Ανάλυση Ηλεκτρικών Κυκλωμάτων
|
|
- ÏἸάϊρος Ταρσούλη
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 6: Παθητικά στοιχεία αποθήκευσης ενέργειας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: κωδ. ΕΥΔΟΞΟΣ:
2 6.1 Πηνίο Ένα ακόμα παθητικό στοιχείο είναι το πηνίο. Το ιδανικό πηνίο αποθηκεύει ενέργεια με τη μορφή μαγνητικού πεδίου. Δεν παράγει ούτε καταναλώνει ενέργεια. Είτε αποθηκεύει ενέργεια καταναλώνοντας ισχύ, είτε επιστρέφει την αποθηκευμένη του ενέργεια, παράγοντας ισχύ. v(t) i(t) α) Το πηνίο καταναλώνει ισχύ, di/dt>0 Η σχέση τάσης ρεύματος του πηνίου είναι διαφορική: L v(t) i(t) β) Το πηνίο παράγει ισχύ, di/dt<0 L Η σταθερά αναλογίας L λέγεται αυτεπαγωγή του πηνίου.
3 6.1 Πηνίο Η διαφορική σχέση τάσης ρεύματος δίνει κάποιες ενδιαφέρουσες ιδιότητες στο πηνίο: Στο συνεχές το πηνίο είναι βραχυκύκλωμα, Η αύξηση του ρεύματος με το χρόνο δίνει θετική τάση στα άκρα του (καταναλώνει ισχύ) και η μείωση αρνητική (παράγει ισχύ), Το ρεύμα δεν μπορεί να μεταβληθεί ακαριαία, διότι τότε απειρίζεται η τάση. v(t) i(t) α) Το πηνίο καταναλώνει ισχύ, di/dt>0 L v(t) i(t) β) Το πηνίο παράγει ισχύ, di/dt<0 L
4 6.1 Πηνίο Πόση ενέργεια έχει αποθηκευμένη ένα πηνίο; Ας ξεκινήσουμε από τη σχέση της ισχύος: v(t) i(t) L v(t) i(t) L Αντικαθιστώντας την τάση: α) Το πηνίο καταναλώνει ισχύ, di/dt>0 β) Το πηνίο παράγει ισχύ, di/dt<0 Αν το πηνίο τη χρονική στιγμή 0 δεν διαρρέεται από ρεύμα και τη χρονική στιγμή t διαρρέεται από ρεύμα i η ενέργεια που έχει τη χρονική στιγμή t είναι:
5 6.1 Πηνίο Παράδειγμα 61: Δίνεται το ρεύμα που διαρρέει ένα πηνίο τιμής 100 mh συναρτήσει του χρόνου. Να σχεδιαστεί η τάση στα άκρα του συναρτήσει του χρόνου. Το ρεύμα από τη χρονική στιγμή t=0 μέχρι τη χρονική στιγμή t=2 ms αυξάνεται από 0 σε 40 ma, δηλαδή με σταθερό ρυθμό ΔΙ/Δt=40 ma/2 ms=20 A/sec. Η τάση στα άκρα του πηνίου είναι:
6 6.1 Πηνίο Για το χρονικό διάστημα από 2 μέχρι 3 ms το ρεύμα παραμένει σταθερό στα 40 ma, άρα η τάση στα άκρα του είναι μηδέν. Από τη χρονική στιγμή 3 ms μέχρι τη χρονική στιγμή 4 ms το ρεύμα μειώνεται από 40 ma στα 20 ma, δηλαδή μειώνεται κατά 60 ma μέσα σε χρόνο 1 ms. Ο ρυθμός μεταβολής είναι ΔΙ/Δt= 60 ma/1 ms=60 A/s. Η τάση στα άκρα του θα είναι:
7 6.1 Πηνίο Στη συνέχεια σε χρόνο 2 ms το ρεύμα αυξάνεται κατά 30 ma, οπότε με τον ίδιο τρόπο η τάση του θα είναι: Από τη χρονική στιγμή t=7 ms και μετά το ρεύμα του πηνίου παραμένει σταθερό στα 10 ma, άρα η τάση του θα είναι μηδέν.
8 6.1 Πηνίο Η τάση στα άκρα του πηνίου είναι ανάλογη με την παράγωγο του ρεύματος που το διαρρέει. Συνεπώς, το ρεύμα θα πρέπει να είναι ανάλογο του ολοκληρώματος της τάσης: Έστω ότι το πηνίο διαρρέεται από ένα αρχικό ρεύμα Ι 0. Το ρεύμα που το διαρρέει την οποιαδήποτε χρονική στιγμή t δίνεται από τη σχέση: Το πηνίο είναι ένα στοιχείο που έχει μνήμη. Οι μελλοντικές τιμές του ρεύματος που το διαρρέει εξαρτώνται από τις προηγούμενες.
9 6.1 Πηνίο Παράδειγμα 62: Δίνεται η τάση στα άκρα ενός πηνίου τιμής 100 mh συναρτήσει του χρόνου. Να σχεδιαστεί το ρεύμα που το διαρρέει συναρτήσει του χρόνου. Τη χρονική στιγμή t=0 το ρεύμα του πηνίου είναι μηδέν. Η τάση από τη χρονική στιγμή t=0 μέχρι τη χρονική στιγμή t=2 ms αυξάνεται γραμμικά από 0 σε 40 V. Η κλίση της ευθείας είναι 40 V/2 ms=20 kv/sec. Η εξίσωση της τάσης συναρτήσει του χρόνου είναι: Το ρεύμα είναι:
10 6.1 Πηνίο Η γραφική παράσταση της παραπάνω συνάρτησης είναι μια παραβολή που ξεκινά από την αρχή των αξόνων και φτάνει στην τιμή 400 ma τη χρονική στιγμή t=2 ms. Με ανάλογο τρόπο βρίσκουμε την εξίσωση του ρεύματος και για τα λοιπά χρονικά διαστήματα, όπως στον πίνακα: Διάστημα Αρχική τιμή (ma) Εξίσωση Τελική τιμή (ma) Μορφή 0<t<2 0 I(t)=0, t Παραβολή 2<t<3 400 I(t)=0,4400 t 800 Ευθεία 3<t<4 800 I(t)=3,12, t300 t Παραβολή 4<t<5 900 I(t)=1,7200 t 700 Ευθεία 5<t<7 700 I(t)=3,5750, t t Παραβολή t>7 600 I(t)=0,1100 t Ευθεία
11 6.1 Πηνίο Η τάση και το ρεύμα του πηνίου συναρτήσει του χρόνου παρουσιάζονται στα σχήματα.
12 6.2 Συνδυασμός πηνίων Έστω ότι έχουμε Ν πηνία συνδεδεμένα σε σειρά. Μπορούν να αντικατασταθούν από ένα ισοδύναμο πηνίο. Σύμφωνα με το νόμο τάσεων του Kirchhoff: V s ± I L 1 V 1 L 2 V 2 V Ṉ L N Αντικαθιστώντας την τάση κάθε πηνίου έχουμε: I Αφού το ρεύμα είναι κοινό, είναι και η παράγωγός του. V s ± V ΙΣ L ΙΣ
13 6.2 Συνδυασμός πηνίων Συγκρίνοντας την παραπάνω σχέση με τη σχέση τάσης ρεύματος του ισοδύναμου πηνίου: I L 1 V 1 L 2 V 2 V s ± V Ṉ L N βρίσκουμε ότι: Η σχέση που δίνει την ισοδύναμη αυτεπαγωγή της σε σειρά σύνδεσης πηνίων είναι ίδια με τη σχέση που δίνει την ισοδύναμη αντίσταση της σε σειρά σύνδεσης αντιστάσεων. V s ± I V ΙΣ L ΙΣ
14 6.2 Συνδυασμός πηνίων Έστω ότι έχουμε Ν πηνία συνδεδεμένα παράλληλα. Μπορούν να αντικατασταθούν από ένα ισοδύναμο πηνίο. Σύμφωνα με το νόμο ρευμάτων του Kirchhoff: I s V L 1 I 1 L 2 I 2 L N I N Αντικαθιστώντας το ρεύμα κάθε πηνίου έχουμε: I s I s V L ΙΣ
15 6.2 Συνδυασμός πηνίων I 1 I 2 I N Συγκρίνοντας την παραπάνω σχέση με τη σχέση τάσης ρεύματος του ισοδύναμου πηνίου: I L 1 s V L 2 L N προκύπτει ότι: I s I s V L ΙΣ
16 6.2 Συνδυασμός πηνίων Σημειώστε ότι σύμφωνα με το νόμο ρευμάτων του Kirchhoff για τη χρονική στιγμή μεταξύ των αρχικών ρευμάτων των πηνίων ισχύει: I s L 1 I 1 I 2 I N V L 2 L N Η σχέση που δίνει την ισοδύναμη αυτεπαγωγή της παράλληλης σύνδεσης πηνίων είναι ίδια με τη σχέση που δίνει την ισοδύναμη αντίσταση της παράλληλης σύνδεσης αντιστάσεων. I s V L ΙΣ I s
17 6.3 Πυκνωτής Ένα δεύτερο παθητικό στοιχείο που επίσης δεν καταναλώνει ούτε παράγει ισχύ είναι ο πυκνωτής. Ο πυκνωτής αποθηκεύει ηλεκτρική ενέργεια με τη μορφή ηλεκτρικού πεδίου. Η σχέση τάσης ρεύματος του πυκνωτή είναι διαφορική: v(t) i(t) C α) Ο πυκνωτής καταναλώνει ισχύ, dv/dt>0 v(t) i(t) β) Ο πυκνωτής παράγει ισχύ, dv/dt<0 C Η σταθερά αναλογίας C λέγεται χωρητικότητα του πυκνωτή. Η χωρητικότητα ενός πυκνωτή δείχνει την ποσότητα του ηλεκτρικού φορτίου που αποθηκεύει ανά μονάδα τάσης που έχει στα άκρα του:
18 6.3 Πυκνωτής Η διαφορική σχέση τάσης ρεύματος δίνει κάποιες ενδιαφέρουσες ιδιότητες στον πυκνωτή, ανάλογες με αυτές του πηνίου: Στο συνεχές ο πυκνωτής είναι ανοικτοκύκλωμα, Η αύξηση της τάσης με το χρόνο δίνει θετικό ρεύμα (καταναλώνει ισχύ) και η μείωση αρνητικό (παράγει ισχύ), Η τάση δεν μπορεί να μεταβληθεί ακαριαία, διότι τότε απειρίζεται το ρεύμα. v(t) i(t) C α) Ο πυκνωτής καταναλώνει ισχύ, dv/dt>0 v(t) i(t) β) Ο πυκνωτής παράγει ισχύ, dv/dt<0 C
19 6.3 Πυκνωτής Ο πυκνωτής όταν έχει τάση στα άκρα του έχει αποθηκευμένη ενέργεια. Για να την υπολογίσουμε θα ολοκληρώσουμε την ισχύ: v(t) i(t) C v(t) i(t) C α) Ο πυκνωτής καταναλώνει ισχύ, dv/dt>0 β) Ο πυκνωτής παράγει ισχύ, dv/dt<0 Η αποθηκευμένη ενέργεια ενός πυκνωτή μπορεί να εκφραστεί και σαν συνάρτηση του ηλεκτρικού φορτίου που έχει αποθηκευμένο στους οπλισμούς του:
20 6.3 Πυκνωτής Παράδειγμα 63: Δίνεται η τάση στα άκρα ενός πυκνωτή τιμής 1 μf. Σχεδιάστε το ρεύμα που τον διαρρέει συναρτήσει του χρόνου. Το πρώτο τμήμα από τη χρονική στιγμή t=0 μέχρι τη χρονική στιγμή t=3 msec έχει κλίση ίση με 3 V/3 ms=1 kv/s. Το ρεύμα του πυκνωτή είναι:
21 6.3 Πυκνωτής Το δεύτερο τμήμα από τη χρονική στιγμή t=3 ms μέχρι τη χρονική στιγμή t=5 ms έχει αρνητική κλίση ίση με 3kV/s. Το ρεύμα είναι: Το τρίτο τμήμα από τη χρονική στιγμή t=5 ms μέχρι τη χρονική στιγμή t=7 ms έχει κλίση ίση με 4kV/s. Το ρεύμα είναι:
22 6.3 Πυκνωτής Από τη χρονική στιγμή t=7 ms μέχρι τη χρονική στιγμή t=8 ms η κλίση της τάσης του πυκνωτή είναι 4 kv/s. Το ρεύμα είναι: Τέλος, από τη χρονική στιγμή t=8 ms και μετά η τάση του πυκνωτή είναι σταθερή, άρα και το ρεύμα είναι μηδέν.
23 6.3 Πυκνωτής Το ρεύμα του πυκνωτή είναι ανάλογο με την παράγωγο της τάσης που έχει στα άκρα του. Συνεπώς, η τάση θα πρέπει να είναι ανάλογη του ολοκληρώματος του ρεύματος: Έστω ότι ο πυκνωτής έχει μια αρχική τάση V 0. Η τάση που έχει στα άκρα του την οποιαδήποτε χρονική στιγμή t δίνεται από τη σχέση: Ο πυκνωτής είναι ένα στοιχείο που έχει μνήμη. Οι μελλοντικές τιμές της τάσης που έχει στα άκρα του εξαρτώνται από τις προηγούμενες.
24 6.3 Πυκνωτής Παράδειγμα 64: Δίνεται το ρεύμα που διαρρέει έναν πυκνωτή τιμής 1 μf συναρτήσει του χρόνου. Να σχεδιαστεί η τάση που έχει στα άκρα του. Τη χρονική στιγμή t=0 η τάση στα άκρα του πυκνωτή είναι μηδέν. Το ρεύμα του πυκνωτή από τη χρονική στιγμή t=0 μέχρι τη χρονική στιγμή t=3 ms αυξάνεται γραμμικά από 0 σε 3 ma. Η κλίση της ευθείας είναι 3 ma/3 ms=1 A/sec. Η εξίσωση του ρεύματος είναι: Η τάση είναι:
25 6.3 Πυκνωτής Στη συνέχεια το ρεύμα μειώνεται γραμμικά από την τιμή 3 ma τη χρονική στιγμή t=3 ms στην τιμή 3 ma τη χρονική στιγμή t=5 ms, οπότε η εξίσωση του ρεύματος συναρτήσει του χρόνου είναι: Η τάση στα άκρα του πυκνωτή ισούται με το ολοκλήρωμα της παραπάνω συνάρτησης:
26 6.3 Πυκνωτής Η γραφική παράσταση της παραπάνω συνάρτησης είναι μια παραβολή που ξεκινά από την τιμή 4,5 V τη χρονική στιγμή t=3 ms και φτάνει στην ίδια τιμή (4,5 V) τη χρονική στιγμή t=5 ms. Παρουσιάζει τοπικό μέγιστο στην τιμή 6 V για t=4 ms, καθώς στην τιμή αυτή το ρεύμα μηδενίζεται.
27 6.3 Πυκνωτής Με ανάλογο τρόπο βρίσκουμε την εξίσωση της τάσης και για τα λοιπά χρονικά διαστήματα, όπως στον πίνακα: Διάστημα Αρχική τιμή (V) Εξίσωση Τελική τιμή (V) Μορφή 0<t<3 0 V(t)=0, t 2 4,5 Παραβολή 3<t<5 4,5 V(t)= t1, t 2 4,5 Παραβολή 5<t<7 4,5 V(t)=69, t t 2 6,5 Παραβολή 7<t<8 6,5 V(t)=126, t t 2 9,5 Παραβολή t>8 9,5 V(t)=1, t Ευθεία
28 6.3 Πυκνωτής Η γραφική παράσταση της τάσης συναρτήσει του χρόνου παρουσιάζεται στο σχήμα. Παρά τις σχετικά απότομες μεταβολές του ρεύματος η τάση του πυκνωτή μεταβάλλεται ομαλά. Ακόμα και εάν υπάρχουν ασυνέχειες στη μεταβολή του ρεύματος, η τάση μεταβάλλεται ομαλά, καθώς η τάση στα άκρα του πυκνωτή δεν μπορεί να αλλάξει απότομα.
29 6.4 Συνδυασμός πυκνωτών Έστω ότι έχουμε Ν πυκνωτές συνδεδεμένους σε σειρά. Μπορούν να αντικατασταθούν από έναν ισοδύναμο πυκνωτή. Σύμφωνα με το νόμο τάσεων του Kirchhoff: V s ± I C 1 V 1 C 2 V 2 V Ṉ C N Αντικαθιστώντας την τάση κάθε πυκνωτή έχουμε: I V s ± V ΙΣ C ΙΣ
30 6.4 Συνδυασμός πυκνωτών I C 1 C 2 V 1 V 2 Για το ισοδύναμο κύκλωμα έχουμε: V s ± V Ṉ C N Άρα: I Σημειώστε ότι για τη χρονική στιγμή t=t 0 ισχύει: V s ± V ΙΣ C ΙΣ
31 6.4 Συνδυασμός πυκνωτών Έστω ότι έχουμε Ν πυκνωτές συνδεδεμένους παράλληλα. Μπορούν να αντικατασταθούν από έναν ισοδύναμο πυκνωτή. Σύμφωνα με το νόμο ρευμάτων του Kirchhoff: Αντικαθιστώντας το ρεύμα κάθε πυκνωτή έχουμε: I 1 I s V C 1 C 2 C N I 2 I N Η παράγωγος της τάσης των πυκνωτών είναι κοινή: I s V C ΙΣ I s
32 6.4 Συνδυασμός πυκνωτών Για το ισοδύναμο κύκλωμα ισχύει: Συγκρίνοντας τις παραπάνω σχέσεις προκύπτει ότι: I 1 I s V C 1 C 2 C N I 2 I N Η σχέση που δίνει την ισοδύναμη χωρητικότητα της παράλληλης σύνδεσης πυκνωτών είναι ίδια με τη σχέση που δίνει την ισοδύναμη αντίσταση της σε σειρά σύνδεσης αντιστάσεων ή πηνίων. I s V C ΙΣ I s
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 6: Παθητικά στοιχεία αποθήκευσης ενέργειας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Το ιδανικό κύκλωμα LC του σχήματος εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις, με περίοδο
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Ιδανικό κύκλωμα LC εκτελεί αμείωτες ηλεκτρικές ταλαντώσεις. Να αποδείξετε ότι η στιγμιαία τιμή i της έντασης του ρεύματος στο κύκλωμα δίνεται σε συνάρτηση με το στιγμιαίο
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 8: Βηματική απόκριση κυκλωμάτων RL και R Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 7: Μεταβατική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 8: Βηματική απόκριση κυκλωμάτων RL και RC Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ:
στη θέση 1. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση 1 στη
ΠΥΚΝΩΤΗΣ ΣΥΝΔΕΔΕΜΕΝΟΣ ΠΑΡΑΛΛΗΛΑ ΜΕ ΠΗΓΗ. Στο διπλανό κύκλωμα η πηγή έχει ΗΕΔ = V και ο διακόπτης είναι αρχικά στη θέση. Κάποια χρονική στιγμή μεταφέρουμε το διακόπτη από τη θέση στη θέση και αρχίζουν οι
1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή
Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής
2π 10 4 s,,,q=10 6 συν10 4 t,,,i= 10 2 ημ 10 4 t,,,i=± A,,, s,,,
1. Ο πυκνωτής του σχήματος έχει χωρητικότητα C=5μF και φορτίο Q=1μC, ενώ το πηνίο έχει συντελεστή αυτεπαγωγής L=2 mh. Τη χρονική στιγμή t=0 κλείνουμε το διακόπτη και το κύκλωμα εκτελεί ηλεκτρική ταλάντωση.
Το χρονικό διάστημα μέσα σε μια περίοδο που η ενέργεια του μαγνητικού πεδίου αυξάνεται ισούται με:
Κυκλώματα, Επαναληπτικό ΤΕΣΤ. ΘΕΜΑ Α. Στο κύκλωμα του σχήματος, ο πυκνωτής το χρονική στιγμή =0 που κλείνουμε το διακόπτη φέρει φορτίο q=q. Α. H ενέργεια του ηλεκτρικού πεδίου του πυκνωτή είναι ίσος με
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ: 50657177
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 16: Απόκριση συχνότητας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 12: Ανάλυση κυκλωμάτων ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 3: Συνδυασμός αντιστάσεων και πηγών Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
αυτ = dt dt = dt dt C dt C Ε = = = L du du du du + = = dt dt dt dt
ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΤΥΠΟΛΟΓΙΟ Q=CV U E =1/2 2 /C U B =1/2Li 2 E 0 =1/2Q 2 /C=1/2LI 2 E 0 =1/2 2 /C+1/2Li 2 T=2π LC =Q συνωt i=-i ημωt ω=1/ LC E di L αυτ = ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ d Φορτίου: i = Τάσης: Ρεύματος:
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΜΕΙΩΤΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Χ. Δ. ΦΑΝΙΔΗΣ http://users.sch.gr/cdfan ΣΧΟΛΙΚΟ
Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-KΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 19-10-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-KΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4
Ηλεκτρικές Ταλαντώσεις 2ο Σετ Ασκήσεων - Φθινόπωρο 2012
Ηλεκτρικές Ταλαντώσεις - Φθινόπωρο 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1. Ποια µεταβολή ϑα έχουµε στην περίοδο ηλεκτρικών
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 21/10/12 ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα
ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ
ΗΛΕΚΤΡΟΝΙΚΑ ΣΤΟΙΧΕΙΑ & ΚΥΚΛΩΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΤΕΧΝΙΑ 1 ΝΟΜΟΣ ΤΟΥ OHM (ΩΜ) Για πολλά υλικά ο λόγος της πυκνότητας του ρεύματος προς το ηλεκτρικό πεδίο είναι σταθερός και ανεξάρτητος από το ηλεκτρικό
α) = β) Α 1 = γ) δ) Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 19-10-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ-ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ-ΚΥΡΙΑΚΑΚΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε
( ) Στοιχεία που αποθηκεύουν ενέργεια Ψ = N Φ. διαφορικές εξισώσεις. Πηνίο. μαγνητικό πεδίο. του πηνίου (κάθε. ένα πηνίο Ν σπειρών:
Στοιχεία που αποθηκεύουν ενέργεια Λέγονται επίσης και δυναμικά στοιχεία Οι v- χαρακτηριστικές τους δεν είναι αλγεβρικές, αλλά ολοκληρο- διαφορικές εξισώσεις. Πηνίο: Ουσιαστικά πρόκειται για έναν περιεστραμμένο
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΥΚΛΩΜΑΤΩΝ Ηλεκτρικό κύκλωμα ονομάζεται μια διάταξη που αποτελείται από ένα σύνολο ηλεκτρικών στοιχείων στα οποία κυκλοφορεί ηλεκτρικό ρεύμα. Τα βασικά ηλεκτρικά στοιχεία είναι οι γεννήτριες,
Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις
Ασκήσεις Εμπέδωσης Μηχανικ ές ταλαντώέ σέις Όπου χρειάζεται, θεωρείστε ότι g = 10m/s 2 1. Σε μία απλή αρμονική ταλάντωση η μέγιστη απομάκρυνση από την θέση ισορροπίας είναι Α = 30cm. Ο χρόνος που χρειάζεται
ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕΤΑΓΩΓΗ ΚΥΚΛΩΜΑΤΩΝ
ΜΕΤΑΓΩΓΗ ΑΠΟ ΤΟ ΕΝΑ ΚΥΚΛΩΜΑ LC ΣΤΟ ΑΛΛΟ. ΔΥΟ ΠΥΚΝΩΤΕΣ ΚΑΙ ΕΝΑ ΠΗΝΙΟ. Στο κύκλωμα του σχήματος το πηνίο έχει συντελεστή αυτεπαγωγής L = (A) (B) mh, ο πυκνωτής () έχει χωρητικότητα C = μf, ενώ ο πυκνωτής
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ.
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 4: Συστηματικές μέθοδοι επίλυσης κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.
Ανάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 13: Ισχύς σε κυκλώματα ημιτονοειδούς διέγερσης Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ.
ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 16/10/2011
ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΛΗ ΑΡΜΟΝΙΚΗ & ΗΛΕΚΤΡΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΜΕΡΟΜΗΝΙΑ: 6/0/0 ΘΕΜΑ 0 Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής - 5, να γράψετε στο
ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΩΤΗΣΗ 1 Ένα σώμα εκτελεί κίνηση που οφείλεται στη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, που γίνονται γύρω από το ίδιο σημείο, με το ίδιο πλάτος A και συχνότητες
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Ταλαντώσεις Χρόνος Εξέτασης: 3 ώρες Θέμα 1ο Στις παρακάτω ερωτήσεις 1-5 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
Εναλλασσόμενο ρεύμα και ταλάντωση.
Εναλλασσόμο ρεύμα και ταλάντωση. Δίνεται το κύκλωμα του διπλανού σχήματος, όπου το ιδανικό πηνίο έχει συντελεστή αυτεπαγωγής 8mΗ, ο πυκνωτής χωρητικότητα 0μF, η αντίσταση R του αντιστάτη R30Ω, ώ η τάση
Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Στοιχεία Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγή Αντιστάτης Πηγές τάσης και ρεύματος Πυκνωτής
Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί
Συνδυασμοί αντιστάσεων και πηγών
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 3 Συνδυασμοί αντιστάσεων και πηγών ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟΥ Σύνδεση σε σειρά. Παράλληλη σύνδεση Ισοδυναμία τριγώνου και αστέρα Διαιρέτης τάσης Διαιρέτης ρεύματος Πραγματικές πηγές.
ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 0-04 ΜΑΘΗΜΑ /ΤΑΞΗ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΣΕΙΡΑ: ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α4 και δίπλα το γράμμα που αντιστοιχεί στη
2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)
ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας
Ηλεκτροτεχνία Ηλ. Μηχανές & Εγκαταστάσεις πλοίου Τα στοιχεία του Πυκνωτή και του Πηνίου
Το στοιχείο του πυκνωτή (1/2) Αποτελείται από δύο αγώγιμα σώματα (οπλισμοί)ηλεκτρικά μονωμένα μεταξύ τους μέσω κατάλληλου μονωτικού υλικού (διηλεκτρικό υλικό) Η ικανότητα του πυκνωτή να αποθηκεύει ενέργεια
Φυσική Γ' Θετικής και Τεχνολογικής Κατ/σης
Ηλεκτρικές Ταλαντώσεις ο ΘΕΜΑ Α Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Ηλεκτρικό
ΔΙΑΓΩΝΙΣΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά.. Το μέτρο της
Γ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Διαγωνίσματα 2012-2013 Θεματικό πεδίο: Διαγώνισμα Γ Λυκείου Ταλαντώσεις-Κρούσεις-Doppler Ημερομηνία.. Νοεμβρίου 2012 Διάρκεια 3 Ώρες ΘΕΜΑ 1 25 μονάδες Α. Ερωτήσεις πολλαπλής
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ 1
ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΙΙ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ 00 ΘΕΜΑ Δύο συζευγμένα πραγματικά πηνία συνδέονται εν παραλλήλω, όπως στο Σχ.. Να βρεθούν () οι ενδείξεις των τριών βατομέτρων, () η
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 4/11/2012
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 4/11/01 ΘΕΜΑ 1 ο Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και
Το μηδέν και το τετράγωνο.
Το μηδέν και το τετράγωνο. Στο κύκλωµα του σχήµατος, ο διακόπτης (δ ) είναι κλειστός ενώ ο (δ ) ανοικτός. Θεωρούµε γνωστές τις τιµές της ΗΕ της πηγής Ε, των αντιστάσεων,, του συντελεστή αυτεπαγωγής του
Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α
Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα και αφεθεί στη συνέχεια ελεύθερο να
ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Α. Εξαναγκασμένες μηχανικές ταλαντώσεις Ελεύθερη - αμείωτη ταλάντωση και ποια η συχνότητα και η περίοδος της. Ένα σύστημα εκτελεί ελεύθερη ταλάντωση όταν διεγερθεί κατάλληλα
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑ: Εφαρμοσμένη Ηλεκτρολογία
ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ
ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και
( ) = ( ) Ηλεκτρική Ισχύς. p t V I t t. cos cos 1 cos cos 2. p t V I t. το στιγμιαίο ρεύμα: όμως: Άρα θα είναι: Επειδή όμως: θα είναι τελικά:
Η στιγμιαία ηλεκτρική ισχύς σε οποιοδήποτε σημείο ενός κυκλώματος υπολογίζεται ως το γινόμενο της στιγμιαίας τάσης επί το στιγμιαίο ρεύμα: Σε ένα εναλλασσόμενο σύστημα τάσεων και ρευμάτων θα έχουμε όμως:
απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της
1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση
HMY 102 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα (RL και RC)
Ths mag canno currnly b dsplayd. Τρία είναι τα βασικά παθητικά στοιχεία στη θεωρία γραμμικών κυκλωμάτων:, και HMY 12 Ανασκόπηση της μεταβατικής ανάλυσης Πρωτοτάξια κυκλώματα ( και ) απορροφά ενέργεια και
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2. Νόμοι στα ηλεκτρικά κυκλώματα ΠΡΟΒΛΗΜΑΤΑ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ Ι Κεφάλαιο 2 Νόμοι στα ηλεκτρικά κυκλώματα ΠΡΟΒΛΗΜΑΤΑ Πρόβλημα 2-1 (Άσκηση 2, Κεφ. 2, σελ. 55, Κ. Παπαδόπουλου Ανάλυση ηλεκτρικών κυκλωμάτων ) Να υπολογιστεί η ισχύς που παράγει ή καταναλώνει
ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18)
ΑΣΚΗΣΕΙΣ ΣΤΑ ΚΥΚΛΩΜΑΤΑ 1 ης ΤΑΞΗΣ (Κεφ. 18) Άσκηση 1. Α) Στο κύκλωμα του παρακάτω σχήματος την χρονική στιγμή t=0 sec ο διακόπτης κλείνει. Βρείτε τα v c και i c. Οι πυκνωτές είναι αρχικά αφόρτιστοι. Β)
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 20: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1 ο :Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Η διαφορά δυναμικού μεταξύ δύο σημείων μιας δυναμικής γραμμής, ομογενούς ηλεκτρικού
Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Κυκλώματα Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εισαγωγή Τα ηλεκτρικά κυκλώματα ταξινομούνται σε διάφορες κατηγορίες,
Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999
Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΣΕΠΤΕΜΒΡΙΟΥ 1999 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις ερωτήσεις 1-4, να γράψετε στο τετράδιό
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. Ύλη: Ταλαντώσεις Γ Λυκείου Θετ.-Τεχν Κατ. 13-09-13 Θέμα 1 ο : 1. Σε μια χορδή απείρου μήκους που ταυτίζεται με τον άξονα x 0x διαδίδεται εγκάρσιο αρμονικό κύμα με εξίσωση
ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως
Τίτλος Κεφαλαίου: Μηχανικές & Ηλεκτρικές Ταλαντώσεις ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: (Ιούλιος 2010 - Ηµερήσιο) Σώµα Σ 1
Διαγώνισμα Φυσικής κατεύθυνσης B! Λυκείου.
Φροντιστήριο Φάσμα 1 Διαγώνισμα Φυσικής κατεύθυνσης B! Λυκείου. Ζήτημα 1 ο. Στις ερωτήσεις 1.1 έως 1.5 επιλέξτε τη σωστή απάντηση. 1.1. Οι ρευματοδότες της ηλεκτρικής εγκατάστασης στα σπίτια μας λέμε ότι
3ο ιαγώνισµα - Ταλαντώσεις
3ο ιαγώνισµα - Ταλαντώσεις Ηµεροµηνία : Οκτώβρης 2012 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστή απάντηση (4 5 = 20 µονάδες ) 1.1. Μικρό σώµα δεµένο
1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο.
1. Ένα σώμα μάζας είναι στερεωμένο στην άκρη οριζοντίου ιδανικού ελατηρίου σταθεράς, του οποίου το άλλο άκρο είναι ακλόνητα στερεωμένο. Το σώμα εκτελεί απλή αρμονική ταλάντωση, κατά τη διεύθυνση του άξονα
Ηλεκτρομαγνητισμός. Αυτεπαγωγή. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Αυτεπαγωγή Νίκος Ν. Αρπατζάνης Εξισώσεις Maxwell Στα τέλη του 19 ου αιώνα, οι γνώσεις γύρω απ τα ηλεκτρικά και μαγνητικά πεδία συνοψίζονταν στις εξισώσεις Maxwell: Νόμος Gauss: τα ηλεκτρικά
ΑΠΑΝΤΗΣΕΙΣ. Α2. Η σχέση που συνδέει την πραγματική ισχύ P,την άεργη ισχύ Q και την φαινόμενη ισχύ S είναι:
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-04 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΛΟΓΙΑ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 03//03 Σελίδα από 6 ΑΠΑΝΤΗΣΕΙΣ A ΟΜΑΔΑ Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό κάθε μιας από τις παρακάτω
ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
ΣΤΟΧΟΙ : Ο μαθητής να μπορεί να :
ΠΗΝΙΟ ΣΤΟΧΟΙ : Ο μαθητής να μπορεί να : Αναφέρει τι είναι το πηνίο Αναφέρει από τι αποτελείται το πηνίο Αναφέρει τις ιδιότητες του πηνίου Αναφέρει το βασικό χαρακτηριστικό του πηνίου Αναφέρει τη σχέση
ΘΕΜΑ 1ο Στις ερωτήσεις 1.1, 1.2 και 1.3 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 8 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1.1, 1.2 και 1.3 να γράψετε στο τετράδιό σας τον αριθμό
[ i) 34V, 18V, 16V, -16V ii) 240W, - 96W, 144W, iii)14,4j, 96J/s ]
ΕΠΑΓΩΓΗ 1) Ένα τετράγωνο πλαίσιο ΑΓΔΕ βρίσκεται μέσα σε ομογενές μαγνητικό πεδίο, με το επίπεδό του κάθετο στις δυναμικές γραμμές του. Στο διάγραμμα φαίνεται η μεταβολή της ροής που διέρχεται από το πλαίσιο
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 16/02/2010 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 6/0/00 ΘΕΜΑ ο ( μονάδες) Για να ελέγξουμε την ποιότητα των ενδείξεων μιας αντλίας παροχής αέρα ενός βενζινάδικου, φουσκώνουμε τα λάστιχα δύο αυτοκινήτων με την ένδειξη
Φυσική Γ Λυκείου Κατεύθυνσης. Προτεινόμενα Θέματα
Φυσική Γ Λυκείου Κατεύθυνσης Προτεινόμενα Θέματα Θέμα ο Ένα σώμα εκτελεί απλή αρμονική ταλάντωση πλάτους Α. Η φάση της ταλάντωσης μεταβάλλεται με το χρόνο όπως δείχνει το παρακάτω σχήμα : φ(rad) 2π π 6
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ
ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ 1 1. ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ Κύκλωμα είναι ένα σύνολο ηλεκτρικών πηγών και άλλων στοιχείων που είναι συνδεμένα μεταξύ τους και διέρχεται ηλεκτρικό ρεύμα από
v(t) = Ri(t). (1) website:
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 10 Μαρτίου 2017 1 Βασικά μεγέθη ηλεκτρικών
ΦΥΣΙΚΗ. Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της. ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Για τις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Η αντίσταση ενός χάλκινου αγωγού σταθερής θερμοκρασίας
Ηλεκτρική Ενέργεια. Ηλεκτρικό Ρεύμα
Ηλεκτρική Ενέργεια Σημαντικές ιδιότητες: Μετατροπή από/προς προς άλλες μορφές ενέργειας Μεταφορά σε μεγάλες αποστάσεις με μικρές απώλειες Σημαντικότερες εφαρμογές: Θέρμανση μέσου διάδοσης Μαγνητικό πεδίο
Θέμα 1 ο (Μονάδες 25)
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ (ΑΠΟΦΦΟΙΙΤΤΟΙΙ) ( ) εευυττέέρραα 1144 ΙΙααννοουυααρρί ίοουυ 22001133 Θέμα 1 ο (Μονάδες 25) 1. Κατά τη συμβολή δύο αρμονικών κυμάτων που δημιουργούνται
ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ
ΔΙΑΓΩΝΙΣΜΑ 3 ο ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α. Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. 1. Η σχέση
Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου
Διαγώνισμα Φυσική Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σώμα εκτελεί ταυτόχρονα τις ταλαντώσεις με εξισώσεις x1 A2 f1t και x1 A2 f2t. Οι ταλαντώσεις έχουν την ίδια διεύθυνση, την ίδια θέση ισορροπίας
ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΗ ΦΥΚΙΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σύστημα ιδανικού ελατηρίου σταθεράς Κ και
ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1
ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το
Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις:
Άσκηση Η17 Νόμος της επαγωγής Νόμος της επαγωγής ή Δεύτερη εξίσωση MAXWELL Ο νόμος της επαγωγής, είναι ο σημαντικότερος νόμος του ηλεκτρομαγνητισμού. Γι αυτόν ισχύουν οι εξής ισοδύναμες διατυπώσεις: d
Πόλωση των Τρανζίστορ
Πόλωση των Τρανζίστορ Πόλωση λέμε την κατάλληλη συνεχή τάση που πρέπει να εφαρμόσουμε στο κύκλωμα που περιλαμβάνει κάποιο ηλεκτρονικό στοιχείο (π.χ τρανζίστορ), έτσι ώστε να εξασφαλίσουμε την ομαλή λειτουργία
Κεφάλαιο 2. Ηλεκτρικά Κυκλώματα
Κεφάλαιο Ηλεκτρικά Κυκλώματα. Μεταβατικά φαινόμενα.. Κύκλωμα C Το κύκλωμα του Σχήματος. είναι το απλούστερο κύκλωμα Α τάξης και αποτελείται από μια πηγή συνεχούς τάσης V, που είναι η διέγερσή του, εν σειρά
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
δυαδικό ΦΡΟΝΤΙΣΤΗΡΙΑ η εξεταστική περίοδος 0-3 Σελίδα - - ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 8-0-0 Διάρκεια: 3 ώρες Ύλη: Ταλαντώσεις Καθηγητής: ΑΤΡΕΙΔΗΣ
ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ
ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ Σκοπός της Άσκησης: Σκοπός της εργαστηριακής άσκησης είναι α) η κατανόηση της λειτουργίας της γεννήτριας συνεχούς ρεύματος
R eq = R 1 + R 2 + R 3 = 2Ω + 1Ω + 5Ω = 8Ω. E R eq. I s = = 20V V 1 = IR 1 = (2.5A)(2Ω) = 5V V 3 = IR 3 = (2.5A)(5Ω) = 12.5V
Πανεπιστήμιο Θεσσαλίας Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Απαντήσεις στο 1 0 Homework στην Ανάλυση Κυκλωμάτων Χειμερινό Εξάμηνο 2014-2015 Πλέσσας Φώτης 1 Πρόβλημα 1 Βρείτε τη συνολική αντίσταση
i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0.
Α. Δροσόπουλος 6 Ιανουαρίου 2010 Περιεχόμενα 1 Κυκλώματα πρώτης τάξης 2 1.1 Εκφόρτιση κυκλωμάτων RC πρώτης τάξης.................................. 2 1.2 Εκφόρτιση κυκλωμάτων RL πρώτης τάξης...................................
ΑΡΧΗ ΤΗΣ 1ΗΣ ΣΕΛΙΔΑΣ-Γ ΗΜΕΡΗΣΙΩΝ
6ο ΓΕΛ ΑΙΓΑΛΕΩ ΑΡΧΗ ΤΗΣ 1ΗΣ ΣΕΛΙΔΑΣ-Γ ΗΜΕΡΗΣΙΩΝ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΠΡΙΛΗΣ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ(ΕΠΑΝΑΛΗΠΤΙΚΟ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ A: Στις
Περιεχόμενα. Πρόλογος...13
Περιεχόμενα Πρόλογος...3 Κεφάλαιο : Στοιχεία ηλεκτρικών κυκλωμάτων...5. Βασικά ηλεκτρικά μεγέθη...5.. Ηλεκτρικό φορτίο...5.. Ηλεκτρικό ρεύμα...5..3 Τάση...6..4 Ενέργεια...6..5 Ισχύς...6..6 Σύνοψη...7.
ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος. Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων
Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ-121: Ηλεκτρονικά Κυκλώματα Γιώργος Δημητρακόπουλος Άνοιξη 2008 Βασικές Αρχές Ηλεκτρικών Κυκλωμάτων Ηλεκτρικό ρεύμα Το ρεύμα είναι αποτέλεσμα της κίνησης