Hydrostatics Balance equation Mass balance Momentum balance Bernoulli s equation Energy balance Classification of PDE Examples

Σχετικά έγγραφα
Mathematical Foundation of Fluid Mechanics

Οι νόµοι διατήρησης στη Φυσική Ωκεανογραφία

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Αλληλεπίδραση θάλασσας-ατμόσφαιρας

ΔΙΑΛΕΞΗ 6 Ρεύματα παρουσία τριβής Ανεμογεννής Κυκλοφορία

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Chapter 5 Stress Strain Relation

Second Order Partial Differential Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Αλληλεπίδραση θάλασσας ατμόσφαιρας

ECON 381 SC ASSIGNMENT 2

ADVANCED STRUCTURAL MECHANICS

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Differential equations

GEEPLUS VM1614. Force (N) vs Displacement (mm) Peak. Max 'ON' time. Force. Model No. VM

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Computing the Gradient

Forced Pendulum Numerical approach

Homework 8 Model Solution Section

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Chapter 2. Stress, Principal Stresses, Strain Energy

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Finite difference method for 2-D heat equation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Κύµατα παρουσία βαρύτητας

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

D Alembert s Solution to the Wave Equation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

6.4 Superposition of Linear Plane Progressive Waves

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

( y) Partial Differential Equations

VARIATIONAL APPROACH TO SOLITARY SOLUTIONS USING JACOBI-ELLIPTIC FUNCTIONS. Yue Wu

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

PhysicsAndMathsTutor.com

Lecture 26: Circular domains

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

The ε-pseudospectrum of a Matrix

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Eulerian Simulation of Large Deformations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CONSULTING Engineering Calculation Sheet

Surface Mount Aluminum Electrolytic Capacitors

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

cz+d d (ac + cd )z + bc + dd c z + d

SMD Transient Voltage Suppressors

Two-mass Equivalent Link

CYLINDRICAL & SPHERICAL COORDINATES

Geodesic Equations for the Wormhole Metric

Rectangular Polar Parametric

Simplex Crossover for Real-coded Genetic Algolithms

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Lecture 34 Bootstrap confidence intervals

DuPont Suva 95 Refrigerant

Strain gauge and rosettes

Thin Film Chip Resistors


L p approach to free boundary problems of the Navier-Stokes equation

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PP #1 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

the total number of electrons passing through the lamp.

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Matrices and Determinants

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Parts Manual. Trio Mobile Surgery Platform. Model 1033

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SAW FILTER - RF RF SAW FILTER

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Every set of first-order formulas is equivalent to an independent set

ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά. Κυματομηχανική Κωδικός

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

4.4 Superposition of Linear Plane Progressive Waves

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint


CURVILINEAR COORDINATES

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

A research on the influence of dummy activity on float in an AOA network and its amendments

(Mechanical Properties)


ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

Trimmable Thick Film Chip Resistor

TMA4115 Matematikk 3

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Chapter 7 Transformations of Stress and Strain

Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική και Εφαρμογές»

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Transcript:

Hdrostatics Balance eqation Mass balance Momentm balance Bernolli s eqation Energ balance Classification of DE Eamples καθ. Γ.Μπεγελές Balance Eqations /.1

Hdrostatic eqation d d,, ) dd,, ) dd gddd d d,, ),, ) g d d g.1a) d grad g a καθ. Γ.Μπεγελές 0 Balance Eqations /.

Forces on srfaces and essels - 0 gh.3) καθ. Γ.Μπεγελές Balance Eqations /.3

ascal s la/hdralics F A B B B A A B F F F F A B B A > A F A B A δ καθ. Γ.Μπεγελές S S A B F B δ B Balance Eqations /.4

0 1 0 Hdrostatic eqation for compressible flids γ γ 1 g C 0 g C h h.6).5) καθ. Γ.Μπεγελές Balance Eqations /.5

Kinematics of Flids,, ) dr dt d d,, dt dt a d dt dφ dt Φ t d dt grad) Φ a a a t t t t t t t t a grad) t καθ. Γ.Μπεγελές d dt t grad t Balance Eqations /.6

Balance Eqations /.7 Rate of deformation e e, e ) ) ) k j i k j i rot rot 1 ω καθ. Γ.Μπεγελές

Balance Eqations /.8 Neton s la for shear stress ij µ µ µ µ µ ) ) ) Netonian and non-netonian flids καθ. Γ.Μπεγελές

Balance Eqations {Rate of Φ accmlated ithin the control olme } {rate of Φ or Φ fl in nit time) entering the control olme throgh the eternal srface} -{rate of Φ eiting the control olme throgh the eternal srface} Sorces or Sinks per nit time καθ. Γ.Μπεγελές Balance Eqations /.9

Mass balance,, ) ) ψ, ) 3 3 Mass entering the olme in time dt throgh srfaces AD and DC) d /,, t) ddt, d /, t) ddt Mass leaing the control olme in time dt throgh srfaces BC and AB) d /,, t) ddt, d /, t) ddt Mass accmlating ithin the olme dd) dd) t dt t t ) ) καθ. Γ.Μπεγελές 0 0 Balance Eqations /.10

Conseration of linear momentm {Rate of momentm accmlated ithin the control olme} {rate of momentm or momentm fl) entering the control olme throgh the eternal srface} -{rate of momentm eiting the control olme throgh the eternal srface} καθ. Γ.Μπεγελές {eternal forces acting on the mass of the control olme}. Balance Eqations /.11

Momentm balance he component of -direction momentm fl entering the control olme throgh srfaces AD and DC) is he corresponding component of momentm fl eiting the control olme throgh srfaces BC and AB) Graitational force Where g is the component of the graitational acceleration. he resltant pressre force in the direction de to pressre acting on srfaces AD and BC ) he resltant -direction component of force de to normal and shear stress forces in the direction on CD, AB, AD and BC srfaces) he rate of accmlation -direction momentm { d} d / { d} d / { d } d / { d} d / ddg pd pd { } d / { } d / d d d d { } d / { } d / { } d / { } d / καθ. Γ.Μπεγελές dd) t Balance Eqations /.1

Momentm balance in direction { d} d / { d} d / καθ. Γ.Μπεγελές Balance Eqations /.13

Balance Eqations /.14 Naier-Stokes eqations g p t ) ) ) g p t ) ) ) g p t g p t καθ. Γ.Μπεγελές

Balance Eqations /.15 arios forms of the N-S eqations g p t g p t g grad t ) rot ) ) g p rot t 1 ) 0 } { rot g καθ. Γ.Μπεγελές

Balance Eqations /.16 Bernolli s eqation H g 0 ) } 1 { 0 ) } 1 { d s rot d s g d s t d s rot d s g d s t h t g g 0 0 1 C C Ε γ γ 1 1 0 γ γ c c καθ. Γ.Μπεγελές

Conseration of Energ First La of hermodnamics Heat Q n DE Q Dt Work W Energ E ds d καθ. Γ.Μπεγελές Both Q and W are path fnctions process dependent) bt their difference Q-W is a point fnction de is a total differential a thermodnamic propert) W Balance Eqations /.17

Balance Eqations /.18 ) ) Φ µ k q Dt D e k k k q Dt D e 3 Φ Φ συνάηση αποόφησης) Energ balance καθ. Γ.Μπεγελές

Balance Eqations /.19 Εξίσωση μεαφοάς ενοπίας 1 d p S d e d Dt D Dt D e Dt s D ) Φ k Dt s D µ 1 S gen k Dt D s Φ K m att k S gen 3 µ καθ. Γ.Μπεγελές

Balance Eqations /.0 J H G F t U k e F e U ), Μηωική μοφή εξισώσεων διαήησης καθ. Γ.Μπεγελές

Balance Eqations /.1 k e G k e H ) q f f f f f f J 0 Μηώα G,H,J καθ. Γ.Μπεγελές

Κλείσιμο συσήμαος ΔΕ Οι πος επίλυση διαφοικές εξισώσεις διαήησης είναι πένε: Διαήηση μάζας 1), διαήηση ομής 3), διαήηση ενέγειας 1). Το σύσημα ων εξισώσεων διαήησης έχει πένε διαφοικές εξισώσεις με έξι αγνώσους,,,, p, ). Η εσωεική ενέγεια e ου ευσού εκφάζεαι με μία εξίσωση ης μοφής p ) e e, που για αέια απλοποιείαι σην e C με C ην ειδική θεμόηα ου αείου υπό σαθεό όγκο και Τα η θεμοκασία ου αείου. Τέλος η πίεση, η πυκνόηα και η θεμοκασία συνδέοναι με ην καασαική εξίσωση p, ) που για αέια παίνει η γνωσή μοφή R καθ. Γ.Μπεγελές Balance Eqations /.

A general form of the eqation t Φ) U Φ ΓΦ SΦ Characteristics mltidimensional trblent flos reqire at least 6 eqations strong copling non-linear j j Φ j Φ U H c k ε i,,,,, Γ, καθ. Γ.Μπεγελές φ S φ Balance Eqations /.3

-Ö- -S Ö - 1 0 µ µ r r r 1 µ µ µ r r r r r r r 1 Ô 0 k G-ñå å C 1 åg-c ñå )/k G r r r µ Sorce erms SΦ καθ. Γ.Μπεγελές

Classification of flo phenomena Stead, nstead Incompressible, compressible D, 3D General form of DE AΦ BΦ CΦ DΦ EΦ FΦG Where A,B,C,D,E,F and G fnctions of,,φ,φ,φ B -AC<,0,> arabolic, elliptic, hperbolic, partiall elliptic directional transport of information tpe of bondar conditions καθ. Γ.Μπεγελές Balance Eqations /.5

Model roblems Heat Condction Bondar laers Recirclating flos Spersonic flos ime dependent problems καθ. Γ.Μπεγελές Bondar ale problems Initial ale problems Balance Eqations /.6

Hperbolic DE b Hperbolic DEs often model ibrating sstems or ae motion. Eamples: 4ac 0 1D ae eqation t adection eqation elocit > t c 0 καθ. Γ.Μπεγελές displacement concentration Balance Eqations /.7

arabolic DE arbolic DEs often describe heat flo and other diffsie processes. α t transient diffsion eqation Eamples: b 4ac 0 t καθ. Γ.Μπεγελές adection diffsion eqation concentration D Balance Eqations /.8

Elliptic DE Elliptic DEs sall describe stead state phenomena. Laplace s eqation Eamples: b 4ac oisson s eqation < 0 f 0, ) καθ. Γ.Μπεγελές Balance Eqations /.9

Starting steps otline of the engineering problem select dependent ariables select coordinate sstem rite don transport eqations rite don bondar conditions ell posed mathematical problem) non-dimensionalie if possible καθ. Γ.Μπεγελές Balance Eqations /.30

Eamples of grids and dependent ariables Boiler geometr E/ geometr καθ. Γ.Μπεγελές 4 4 W Κυψέλες Β-Τύπου 1 1 1 B Κυψέλες Α-Τύπου S 3 3 Balance Eqations /.31

Eamples of grid/ C/d1.6 C/d3.6 θ α κ Μ. Γ. ς έ λ ε γ ε π Balance Eqations /.3

Eamples of grid/3 he intake port U alencia) An I.C engine καθ. Γ.Μπεγελές A graphics package is a mst Balance Eqations /.33

Methods for grid generation Soltion of a oisson eqation ith Dirichlet or Nemann bondar conditions-forcing fnctions A Laplacian Eqation Method for Nmerical Generation of Bondar-fitted 3D Orthogonal Grids.heodoropolos, G. C. Bergeles Jornal of Comptational hsics, ol. 8,No,1989,pp69-88 Nmerical Grid Generation echniqefor 3D Comple Spaces Glekas, J., Bergeles, G., Athanassiades, N. 3rd Intern. Conference, Comptational Methods and Eperimental measrements, Sept 1986,orto Carras,Springer erlag,ol,pp905-916 καθ. Γ.Μπεγελές Balance Eqations /.34