκτροδυναμική

Κλασική Ηλεκτροδυναμική

Κλασική Hλεκτροδυναμική

Κλασική Ηλεκτροδυναμική

Κλασική Hλεκτροδυναμική

Κλασική Ηλεκτροδυναμική

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Κβαντική Φυσική Ι. Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Κλασική Ηλεκτροδυναμική

Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κλασική Ηλεκτροδυναμική

Κβαντική Φυσική Ι. Ενότητα 12: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Βέλτιστος Έλεγχος Συστημάτων

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Κβαντική Φυσική Ι. Ενότητα 21: Δέλτα πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Κβαντική Φυσική Ι. Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Εισαγωγή στους Αλγορίθμους

Κλασική Ηλεκτροδυναμική

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή

Διοικητική Λογιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 23: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 11: Μεταθέτες και ιδιότητες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Επεξεργασία Πληροφορίας

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Εισαγωγή στους Αλγορίθμους

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac

Κβαντική Επεξεργασία Πληροφορίας

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Βέλτιστος Έλεγχος Συστημάτων

Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 9: Χρονοεξαρτώμενη εξίσωση Schro dinger. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Κβαντική Φυσική Ι. Ενότητα 8: Ολοκλήρωση μελέτης απειρόβαθου πηγαδιού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Κβαντική Φυσική Ι. Ενότητα 4: Εξίσωση Schro dinger. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος)

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας

Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Κβαντική Φυσική Ι. Ενότητα 33: Εφαρμογές στο άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

Κβαντική Φυσική Ι. Ενότητα 23: Σκέδαση σε τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Εισαγωγή στους Αλγορίθμους

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Μάρκετινγκ Αγροτικών Προϊόντων

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.4: ISO 9004:2009

Κλασική Ηλεκτροδυναμική Ι

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση

Κλασική Ηλεκτροδυναμική Ι

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.2: Παραδοσιακή VS νέα προσέγγιση της ΔΟΠ

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Εισαγωγή στους Υπολογιστές

Κλασική Ηλεκτροδυναμική Ι

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Διοικητική Λογιστική

Transcript:

Κλασική Ηλεκτροδυναμική Ενότητα 19: Η συνάρτηση Green για την κυματική εξίσωση και θεώρημα Poynting Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μεθοδολογία της συνάρτησης Green για την κυματική εξίσωση και το θεώρημα Poynting. 2

Περιεχόμενα ενότητας Μεθοδολογία συνάρτησης Green Θεώρημα Poynting 3

Μεθοδολογία συνάρτησης Green για την κυματική εξίσωση (I) Έχουμε μια εξίσωση της μορφής 2 Φ 1 2 Φ = (όρος πηγής) και θέλουμε να προσδιορίσουμε την c 2 t συνάρτηση Green 2 γι αυτό το πρόβλημα. Το Φ μπορεί να είναι είτε το βαθμωτό δυναμικό, είτε μια καρτεσιανή συνιστώσα του διανυσματικού. Το αντίστοιχο πρόβλημα της συνάρτησης Green είναι 2 G x, t; x, t 1 2 G c 2 t 2 = 4πδ x x δ(t t ) όπου τώρα η πηγή είναι ένα «γεγονός» που συμβαίνει την t = t στην θέση x = x. Για να λύσουμε αυτήν την εξίσωση, πραγματοποιούμε αρχικά έναν μετασχηματισμό Fourier στον χρόνο: G x, t; x, t = 1 2π G(x, ω; x, t )e iωt dω 4

Μεθοδολογία συνάρτησης Green για την κυματική εξίσωση (IΙ) Έτσι η μετασχηματισμένη εξίσωση γίνεται 2 + ω2 c 2 G x, ω; x, t = 4π 1 2π 4π 2π δ x x e iωt. δ(x x )δ(t t )e iωt dt = Έστω G x, ω; x, t = g x, x e iωt / 2π και η g(x, x ) τότε ικανοποιεί την εξίσωση 2 + k 2 g = 4πδ(x x ) με k = ω c. 5

Μεθοδολογία συνάρτησης Green για την κυματική εξίσωση (IΙI) Χωρίς συνοριακές επιφάνειες, η g πρέπει να είναι συνάρτηση μόνο του R = x x. Σε σφαιρικές συντεταγμένες μπορούμε να γράψουμε 1 d 2 R dr 2 Rg + k2 g = 4πδ(R) Για R 0, το δεξί μέλος είναι μηδέν και άρα Rg = Ae ikr + Be ikr g = 1 R AeikR + Be ikr 6

Λύση μετασχηματισμένης Green Κοντά στην πηγή ο όρος της συνάρτησης δέλτα συνεισφέρει και έχουμε 2 g 4πδ x x. Η λύση της παραπάνω εξίσωσης είναι g = 1 R. Το αποτέλεσμα αυτό για R 0, είναι σε συμφωνία με την g = 1 R AeikR + Be ikr, αν Α + Β = 1. Άρα έχουμε G x, ω; x, t = 1 2πR AeikR + (1 A)e ikr e iωt Προφανώς μπορούμε να επαληθεύσουμε το αποτέλεσμα αν το αντικαταστήσουμε στην διαφορική εξίσωση 1 d 2 Rg + R dr 2 k2 g = 4πδ(R). 7

Λύση Green Πραγματοποιούμε τον αντίστροφο μετασχηματισμό και έχουμε G x, t; x, t = 1 1 2π 2πR AeikR + (1 A)e ikr e iωt e iωt dω = 1 Aexp iω R 2πR c + t t + Bexp iω R c + t t dω = Α R δ t (t R c ) + B R δ t (t + R c ) 8

Θεώρημα Poynting Έχουμε ως αφετηρία την εξίσωση Maxwell H = 4π c J + 1 D c t Πολλαπλασιάζουμε εσωτερικά τα δύο μέλη με το πεδίο Ε και ολοκληρώνουμε στον όγκο V: J E d 3 c x = 4π H Εd3 x 1 D Ε 4π t d3 x Στην συνέχεια, κάνουμε χρήση της ταυτότητας Ε Η = Η Ε Ε Η Επομένως J E d 3 x = c 4π Ε Η d3 x + c 4π Η Ε d3 x 1 4π Ε D t d3 x 9

Θεώρημα Poynting-Συνέχεια Κάνουμε χρήση του νόμου Faraday, E = 1 c J E d 3 x = c 4π Ε Η d3 x 1 c 4π Ε Η d3 x 1 4π 4π B t : B Η t d3 x 1 4π B D Η + Ε t t Αν το υλικό είναι γραμμικό και με αμελητέες απώλειες, τότε d 3 x D Ε t d3 x = Η t B = H B t και άρα H B t = 1 2 t D H B. Ομοίως Ε = 1 t 2 t Ε D. 10

Θεώρημα Poynting-Τελική έκφραση Επομένως η παραπάνω έκφραση γίνεται J E d 3 x = c 4π Ε Η d3 x 1 8π t H B + E D d3 x Στο σημείο αυτό, ορίζουμε το διάνυσμα Poynting S = c Εκφράζει ροή πυκνότητας ενέργειας. 4π Ε Η. Η ποσότητα 1 H B + E D = u είναι η ολική πυκνότητα ενέργειας 8π όταν συνυπάρχουν φορτία και ρεύματα. Με βάση τα παραπάνω παίρνουμε την έκφραση J E = u + S t Η παραπάνω εξίσωση είναι το λεγόμενο θεώρημα Poynting και εκφράζει την αρχή διατήρησης ενέργειας για γραμμικά με αμελητέες απώλειες υλικά. 11

Τέλος Ενότητας

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 13

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Ανδρέας Τερζής. Ανδρέας Τερζής «Κλασική Ηλεκτροδυναμική. Η συνάρτηση Green για την κυματική εξίσωση και θεώρημα Poynting». Έκδοση: 1.0. Πάτρα 2015. Διαθέσιμο από τη δικτυακή διεύθυνση: https://eclass.upatras.gr/courses/phy1958/ 14

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] http://creativecommons.org/licenses/by-nc-sa/4.0/ Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 15