ΑΣΚΗΣΗ 8 ΧΡΗΣΗ ΤΟΥ ΠΑΛΜΟΓΡΑΦΟΥ ΣΕ ΚΥΚΛΩΜΑ ΕΝΑΛΛΑΣΣΟΜΕΝΗΣ ΤΑΣΗΣ (AC)

Σχετικά έγγραφα
ΑΣΚΗΣΗ 8 ΧΡΗΣΗ ΤΟΥ ΠΑΛΜΟΓΡΑΦΟΥ ΣΕ ΚΥΚΛΩΜΑ ΕΝΑΛΛΑΣΣΟΜΕΝΗΣ ΤΑΣΗΣ (AC)

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ

ΑΣΚΗΣΗ 7 ΚΥΚΛΩΜΑ R-L-C: ΣΥΝΔΕΣΗ ΣΕ ΣΕΙΡΑ ΣΥΝΤΟΝΙΣΜΟΣ

ΑΣΚΗΣΗ-3: Διαφορά φάσης

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Χρήση του Παλμογράφου

ΑΣΚΗΣΗ-3: ΣΧΗΜΑΤΑ LISSAJOUS

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΜΕΡΟΣ Α: Απαραίτητε γνώσει

ΑΣΚΗΣΗ 6 ΦΟΡΤΙΣΗ ΕΚΦΟΡΤΙΣΗ ΠΥΚΝΩΤΗ

1η Εργαστηριακή Άσκηση: Απόκριση κυκλώµατος RC σε βηµατική και αρµονική διέγερση

Παλμογράφος Βασικές Μετρήσεις

Μετρήσεις με Παλμογράφο

ΑΣΚΗΣΗ-2: ΚΥΚΛΩΜΑ RC

Οδηγίες χειρισμού παλμογράφου

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Επαναληπτικές Ασκήσεις Εργαστηρίου Κυκλωμάτων και Μετρήσεων ΗΜΥ 203

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

Άσκηση 1. Όργανα εργαστηρίου, πηγές συνεχούς τάσης και μετρήσεις

2. Ο νόμος του Ohm. Σύμφωνα με το νόμο του Ohm, η τάση V στα άκρα ενός αγωγού με αντίσταση R που τον διαρρέει ρεύμα I δίνεται από τη σχέση: I R R I

Πανεπιστήμιο Θεσσαλίας

ΠΕΙΡΑΜΑ 4: ΕΞΟΙΚΕΙΩΣΗ ΜΕ ΠΑΛΜΟΓΡΑΦΟ ΚΑΙ ΜΕΤΡΗΣΗ ΕΝΑΛΛΑΣΣΟΜΕΝΩΝ ΣΗΜΑΤΩΝ

ΜΕΤΡΗΣΗ ΔΙΑΦΟΡΑΣ ΦΑΣΗΣ ΔΥΟ ΗΜΙΤΟΝΟΕΙΔΩΝ ΣΗΜΑΤΩΝ

Εργαστήριο Κυκλωµάτων και Μετρήσεων ΗΜΥ203

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

Το διπολικό τρανζίστορ

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Παρουσιάσεις στο ΗΜΥ203, 2015

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΑΣΚΗΣΗ 6. Μελέτη συντονισμού σε κύκλωμα R,L,C, σειράς

ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕ ΠΑΛΜΟΓΡΑΦΟ

Σημειώσεις Σχετικά με τη λειτουργία του Παλμογράφου

Άσκηση 14. Τριφασική γεννήτρια εναλλασσόμενου ρεύματος. Δυναμική συμπεριφορά

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

ΟΡΓΑΝΑ & ΕΞΑΡΤΗΜΑΤΑ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ

ΗΜΥ203 Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

2 η ΕΝΟΤΗΤΑ. Δίοδοι - Επαφή pn. 4 ο 5 ο 6 ο Εργαστήριο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

Πανεπιστήμιο Θεσσαλίας

Παράρτημα. Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

ΜΕΡΟΣ Α: Απαραίτητες γνώσεις

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο

«Εργαστήριο σε Θέματα Ηλεκτρικών Μετρήσεων»

ΑΣΚΗΣΗ 2 η : ΟΡΓΑΝΑ ΚΑΙ ΣΥΣΚΕΥΕΣ ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ

- 1 - ΜΕΛΕΣΗ ΦΑΡΑΚΣΗΡΙΣΙΚΗ ΚΑΜΠΤΛΗ: Ηλεκτρικής πηγής, ωμικού καταναλωτή και διόδων πυριτίου και γερμανίου, με τη ΛΑ- LoggerProGR.

Σημειώσεις για την Άσκηση 2: Μετρήσεις σε RC Κυκλώματα

Επαναληπτικές Ασκήσεις Εργαστηρίου Κυκλωμάτων και Μετρήσεων ΗΜΥ 203

ΠΑΝΕΚΦE ΠΑΝΕΛΛΗΝΙΑ ΕΝΩΣΗ ΥΠΕΥΘΥΝΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΚΕΝΤΡΩΝ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Κεφάλαιο 1 ο. Βασικά στοιχεία των Κυκλωμάτων

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΓΙΑ ΗΛΕΚΤΡΟΝΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ. 10 ο Εργαστήριο Εισαγωγή στον παλμογράφο

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ

Εργαστήριο Κυκλωμάτων και Μετρήσεων

Μετρήσεις µε παλµογράφο

3 η ΕΝΟΤΗΤΑ. Το διπολικό τρανζίστορ

ΝΟΜΟΣ ΤΟΥ OHM ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: 1 ΣΚΟΠΟΣ 1 2 ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ 1 3 ΕΞΟΠΛΙΣΜΟΣ 5 4 ΕΞΑΡΤΗΜΑΤΑ 5

Τελευταία(μεταβολή:(Αύγουστος(2013( 11

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. A. Στάσιμα κύματα σε χορδές

Πανεπιστήµιο Κύπρου. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εισαγωγή στην Τεχνολογία

Άσκηση 2. Όργανα εργαστηρίου, πηγές εναλλασσόμενης τάσης και μετρήσεις

Πανεπιστήμιο Κρήτης Άσκηση 2. α) η εξοικείωση με τον παλμογράφο στη χρήση για μετρήσεις εναλλασσόμενης τάσης,

Φίλτρα διέλευσης: (α) χαμηλών συχνοτήτων (β) υψηλών συχνοτήτων

ΑΣΚΗΣΗ 208 ΚΥΚΛΩΜΑ ΣΥΝΤΟΝΙΣΜΟΥ ΕΝ ΣΕΙΡΑ U U (3)

ΑΣΚΗΣΗ 0. Κύκλωμα - Όργανα

ΑΣΚΗΣΗ 5B. Αυτόματες μετρήσεις παλμογράφου Κύκλωμα RC

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

8. ΕΝΙΣΧΥΤΗΣ ΙΣΧΥΟΣ PUSH-PULL

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων Εβδομαδιαία Εξέταση 4 Τετάρτη 31/10/2007

Ηλεκτρικές Ταλαντώσεις: Εξαναγκασμένη Ηλεκτρική Ταλάντωση

Ο ΠΑΛΜΟΓΡΑΦΟΣ ΔΙΠΛΗΣ ΔΕΣΜΗΣ ΥΒ43280 ΤΟΥ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

Ανάλυση Ηλεκτρικών Κυκλωμάτων

ΠΑΛΜΟΓΡΑΦΟΣ ΤΡΟΦΟ ΟΤΙΚΟ ΓΕΝΝΗΤΡΙΑ

Πείραμα. Ο Διαφορικός Ενισχυτής. Εξοπλισμός. Διαδικασία

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωμάτων και Μετρήσεων

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 6

ΝΟΜΟΣ ΤΟΥ OHM ( σε αντιστάτη και λαμπτήρα )

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Πειραματικός υπολογισμός της ειδικής θερμότητας του νερού. Σκοπός και κεντρική ιδέα της άσκησης

ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Εργαστηριακή άσκηση 1

Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εργαστήριο Κυκλωµάτων και Μετρήσεων

ΗΜΜΥ 203 Εργαστήριο Κυκλωμάτων και Μετρήσεων. Τελική Εξέταση Πέμπτη 7/12/2006, Α και

3. ΕΝΙΣΧΥΤΗΣ ΜΕ ΣΥΖΕΥΞΗ ΜΕΣΩ ΠΥΚΝΩΤΗ

Transcript:

ΑΣΚΗΣΗ 8 ΧΡΗΣΗ ΤΟΥ ΠΑΛΜΟΓΡΑΦΟΥ ΣΕ ΚΥΚΛΩΜΑ ΕΝΑΛΛΑΣΣΟΜΕΝΗΣ ΤΑΣΗΣ (AC) 1 Σκοπός Ο σκοπός αυτής της άσκησης είναι η εξοικείωση του φοιτητή με ένα πολύ σημαντικό όργανο των ηλεκτρονικών μετρήσεων, τον παλμογράφο. Πιο συγκεκριμένα: α) μελετούνται οι βασικές λειτουργίες του παλμογράφου και γίνεται εξοικείωση με τα πιο σημαντικά κουμπιά του και β) με τη βοήθειά του μετρούνται και προσδιορίζονται τα χαρακτηριστικά των μεγεθών μιας εναλλασσόμενης τάσης, όπως το πλάτος, η συχνότητα, η περίοδος και η διαφορά φάσης σε σχέση με κάποια άλλη εναλλασσόμενη τάση. ΛΕΞΕΙΣ-ΚΛΕΙΔΙΑ πυκνωτής, ωμική αντίσταση, εναλλασσόμενη τάση, σύνδεση σε σειρά και παράλληλα, συχνότητα, περίοδος σήματος, διαφορά φάσης, ενεργός τάση, παλμογράφος, βολτόμετρο 2 Θεωρία 2.1 Εισαγωγή - Ο παλμογράφος γραφικά Ο παλμογράφος είναι ένα όργανο το οποίο, κατ αρχήν, παρέχει τη δυνατότητα να απεικονισθούν 1. Μια τάση σε σχέση με το χρόνο (λειτουργία Χ/Τ) 2. Μια τάση σε σχέση με μια δεύτερη τάση (λειτουργία Χ/Υ) Οι είσοδοι ονομάζονται κανάλια (CH1, CH2), και οι τάσεις ονομάζονται σήματα. Μία από τις πιο συχνές χρήσεις του παλμογράφου είναι η αντιμετώπιση προβλημάτων δυσλειτουργίας στα ηλεκτρονικά κυκλώματα. Όταν π.χ. μια τάση μεταβάλλεται γοργά με το χρόνο, το βολτόμετρο μπορεί να δείξει μια εντελώς απροσδόκητη τάση, αλλά ο παλμογράφος μπορεί να αποκαλύψει την μορφή V(t) της τάσης αυτής. Επιπλέον, στις εναλλασσόμενες τάσεις χρησιμοποιώντας απλά βολτόμετρα είναι δυνατό να μετρηθούν μόνο οι ενεργές τους τιμές (οι οποίες είναι γνωστές ως "rms" δηλαδή "root mean square" στα Αγγλικά, δείτε παρακάτω) οι οποίες είναι κάτι σαν μέσες τιμές και όχι οι στιγμιαίες ημιτονοειδείς τιμές του ηλεκτρικού σήματος που αλλάζουν με το χρόνο. Το κύριο πλεονέκτημα ενός παλμογράφου είναι ότι μπορεί να δείχνει μια γραφική απεικόνιση V(t) του ηλεκτρικού σήματος. Mπορούμε να μετρήσουμε με ικανοποιητική ακρίβεια τα χαρακτηριστικά ενός σήματος, όπως το πλάτος, την περίοδο, την συχνότητα και την διαφορά φάσης μεταξύ δύο σημάτων. Μια άλλη ενδιαφέρουσα χρήση του παλμογράφου είναι η σύνθεση δύο τάσεων με την οποία παίρνουμε τις μορφές Lissajous (δείτε παρακάτω). Από τις μορφές αυτές μπορούμε να προσδιορίσουμε τις διαφορές φάσης μεταξύ των σημάτων από πολλαπλές εισόδους. Πολύ συχνά, για παράδειγμα, χρησιμοποιούνται στην αναμετάδοση για να απεικονίσουν ταυτόχρονα τα αριστερά και δεξιά στερεοφωνικά κανάλια, για να εξασφαλιστεί ότι η στερεοφωνική γεννήτρια έχει βαθμονομηθεί σωστά. 1

2.2 Χαρακτηριστικά μεγέθη μιας εναλλασσόμενης τάσης εξίσωση Όταν η τάση V σε κάποιο σημείο ενός κυκλώματος είναι εναλλασσόμενη, τότε δίνεται από την V = V P sin(ωt) (1) όπου V P είναι το πλάτος της και ω είναι η κυκλική της συχνότητα. Η γραφική παράσταση αυτής της τάσης φαίνεται στο Σχήμα 8.1 και είναι αυτό που βλέπουμε επάνω στην οθόνη του παλμογράφου εάν συνδέσουμε π.χ. την τάση αυτή στο κανάλι CH1 και επιλέξουμε τη λειτουργία Χ/Τ. Επάνω στην οθόνη μπορούμε να μετρήσουμε άμεσα την περίοδο Τ και από αυτήν να υπολογίσουμε την συχνότητα f και την κυκλική συχνότητα ω ως εξής: f = 1/T ω = 2πf (2) Επίσης μπορούμε να μετρήσουμε και το πλάτος V P ή και το διπλάσιο αυτού από τη διαφορά της μέγιστης-ελάχιστης τιμής, το οποίο συμβολίζεται με V PP και ονομάζεται τάση από κορυφή σε κορυφή, (peak-to-peak), Σχήμα 8.1. Σχήμα 8.1: Χαρακτηριστικές τιμές ημιτονοειδούς κύματος Η μέση τιμή ενός ημιτονοειδούς μεγέθους στη διάρκεια μιας περιόδου είναι μηδέν (όσα σημεία υπάρχουν θετικά, άλλα τόσα υπάρχουν και αρνητικά). Ένα καλύτερο μέγεθος που αποτυπώνει κάτι σαν μέση τιμή είναι η λεγόμενη "ενεργός τιμή" της τάσης V rms (rms=root mean square) η οποία ορίζεται ως 2

η τετραγωνική ρίζα της μέσης τιμής του τετραγώνου της τάσης σε μια περίοδο. Από τα Μαθηματικά αποδεικνύεται ότι η ενεργός τιμή είναι ίση με V rms = V P 2 (3) Η ενεργός τιμή είναι μια σημαντική ποσότητα επειδή είναι η τιμή που μας δίνει ένα βολτόμετρο όταν ρυθμιστεί να μετράει εναλλασσόμενες τάσεις όπως η (1) και όχι το πλάτος της V P. Επίσης η V rms είναι και ενεργειακώς σημαντική επειδή η ισχύς που καταναλώνεται σε μια αντίσταση όταν στα άκρα της εφαρμοστεί η τάση (1), είναι ίση με αυτή που θα είχαμε εάν εφαρμόζαμε σε αυτή μια συνεχή τάση με τιμή V rms. Για παράδειγμα, μια εναλλασσόμενη τάση με ενεργό τιμή 115 V (δηλαδή πλάτος 162.6 V) προκαλεί την ίδια θέρμανση ενός vήματος λυχνίας όσο μια συνεχής τάση 115 V. Για το λόγο αυτό η τιμή rms ονομάζεται και "ενδεικνυόμενη" ή "ενεργός τιμή". 2.3 Ωμική αντίσταση και πυκνωτής σε κύκλωμα εναλλασσόμενου ρεύματος Όπως φαίνεται στο παρακάτω Σχήμα 8.2, εάν ένας πυκνωτής χωρητικότητας C και μια ωμική αντίσταση R συνδεθούν σε σειρά με μια πηγή τάσης V, τότε σύμφωνα με τον κανόνα τάσεων του Kirchhoff ισχύει ότι V = IR + Q C (4) όπου Q είναι το φορτίο του πυκνωτή και Ι είναι το ρεύμα που διαρρέει το κύκλωμα. Σχήμα 8.2: Πυκνωτής χωρητικότητας C και ωμική αντίσταση R συνδεδεμένα σε σειρά με μια πηγή τάσης V Εάν η τάση της πηγής είναι μια συνάρτηση του χρόνου t, τότε και το ρεύμα θα είναι μια συνάρτηση του t. Σε αυτήν την περίπτωση, εάν παραγωγίσουμε την παραπάνω εξίσωση ως προς t και κάνουμε χρήση του ορισμού του ρεύματος 3

Ι = dq dt (5) τότε οδηγούμαστε στο αποτέλεσμα: dv dt = dι dt R + Ι C (6) η οποία είναι μια διαφορική εξίσωση ως προς το ρεύμα Ι(t). Εάν η πηγή είναι εναλλασσόμενη, τότε θα δίνεται από την Εξίσωση (1). Τότε αποδεικνύεται ότι το ρεύμα Ι είναι επίσης εναλλασσόμενο με την ίδια κυκλική συχνότητα ω όπως της πηγής, αλλά εμφανίζει μια διαφορά φάσης φ ως προς αυτήν, δηλαδή Ι = I P sin(ωt + φ) (7) όπου I P είναι το πλάτος του ρεύματος και η φάση φ δίνεται από την σχέση tanφ = 1 ωrc (8) Η τάση στα άκρα της αντίστασης είναι ίση με V R = IR = V RP sin(ωt + φ) (9) όπου V RP = I P R είναι το πλάτος της. Βλέπουμε ότι και αυτή η τάση παρουσιάζει διαφορά φάσης ως προς την πηγή (ίδια φάση με αυτή του ρεύματος). 2.4 Μέτρηση της διαφοράς φάσης ημιτονοειδών σημάτων Η διαφορά φάσης μεταξύ δυο τάσεων V 1 (t) και V 2 (t) όπως η (1) και η (9), μπορεί να μετρηθεί με τη βοήθεια ενός παλμογράφου με έναν από τους παρακάτω δυο τρόπους: Απεικόνιση σε άξονες Υ-t: Τα δύο σήματα V 1 (t) και V 2 (t) απεικονίζονται ταυτόχρονα στην οθόνη του παλμογράφου, όπως φαίνεται στο σχήμα 8.3 α. Ως πηγή διέγερσης λαμβάνεται το σήμα που προηγείται σε σχέση με το άλλο. Η διαφορά φάσης σε μοίρες δίνεται από τη σχέση: φ = 360 0 ΔΤ Τ (10) (ή 2πΔΤ/Τ) σε ακτίνια, όπου ΔΤ είναι η διαφορά χρόνου μεταξύ των δύο κορυφών,και Τ η περίοδος (ίδια και για τα δυο σήματα αφού έχουν την ίδια κυκλική συχνότητα ω). 4

Σχήμα 8.3: Μέτρηση της διαφοράς φάσης. (α) Απεικόνιση σε άξονες Υ-t, (β) Απεικόνιση σε άξονες Χ-Υ, σχεδιασμός σχημάτων Lissajous Απεικόνιση σε άξονες Χ-Υ (σχήματα Lissajous): Και πάλι τα δύο σήματα απεικονίζονται ταυτόχρονα αλλά απαλείφεται ο χρόνος μεταξύ τους ώστε να προκύψει μια σχέση V 1 συναρτήσει του V 2, δηλαδή ο παλμογράφος σε αυτή τη λειτουργία αναπαριστάνει τάση συνάρτηση τάσης. Όπως φαίνεται στο σχήμα 8.3 β, το σχήμα που προκύπτει είναι μια έλλειψη. Η διαφορά φάσης σε αυτή την περίπτωση δίνεται από τη σχέση: φ = sin 1 (b/a) (11) όπου το a είναι η κατακόρυφη απόσταση μεταξύ του υψηλότερου και του χαμηλότερου σημείου της έλλειψης, ενώ b είναι η κατακόρυφη απόσταση μεταξύ των δυο σημείων της τομής της έλλειψης με τον άξονα y (είναι σημαντικό να έχετε κεντράρει καλά τις τάσεις στη λειτουργία Υ-t πριν να αλλάξετε στη λειτουργία Χ-Υ). 3 Πειραματική διάταξη Για τη διεξαγωγή της άσκησης χρησιμοποιούνται τα εξής: γεννήτρια ημιτονοειδών σημάτων μεταβλητής συχνότητας παλμογράφος ψηφιακό πολύμετρο γραμμικά στοιχεία: πυκνωτές και αντιστάσεις διαφόρων τιμών, καθώς και πλήθος καλωδίων απλών και τύπου BNC για τη σύνδεση με τον παλμογράφο. 5

4 Πειραματική διαδικασία 4.1 Βαθμολογία και έλεγχος ακρίβειας 1. Αφού θέσετε τον παλμογράφο σε λειτουργία (παίρνει 10-20 δευτερόλεπτα για να εμφανισθεί κάποιο ίχνος στην οθόνη του), ρυθμίστε την φωτεινότητα (INTENSITY) και την εστίαση (FOCUS) του ίχνους ώστε αυτό να μοιάζει με μια λεπτή και εστιασμένη καμπύλη ή ευθεία στην οθόνη. Εάν δεν εμφανίζεται κάτι, δοκιμάστε την κατακόρυφη μεταφορά (το κουμπί με τα δυο βελάκια πάνω από την ένδειξη "CH1-Y") ή/και την οριζόντια μεταφορά (το κουμπί με τα δυο βελάκια κάτω από την ένδειξη "EXT-TRIG"). Εξοικειωθείτε με τα διάφορα βασικά κουμπιά ρύθμισης του παλμογράφου (ΠΑΡΑΡΤΗΜΑ 1). 2. Συνδέστε την μία είσοδο (CH1-Υ) του παλμογράφου με τη γεννήτρια χαμηλών συχνοτήτων χρησιμοποιώντας το ομοαξονικό καλώδιο που φαίνεται στην παρακάτω φωτογραφία. Εφόσον η γείωση (μαύρο) βύσμα BNC ηλεκτρική τάση είναι εξ ορισμού η διαφορά δυναμικού μεταξύ δυο σημείων, αναγκαστικά η μέτρηση της απαιτεί δυο διαφορετικούς αγωγούς. Το ομοαξονικό καλώδιο αποτελείται στο εσωτερικό του από δυο συρμάτινους αγωγούς, έναν εσωτερικό επάνω στον άξονά του και έναν δεύτερο σε σχήμα κυλινδρικό ο οποίος περιβάλλει τον πρώτο (εξ ου και η ονομασία "ομοαξονικό") και είναι αυτός που συνδέεται πάντοτε στη γείωση του κάθε κυκλώματος (δυναμικό μηδέν). Τα ομοαξονικά καλώδια που χρησιμοποιούμε σε αυτή την άσκηση (φωτογραφία), έχουν στη μια μεριά τους ένα βύσμα (BNC) το οποίο κουμπώνει επάνω στον παλμογράφο ενώ στη άλλη μεριά τους έχουν δύο απολήξεις από τις οποίες η γείωση είναι αυτή με το μαύρο χρώμα. Βεβαιωθείτε ότι αυτή η μαύρη απόληξη συνδέεται στην έξοδο εκείνη της γεννήτριας με το σύμβολο της γείωσης (επίσης μαύρου χρώματος) ενώ η κόκκινη απόληξη στην έξοδο "OUT" χρώματος κιτρίνου. 3. Ρυθμίστε την γεννήτρια σε συχνότητα 5 khz και πλάτος τάσης (V p ) περίπου στη μέση (~3 V). Προσοχή: Η γείωση του παλμογράφου πρέπει να είναι στη γείωση του κυκλώματος ή στον κόμβο αναφοράς (0 V). Σε αντίθετη περίπτωση μπορεί να καταστραφεί ο παλμογράφος. 4. Για να αρχικοποιήσουμε σωστά τον παλμογράφο : - Βεβαιωθείτε ότι το κουμπί SWP/X-Y είναι απο-επιλεγμένο (εκτός) ώστε ο παλμογράφος να βρίσκεται σε λειτουργία Χ/Τ (να απεικονίζει δηλαδή τάση συναρτήσει του χρόνου) 6

- Επιλέξτε αρχικά τη λειτουργία gnd (μαύρο κουμπί κάτω χαμηλά) η οποία εφαρμόζει μια μηδενική τάση στην είσοδο του παλμογράφου και επομένως πρέπει να βλέπουμε μια οριζόντια γραμμή στην οθόνη του επάνω στον άξονα του χρόνου (μηδενική συνάρτηση). Εάν αυτό δεν συμβαίνει, ρυθμίζουμε τη κατακόρυφη μεταφορά (το κουμπί με τα δυο βελάκια ) ώσπου να επιτευχθεί το επιθυμητό αποτέλεσμα. Αφού τελειώσετε, μη ξεχάσετε να απο-επιλέξετε το κουμπί gnd. - O επιλογέας V/div και ο επιλογέας TIMEBASE (οι κλίμακες της τάσης και του χρόνου αντίστοιχα) τοποθετούνται αρχικά σε μεγάλες τιμές και σταδιακά χαμηλώνουν μέχρις ότου το σήμα να φαίνεται καλά στην οθόνη. Π.χ. πρέπει να βλέπουμε καθαρά τουλάχιστον δυο περιόδους του σήματος και το πλάτος του να είναι αρκετά μεγάλο αλλά όχι εκτός οθόνης. Είναι απαραίτητο ο χειριστής να μπορεί να καθορίζει την κλίμακα του καθέτου και του οριζοντίου άξονα έτσι ώστε μέσα στην οθόνη να υπάρχει αρκετό τμήμα του σήματός, για να μπορούν να γίνουν σωστές μετρήσεις και να εξαχθούν πληροφορίες με τη μικρότερη δυνατή αβεβαιότητα. 4.2 Μέρος 1: Μέτρηση Τάσεων 1. Συνδέστε και ένα ηλεκτρονικό βολτόμετρο παράλληλα με τη γεννήτρια χαμηλών συχνοτήτων (εάν ως βολτόμετρο χρησιμοποιείτε ένα πολύμετρο, τότε πρέπει να συνδέσετε τις εισόδους του "V-Ω" και "COM" και ο επιλογέας του πρέπει να βρίσκεται στην ένδειξη ~V ). Τα καλώδια του εργαστηρίου κουμπώνουν εύκολα μεταξύ τους για να δημιουργούν κόμβους. 2. Ρυθμίστε τη γεννήτρια, ώστε να δίνει στην έξοδο ημιτονοειδή τάση με συχνότητα f = 5 khz. 3. Με τον επιλογέα V/div στην τιμή "1", μεταβάλλετε τον διακόπτη με ένδειξη Amplitude της γεννήτριας ώστε να δημιουργήσετε ένα σήμα μέγιστου πλάτους. Για να μετρήσουμε με τον παλμογράφο την τάση του σήματος, μετράμε στην οθόνη του την απόσταση Y σε "κουτάκια" (DIV) από ένα ελάχιστο έως ένα μέγιστο της τάσης (είτε το πλάτος είτε από κορυφή σε κορυφή). Κατά την συγγραφή της αναφοράς, ο πολλαπλασιασμός αυτού του αριθμού επί την ένδειξη του επιλογέα V/div μας δίνει την αντίστοιχη τάση σε Volts. 4. Καταγράφουμε στον πίνακα των μετρήσεων την τάση του βολτομέτρου, τα κατακόρυφα "κουτάκια" (DIV) του παλμογράφου, και την τιμή του επιλογέα V/div. Προσέξτε ότι τα "κουτάκια" έχουν και υποδιαιρέσεις οπότε να είσαστε ακριβείς στις μετρήσεις σας. Επίσης σημειώστε κάπου δίπλα στον πίνακα εάν μετράτε το πλάτος της τάσης V p ή την τάση από κορυφή-σε-κορυφή V pp. 5. Μεταβάλλετε τον διακόπτη με ένδειξη Amplitude της γεννήτριας ώστε να δημιουργήσετε πέντε σήματα διαφορετικού πλάτους από ~0,5 V έως ~6 V με βήμα ~0,75 V (αλλά ίδιας συχνότητας 5 khz). 7

O επιλογέας κάθετης απόκλισης (V/div) καθορίζει την κλίμακα με την οποία απεικονίζονται τα σήματα. Για παράδειγμα, η ρύθμιση 10 mv/div σημαίνει πως κάθε ένα τμήμα (div) του άξονα αντιστοιχεί σε τάση 10 mv. 4.3 Μέρος 2: Μέτρηση περιόδου και υπολογισμός συχνότητας 1. Διατηρούμε το πλάτος του σήματος σταθερό και ίσο με 3 V ρυθμίζοντας το Amplitude στη γεννήτρια μέχρι να δούμε V PP = 6 V στον παλμογράφο. 2. Μετρήστε την οριζόντια απόσταση επάνω στην οθόνη του παλμογράφου που αντιστοιχεί σε μία περίοδο του σήματος σε "κουτάκια" (DIV). 3. Το γινόμενο της απόστασης αυτής X επί την ένδειξη της βάσης χρόνου (TIMEBASE) μας δίνει την περίοδο του σήματος. Το αντίστροφο της περιόδου δίνει τη συχνότητα του σήματος. Καταγράψτε στον πίνακα μετρήσεων τόσο τα "κουτάκια" (DIV) όσο και την ένδειξη της βάσης χρόνου (TIMEBASE). 4. Μεταβάλλετε τη συχνότητα της γεννήτριας από ~0,5 khz έως ~5 khz με βήμα ~1.5 khz. (Δηλαδή 3 διαφορετικές μετρήσεις συνολικά με σταθερό πλάτος και με μεταβαλλόμενη συχνότητα). Ο επιλογέας βάσης χρόνου καθορίζει την κλίμακα με την οποία απεικονίζεται ο χρόνος. Παράδειγμα, η ρύθμιση 10 ms/div σημαίνει πως κάθε ένα τμήμα (div) του άξονα αντιστοιχεί σε χρονικό διάστημα 10 ms. 4.4 Μέρος 3: Μέτρηση της διαφοράς φάσης - Απεικόνιση σε άξονες Υ-t 1. Κατασκευάστε το κύκλωμα του Σχήματος 8.4 α χρησιμοποιώντας δύο αντιστάσεις 47 Ω (επάνω) και 100 Ω (κάτω) συνδεδεμένες σε σειρά με τη γεννήτρια συχνοτήτων. Αυτό το κύκλωμα είναι ένας κλασικός διαιρέτης τάσης. 2. Συνδέστε δυο διαφορετικά ομοαξονικά καλώδια στα δύο κανάλια Υ1 (CH1) και Υ2 (CH2) του παλμογράφου και τις άλλες άκρες τους συνδέστε τις στο κύκλωμα σύμφωνα με τα ενδεδειγμένα χρώματα στο σχήμα. Όπως προαναφέρθηκε, οι γειώσεις των ομοαξονικών καλωδίων (μαύρες απολήξεις) πρέπει να συνδέονται στη γείωση της γεννήτριας. 3. Τροφοδοτείστε το κύκλωμα με σήμα ημιτονοειδούς μορφής (επιλέξτε μια συχνότητα f < 2.5 khz και πλάτος V p = 3 V) 4. Καταγράψτε στο φύλλο μετρήσεων το πλάτος (κουτιά και τιμή του επιλογέα VOLTS/DIV) αλλά και την περίοδο (κουτιά και τιμή του επιλογέα TIMEBASE) 5. Επιλέγουμε στον παλμογράφο DUAL (ώστε να φαίνονται και τα δυο σήματα), θέτουμε τους δυο επιλογείς V/div στην ίδια τιμή π.χ. "1" και τον επιλογέα βάσης χρόνου σε κατάλληλη θέση, ώστε 8

να εμφανιστούν πάνω στην οθόνη καθαρά οι δύο ημιτονοειδείς κυματομορφές. Περιγράψτε ποιοτικώς τις ομοιότητες και τις διαφορές των δυο σημάτων. 6. Αντικαταστήστε την αντίσταση 100 Ω με ένα πυκνωτή C = 1,0 μf όπως στο Σχήμα 8.4 β (ώστε ο πυκνωτής να βρίσκεται σε σειρά με την αντίσταση R = 47 Ω) και μετρήστε τη διαφορά χρόνου ΔT μεταξύ των δυο αντίστοιχων κορυφών των δύο κυματομορφών και τον χρόνο T που αντιστοιχεί σε μία περίοδο (Είναι σημαντικό τα δυο σήματα να είναι συμμετρικά ως προς τον οριζόντιο άξονα του χρόνου επομένως καλό θα ήταν να επαναλάβετε την διαδικασία μηδενισμού gnd και για τα δυο κανάλια ξεχωριστά). 7. Επαναλάβετε τη διαδικασία διατηρώντας την ίδια αντίσταση αλλά με διαφορετικό πυκνωτή C = 2.2 μf. Ομοίως και για C = 4.4 μf. Σχήμα 8.4 α : Δύο αντιστάσεις σε κύκλωμα AC. R = 47 Ω και R = 100 Ω Σχήμα 8.4 β : Πυκνωτής και αντίσταση σε κύκλωμα AC. R = 47 Ω και C = 1,0 μf 4.5 Μέρος 4: Μέτρηση διαφοράς φάσης - Απεικόνιση σε άξονες Χ-Υ. Σχεδιασμός Σχημάτων Lissajous 1. Το κύκλωμα, όπου η αντίσταση R = 47 Ω και ο πυκνωτής C = 1,0 μf είναι συνδεδεμένα σε σειρά, συνδέεται με γεννήτρια συχνοτήτων όπως στο Σχήμα 8.4 β με σήμα ημιτονοειδούς μορφής (συχνότητα f = 4 khz και πλάτος Amplitude = 3 V). 2. Επιλέγουμε στον παλμογράφο DUAL και SWP (X-Y), θέτουμε τους δυο επιλογείς V/div στην ίδια τιμή π.χ. "1" και θα πρέπει να εμφανιστεί μια έλλειψη στην οθόνη του παλμογράφου (σχήμα 8.3 β ). 3. Μετρήστε τις αποστάσεις a και b σε DIV 9

4. Επαναλάβετε τη διαδικασία διατηρώντας την ίδια αντίσταση και βάζοντας πυκνωτή C = 2.2 μf. Ομοίως και για C = 4.4 μf. 5 Εργαστηριακή Αναφορά Στο κομμάτι της θεωρίας απαντήστε μόνο τις παρακάτω ερωτήσεις: (1) Σχεδιάστε ποιοτικά μια καμπύλη ημιτόνου (τάση συναρτήσει του χρόνου). Πως μπορεί να προσδιοριστεί επάνω σε αυτήν η περίοδος του και η συχνότητά του; Πως μπορεί να προσδιοριστεί το πλάτος V P, η τάση από κορυφή-σε-κορυφή V PP, η μέση τιμή της τάσης και η ενεργός τιμή της V rms. (2) Αποδείξτε την Εξ. (10) που περιγράφει την διαφορά φάσης μεταξύ δυο ημιτόνων ίδιας συχνότητας. (3) Δώστε τυχαίες τιμές στις ποσότητες V P και ω της έκφρασης V = V P sin(ωt) και ακολούθως υπολογίστε την ενεργό τιμή, την τάση από κορυφή-σε-κορυφή, την συχνότητα και την περίοδο. (4) Όπως και στην προηγούμενη ερώτηση, μια δώστε τυχαία τιμή στην ποσότητα V P < V p και θέσετε Δt = T/5, υπολογίστε το Δφ από την Εξ. (10) και ακολούθως σχεδιάστε σε ένα πρόχειρο διάγραμμα τα εξής δυο σήματα μαζί V = V P sin(ωt) και V = V P sin(ωt + Δφ) (τάση συναρτήσει χρόνου, ίδιο ω). (5) Γιατί είναι απαραίτητο ο χειριστής του παλμογράφου να μπορεί να καθορίζει την κλίμακα του καθέτου και του οριζοντίου άξονα έτσι ώστε μέσα στην οθόνη να υπάρχει αρκετό τμήμα του σήματός του; Ζητούνται τα ακόλουθα στο κεφάλαιο «αποτελέσματα»: 5.1 Μέρος 1: Μέτρηση Τάσεων (1) Με τις μετρήσεις αυτές θα συμπληρώσετε τον παρακάτω πίνακα: 1 2 ΑΑ μέτρηση από βολτόμετρο: V rms /V κάθετη απόκλιση, Υ /div μέτρηση από παλμογράφο τιμή του επιλογέα, V/div V pp /V Σφάλμα μέτρησης δv pp /V (2) Σχεδιάστε τη γραφική παράσταση (σε χιλιοστομετρικό χαρτί - με το χέρι) της τάσης V pp συναρτήσει της τάσης V rms. Τι συμπεραίνετε για την κλίση της καμπύλης; Περιμένετε να είναι ίση με 1; Εάν όχι, ποια πρέπει να είναι η τιμή της; 5.2 Μέρος 2: Μέτρηση περιόδου και υπολογισμός συχνότητας (1) Με τις μετρήσεις αυτές θα συμπληρώσετε τον παρακάτω πίνακα: μέτρηση από παλμογράφο 10

ΑΑ 1 2 οριζόντια απόσταση, X/ div τιμή του επιλογέα, Time/div Περίοδος, T / ms Συχνότητα, f /khz 5.3 Μέρος 3: Μέτρηση διαφοράς φάσης - Απεικόνιση σε άξονες Υ-t (1) Υπολογίστε τη θεωρητική και την πειραματική τιμή της διαφοράς φάσης σύμφωνα με τις αντίστοιχες εξισώσεις (8) και (9). Με τα αποτελέσματα σας θα συμπληρώσετε τον παρακάτω πίνακα: Κύκλωμα 1 ο (R = 47 Ω, C = 1 μf) Κύκλωμα 2 ο (R = 47 Ω, C = 2,2 μf) Κύκλωμα 3 ο (R = 47 Ω, C = 4,4 μf) ΔT /div T/ div φ ο πειραματικό φ ο θεωρητικό (2) Σχεδιάστε γραφικά μια καμπύλη ημιτόνου (με το χέρι) επάνω σε μιλιμετρέ χαρτί όπως στο Σχήμα 8.3 α στο οποίο να επιλεγούν κατάλληλες μονάδες ώστε να απεικονίζεται η τάση V της πηγής Εξ. (1), με το κατάλληλο πλάτος V P και την κατάλληλη περίοδο Τ όπως την μετρήσατε στο εργαστήριο. Στην ίδια γραφική παράσταση να σχεδιάσετε και μια δεύτερη τάση V με πλάτος V P μικρότερο του V P (π.χ. στα 60 ή 70% αυτού), με την ίδια περίοδο αλλά με διαφορά χρόνου Δt όπως την υπολογίσατε στο τελευταίο βήμα του παραπάνω πίνακα. (3) Σχολιάστε τη διαφοράς φάσης και το διαφορετικό πλάτος της τάσης. Συγκρίνετε αυτή τη γραφική παράσταση με την αντίστοιχη που παρατηρήσατε ποιοτικώς στο εργαστήριο στο βήμα 5 του Μέρους 3. (4) Υπολογίστε την ενεργό τιμή του ρεύματος στο κύκλωμα. (5) Υπολογίστε τη θεωρητική και την πειραματική τιμή της διαφοράς φάσης σύμφωνα με τις αντίστοιχες εξισώσεις (8) και (9). Με τα αποτελέσματα σας θα συμπληρώσετε τον παρακάτω πίνακα: (6) Αφού μετατρέψετε τις πειραματικές τιμές φ σε ακτίνια, κάντε μια γραφική παράσταση του tanφ συναρτήσει του 1/C (τρία σημεία) και υπολογίστε την κλίση. Με τι θα πρέπει να ισούται; 5.4 Μέρος 4: Μέτρηση διαφοράς φάσης - Απεικόνιση σε άξονες Χ-Υ. Σχεδιασμός Σχημάτων Lissajous (1) Υπολογίστε τη διαφορά φάσης σύμφωνα με την εξίσωση (10). Με τα αποτελέσματα σας θα συμπληρώσετε τον παρακάτω πίνακα. (2) Συγκρίνετε τις τιμές φάσης που πήρατε με τις δυο μεθόδους. 11

Κύκλωμα 1 ο (R = 47 Ω, C = 1 μf) Κύκλωμα 2 ο (R = 47 Ω, C = 2,2 μf) Κύκλωμα 3 ο (R = 47 Ω, C = 4,4 μf) α b φ ο 6 Βιβλιογραφία [1] R. A. Serway, Physics for Scientists and Engineers, Volume 2, Saunders College Publishing, 1990. [2] H. D. Young, Φυσική Ηλεκτρομαγνητισμός, Οπτική, Σύγχρονη Φυσική, Τόμος B, εκδόσεις Παπαζήση, Αθήνα, 1994. [3] Θ. Λ. Δεληγιάννης, Hλεκτρονικά Αναλογικά Κυκλώματα, Τόμος Β, 1993. [4] M. Gussow, Ηλεκτρισμός και Μαγνητισμός, McGraw-Hill, New York, ΕΣΠΙ Αθήνα, 1994. 12