Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Σχετικά έγγραφα
Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Αλγόριθµοι και Πολυπλοκότητα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

15 εκεµβρίου εκεµβρίου / 64

Αλγόριθµοι και Πολυπλοκότητα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αλγόριθµοι και Πολυπλοκότητα

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Τµήµα Πληροφορικής και Τηλεπικοινωνιών

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Ορισμός κανονικής τ.μ.

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Εισαγωγή στους Αλγορίθμους

Βέλτιστος Έλεγχος Συστημάτων

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Εισαγωγή στους Αλγορίθμους

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Μαθηματική Ανάλυση Ι

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας

Αλγόριθµοι και Πολυπλοκότητα

Εισαγωγή στους Αλγορίθμους

Διοικητική Λογιστική

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Γεωγραφικά Συστήµατα Πληροφοριών και Αρχές Τηλεπισκόπησης

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Βέλτιστος Έλεγχος Συστημάτων

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Διδακτική των εικαστικών τεχνών Ενότητα 1

Διδακτική των εικαστικών τεχνών Ενότητα 3

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Διδακτική των εικαστικών τεχνών Ενότητα 2

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2

Διδακτική των εικαστικών τεχνών Ενότητα 2

Συστήματα Επικοινωνιών

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί)

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Επεξεργασία Στοχαστικών Σημάτων

Βέλτιστος Έλεγχος Συστημάτων

Εισαγωγή στις Επιστήμες της Αγωγής

Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι

Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης

Διδακτική των εικαστικών τεχνών Ενότητα 2

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Φιλοσοφία της Ιστορίας και του Πολιτισμού

Έλεγχος Ποιότητας Φαρμάκων

Γενική Φυσική Ενότητα: Ταλαντώσεις

Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers)

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού

Βέλτιστος Έλεγχος Συστημάτων

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Μηχανολογικό Σχέδιο Ι

Κβαντική Επεξεργασία Πληροφορίας

Ψηφιακή Επεξεργασία Εικόνων

Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I

Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Αποτελεσματικότητα αλγορίθμων

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Λογικός Προγραμματισμός Ασκήσεις

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

P (B) P (B A) = P (AB) = P (B). P (A)

Παιδαγωγική ή Εκπαίδευση ΙΙ

Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού

Εισαγωγή στην Διοίκηση Επιχειρήσεων

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

Διδακτική των εικαστικών τεχνών Ενότητα 2

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας

Εισαγωγή στους Υπολογιστές

Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης

Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών

Βέλτιστος Έλεγχος Συστημάτων

Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοικητική Λογιστική

Transcript:

Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 36

Αριθµητική Παραγώγιση ίνεται µια συνάρτηση f(x) µε ένα πολύπλοκο τύπο ή δίνεται ένας πίνακας τιµών της. Ζητείται η f (x) (και πιθανόν οι f (x), f (x), κ.ο.κ). Τότε f (x) p n(x) όπου p n (x) το πολυώνυµο παρεµβολής σε n+1σηµεία της f(x). Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 2 / 36

Τύποι Αριθµητικής Παραγώγισης για ισαπέχοντα σηµεία ίνονται τα σηµεία x i = x 0 + ih, i = 0, 1, 2,...n και Ϲητείται ο υπολογισµός της f (x) σε ένα δεδοµένο σηµείο x. Εχουµε Αν τώρα f (x) p n(x) x = x 0 +θh και χρησιµοποιήσουµε το αντίστοιχο πολυώνυµο παρεµβολής του Newton µε προς τα εµπρός διαφορές λαµβάνουµε διαδοχικά ή ( θ f(x) p n(x) = f 0 + 1 ( θ + n = 1 [ d f 0 + h dθ ) ( θ f 0 + 2 ) n f 0 f (x) p n(x) = dpn(x) dθ ) ( θ f 0 + 2 ( θ 1 dθ dx ) 2 f 0 + + ) 2 f 0 + ( θ n ) n f 0 ] Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 3 / 36

οπότε [ f (x) 1 f 0 + 1 h 2 (2θ 1) 2 f 0 + 1 6 (3θ2 6θ+2) 3 f 0 + + d ( ] θ ) n f 0. (1) dθ n Ο ανωτέρω τύπος απλοποιείται αρκετά αν Ϲητείται η παράγωγος της f(x) στο x i. Αν x = x 0 τότε γιαθ = 0 έχουµε ότι f (x 0 ) 1 [ f 0 12 h 2 f 0 + 13 3 f 0 + +( 1) n 1 1n ] n f 0. (2) Για n = 1 f (x 0 ) 1 h f 0 = 1 h [f 1 f 0 ]. (3) Για n = 2 f (x 0 ) 1 h ( f 0 12 2 f 0 ) = f 2 4f 1 + 3f 0 2h Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 4 / 36 (4)

Στην περίπτωση που ϑέλουµε να υπολογίσουµε την f (x 1 ), τότεθ = 1 και [ f 0 + 12 2 f 0 16 3 f 0 + +( 1) n 1n ] n f 0 f (x 1 ) 1 h εποµένως για n = 1 και για n = 2 f (x 1 ) 1 h f (x 1 ) 1 h f 0 = f 1 f 0, (5) h [ f 0 + 12 2 f 0 ] = f 2 f 0 2h. (6) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 5 / 36

Χρήσιµες ϐοηθητικές πράξεις x = x 0 +θh θ = x x 0 h dθ dx = 1 h f (x) p n (θ(x)) = dp n(x) dθ dθ dx Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 6 / 36

...Χρήσιµες ϐοηθητικές πράξεις... Είναι Αρα ( θ n ( d θ dθ n Για θ = 0 είναι ( d θ dθ n ) = 1 (θ n+1)(θ n+2) θ = n! = 1 [θ (n 1)][θ (n 2)] θ n! ) = d dθ [ ] 1 [θ (n 1)][θ (n 2)] θ n! = 1 n! ) θ=0 = 1 n 1 n! i=0 n 1 i=0 n 1 (θ j) j=0 }{{} j i n 1 ( j) = 1 n! ( 1)( 2) ( n+1) j=0 }{{} j i Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 7 / 36

Για θ = 0 είναι ( d θ dθ n ) θ=0 = 1 n 1 n! i=0 n 1 j=0 }{{} j i ( j) = 1 n! ( 1)( 2) ( n+1) άρα τελικά ( d θ dθ n ) θ=0 = 1 n! ( 1)n 1 (n 1)! = ( 1) n 1 1 n Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 8 / 36

Για θ = 1 είναι άρα τελικά ( d θ dθ n ( d θ dθ n ) θ=1 = 1 n 1 n! i=0 n 1 j=0 }{{} j i (1 j) ) θ=1 = 1 n! (1 0)(1 2)(1 3) [1 (n 1)] = 1 n! ( 1)n 2 (n 2)! = ( 1) n 2 1 n(n 1), n 2 Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 9 / 36

Τύποι για τον υπολογισµό των f (x), f (x), Υπολογισµός της δεύτερης παράγωγου f (x) οπότε f (x) 1 [ d f 0 + 1 h dx 2 (2θ 1) 2 f 0 + 1 6 (3θ2 6θ + 2) 3 f 0 + + d ( ] θ ) n f 0 dθ n = 1 [ d f h 2 0 + 1 dθ 2 (2θ 1) 2 f 0 + 1 6 (3θ2 6θ + 2) 3 f 0 + + d ( ] θ ) n f 0. (7) dθ n f (x) 1 h 2 [ 2 f 0 +(θ 1) 3 f 0 + + d2 dθ 2 ( θ n Αρα για x = x 0 (δηλ. θ = 0) και n = 2 έχουµε ) n f 0 ]. (8) f (x 0) 1 f h 2 2 0 = 1 2f1 + f0). (9) h2(f2 Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 10 / 36

Παράδειγµα Χρησιµοποιώντας όλες τις πληροφορίες του πίνακα x 0 1 2 3 f(x) 0 1 6 15 να ϐρεθούν οι προσεγγιστικές τιµές f (1.5) και f (2.5). Τα σηµεία x 0 = 0, x 1 = 1, x 2 = 2 και x 3 = 3 είναι ισαπέχοντα µε ϐήµα h = 1. Για τον υπολογισµό της f (1.5) ϑα χρησιµοποιήσουµε τον τύπο (1). Εχουµε θ = x x 0 = 1.5 0 = 1.5 h 1 και επειδή έχουµε 4 σηµεία είναι n = 3. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 11 / 36

Πίνακας των προς τα εµπρός διαφορών x f(x) 2 3 0 0 1 1 1 4 5 0 2 6 9 4 3 15 οπότε για την f (x) έχουµε από την (1) ότι [ f 0 + 12 (2θ 1) 2 f 0 + 16 ] (3θ2 6θ + 2) 3 f 0 f (x) 1 h και f (1.5) 1 h [ 1+ 1 2 (2 1.5 1) 4+ 1 ] 6 (3 1.52 6 1.5+2) 0 = 5. Για τον υπολογισµό της f (2.5) από τον τύπο (8) προκύπτει f (x) 1 f h 2[ 2 0 +(θ 1) 3 f 0] = 1 12[4+(2.5 1) 0] = 4. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 12 / 36

Αριθµητική Παραγώγιση µε τη µέθοδο των προσδιοριστέων συντελεστών Παράδειγµα 1 Να προσδιοριστούν οι συντελεστές w 1 και w 1 στον παρακάτω προσεγγιστικό τύπο της αριθµητικής παραγώγισης f (x 0) w 1f 1 + w 1f 1 (10) µε f i = f(x 0 + ih), i = 1, 0, 1, ώστε να είναι όσο το δυνατόν πιο ακριβής. Λύση Για να προσδιορίσουµε τις παραµέτρους w 1 και w 1 ϑα απαιτήσουµε ο τύπος που δόθηκε να είναι ακριβής για f(x) = 1, x, x 2,... Για f(x) = 1 έχουµε f (x) = 0 οπότε το πρώτο µέλος του τύπου (10) γίνεται A = 0 ενώ το δεύτερο µέλος γίνεται B = w 1 + w 1. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 13 / 36

Εξισώνοντας τα δύο µέλη ϐρίσκουµε w 1 + w 1 = 0. (11) Για f(x) = x έχουµε f (x) = 1 οπότε A = 1 και B = w 1 (x 0 h)+w 1 (x 0 + h) = (w 1 + w 1 )x 0 +( w 1 + w 1 )h εξισώνοντας (A = B) προκύπτει (w 1 + w 1 )x 0 +( w 1 + w 1 )h = 1 λόγω όµως της (11) έχουµε ( w 1 + w 1 )h = 1. (12) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 14 / 36

Από τις (11) και (12) ϐρίσκουµε αµέσως ότι οπότε ο τύπος (10) γίνεται w 1 = w 1 = 1 2h f (x 0 ) 1 2h (f 1 f 1 ). (13) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 15 / 36

Συνεπώς, ο τύπος (13) είναι ακριβής για πολυώνυµα µέχρι και πρώτου βαθµού. Για να διαπιστώσουµε αν είναι ακριβής και για πολυώνυµα µεγαλύτερου ϐαθµού αρκεί να συνεχίσουµε την προηγούµενη διαδικασία για f(x) = x 2, x 3,... Οπότε, για f(x) = x 2, έχουµε f (x) = 2x και A = 2x 0 B = 1 [ (x0 + h) 2 (x 0 h) 2] = 2x 0. 2h Αρα A B, οπότε είναι ακριβής και για δευτέρου βαθµού πολυώνυµα. για f(x) = x 3, έχουµε f (x) = 3x 2 και ϐρίσκουµε A = 3x 2 0 B = 1 [ (x0 + h) 3 (x 0 h) 3] = 3x 2 0 2h + h2. Αρα A B, οπότε δεν είναι ακριβής για τρίτου βαθµού πολυώνυµα. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 16 / 36

Παράδειγµα 2 Να προσδιοριστούν οι συντελεστές w 0, w 1 και w 2 στο προσεγγιστικό τύπο της αριθµητικής παραγωγίσεως f (x 0 ) 1 h (w 0f 0 + w 1 f 1 + w 2 f 2 ) µε f i = f(x 0 + ih), i = 0, 1, 2 ώστε να είναι όσο το δυνατόν πιο ακριβής. Λύση Για να προσδιορίσουµε τις παραµέτρους w 0, w 1 και w 2 ϑα απαιτήσουµε ο τύπος που δόθηκε να είναι ακριβής για f(x) = 1, x, x 2,... έτσι ώστε να µπορέσουµε να σχηµατίσουµε τρεις εξισώσεις που να περιέχουν τους τρεις αγνώστους w 0, w 1 και w 2. Για f(x) = 1 έχουµε A = f (x 0 ) = 0 και B = 1 h (w 0f 0 + w 1 f 1 + w 2 f 2 ) = 1 h (w 0 + w 1 + w 2 ) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 17 / 36

Επειδή απαιτούµε A B προκύπτει αµέσως ότι w 0 + w 1 + w 2 = 0. (14) Για f(x) = x έχουµε A = f (x 0 ) = 1 και ή B = 1 h [w 0x 0 + w 1 (x 0 + h)+w 2 (x 0 + 2h)] B = 1 h [x 0(w 0 + w 1 + w 2 )+h(w 1 + 2w 2 ) λόγω όµως της (14) έχουµε B = w 1 + 2w 2 άρα w 1 + 2w 2 = 1. (15) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 18 / 36

Για f(x) = x 2 έχουµε A = f (x 0 ) = 2x 0 και B = 1 h [w 0x 2 0 + w 1 (x 0 + h) 2 + w 2 (x 0 + 2h) 2 ] = 1 h [x2 0(w 0 + w 1 + w 2 )+2x 0 h(w 1 + 2w 2 ) +h 2 (w 1 + 4w 2 )] = 2x 0 + h(w 1 + 4w 2 ), λόγω των(14) και(15) άρα 2x 0 + h(w 1 + 4w 2 ) = 2x 0 ή w 1 + 4w 2 = 0. (16) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 19 / 36

Λύνοντας τις (14), (15) και (16) ϐρίσκουµε w 0 = 3 2, w 1 = 2, w 2 = 1 2. Με ϐάση τις τιµές αυτές ο τύπος που δόθηκε γίνεται f (x 0 ) 1 2h (3f 0 4f 1 + f 2 ). Παρατηρούµε ότι ο τύπος που δόθηκε είναι ακριβής για πολυώνυµα µέχρι δευτέρου βαθµού τουλάχιστον. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 20 / 36

Σφάλµα αποκοπής της πρώτης παραγώγου Το σφάλµα αποκοπής E n στον υπολογισµό της πρώτης παραγώγου στην περίπτωση των n+1σηµείων παρεµβολής είναι όπου E n = f (x) p n(x) (17) Επειδή όµως έχουµε f(x) = p n (x)+f[x 0, x 1,... x n, x] d n (x x i ). (18) i=0 g (x) = lim h 0 g[x, x + h] = g[x, x] dx f[x 0, x 1,..., x n, x] = f[x 0, x 1,..., x n, x, x]. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 21 / 36

Παραγωγίζοντας την (18) έχουµε f (x) = p n (x)+f[x 0, x 1,...,x n, x, x]ψ n (x)+ f[x 0, x 1,..., x n, x]ψ n (x) όπου ψ n (x) = (x x 0 )(x x 1 ) (x x n ) (19) ή f (x) = p n (x)+ f(n+2) (ξ 1 ) (n+2)! ψ n(x)+ f(n+1) (ξ) (n+1)! ψ n (x) (20) όπουξ 1 = ξ 1 (x), ξ = ξ(x) I, f(x)c n+2 (I) και I = [min{x 0, x 1,..., x n, x}, max{x 0, x 1,..., x n, x}]. Συνεπώς, λόγω της (20) η (17) γράφεται E n = ψ n (x) f(n+2) (ξ 1 ) (n+2)! +ψ n(x) f(n+1) (ξ) (n+1)!. (21) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 22 / 36

Ο ανωτέρω τύπος µπορεί να απλοποιηθεί σηµαντικά όταν το τυχόν σηµείο x είναι ένα από τα σηµεία παρεµβολής x k, 0 k n. Στην περίπτωση αυτή η (21) γίνεται όπου Πράγµατι, ή E n = n (x k x i) f(n+1) (ξ) (n+1)! i=0 }{{} i k ξ = ξ(x) = I = [min{x 0, x 1,...x n}, max{x 0, x 1,... x n}]. (23) ψ n(x) = (x x 0)(x x 1) (x x n) ψ n(x) = (x x 1)(x x 2) (x x n)+(x x 0)(x x 2) (x x n)+ + οπότε όταν x = x k έχουµε +(x x 0)(x x 1) (x x n 1) ψ n(x k) = (x k x 0)(x k x 1) (x k x k 1)(x k x k+1) (x k x n) (22) ή n ψ n(x k) = (x k x i). i=0 }{{} Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 23 / 36

Παράδειγµα 1 Να ϐρεθεί το σφάλµα αποκοπής στην περίπτωση χρήσης του τύπου Λύση f (x 0) f1 f0 Με εφαρµογή του τύπου (22) µε n = 1, x k = x 0 και έχοντας υπόψη ότι τα σηµεία παρεµβολής ισαπέχουν ϐρίσκουµε 1 1 E 1 = (1+1)! f(1+1) (ξ) (x 0 x i), όπου Από τα ανωτέρω προκύπτει h. i=0 }{{} i 0 ξ I = [min{x 0, x 1}, max{x 0, x 1}]. E 1 = h 2! f(2) (ξ), ξ (x 0, x 1). Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 24 / 36

Παράδειγµα 2 Να ϐρεθεί, όπως στο προηγούµενο παράδειγµα 1, το σφάλµα αποκοπής στην περίπτωση χρήσης του τύπου Λύση f (x 0 ) f 2 4f 1 + 3f 0 2h Εργαζόµαστε παρόµοια µε n = 2 ϐρίσκουµε ότι E 2 = 1 3! f(3) (ξ)(x 0 x 1 )(x 0 x 2 ) = 1 3! f(3) (ξ)( h)( 2h) = h2 3 f(3) (ξ), ξ (x 0, x 2 ). Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 25 / 36

Παράδειγµα 3 Για την εύρεση της πρώτης παραγώγου του πολυωνύµου f(x) = 3x 3 2x 2 + 1 στο σηµείο x = 1.5 χρησιµοποιείται ο τύπος (4) µε σηµεία παρεµβολής τα x 0 = 0, x 1 = 1 και x 2 = 2. Να ϐρεθεί, εφαρµόζοντας τον τύπο (21), το αντίστοιχο σφάλµα αποκοπής. Λύση Επειδή το x = 1.5 δεν είναι σηµείο παρεµβολής ϑα εφαρµοστεί ο τύπος (21) για n = 2 και x = 1.5. Επειδή η συνάρτηση είναι πολυώνυµο τρίτου ϐαθµού, έχουµε αµέσως από την αναλυτική έκφρασή της ότι f (3) (ξ) = 18 και f (4) (ξ 1 ) = 0. Εποµένως ο τύπος (21) δίνει E 2 = 1 3! 18[(x 0)(x 1)(x 2)] x=1.5 = 3(x 3 3x 2 + 2x) x=1.5 = 3(3x 2 6x + 2) x=1.5 = 3(3 (1.5) 2 6 (1.5)+2) = 0.75. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 26 / 36

Σφάλµα αποκοπής της παραγώγου στη µέθοδο των προσδιοριστέων συντελεστών Εστω ότι Ϲητάµε να ϐρούµε το σφάλµα αποκοπής του τύπου (13), δηλαδή του f (x 0 ) 1 2h (f 1 f 1 ). (24) Οπως διαπιστώθηκε προηγούµενα, ο τύπος αυτός είναι ακριβής µέχρι και για δευτέρου ϐαθµού πολυώνυµα, συνεπώς µε ϐάση τον τύπο (22) συµπεραίνουµε ότι το σφάλµα αποκοπής του είναι ανάλογο προς την f (ξ), δηλαδή ϑα ισχύει f (x 0 ) = 1 2h (f 1 f 1 )+Af (ξ), ξ (x 1, x 1 ). (25) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 27 / 36

Αν τώρα ϑέσουµε f(x) = x 3, ϑα µπορέσουµε να προσδιορίσουµε την σταθερά A. Πράγµατι, επειδή f (x) = 3x 2 και f (x) = 6, ο τύπος (25) γράφεται 3x 2 0 = 1 2h (x3 1 x 3 1)+A 6 όπου x 1 = x 0 h και x 1 = x 0 + h, οπότε αντικαθιστώντας ϐρίσκουµε ή ή Συνεπώς η (25) γράφεται τελικά σαν 3x 2 0 = 1 2h [(x0 + h)3 (x 0 h) 3 ]+6A 12hA = 6x 0h 2 2h(3x 2 0 + h 2 ) A = h2 6. f (x 0) = 1 h2 (f1 f 1) 2h 6 f (ξ), ξ (x 1, x 1). (26) Ανάλογα µπορούµε να εργαστούµε για την εύρεση του σφάλµατος αποκοπής για τον άλλο τύπο. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 28 / 36

Σφάλµα την Αριθµητική Παραγώγιση Ενα ιδιαίτερα σηµαντικό ϑέµα στη µελέτη του προβλήµατος της αριθµητικής παραγώγισης είναι η επίδραση του σφάλµατος στρογγύλευσης. Χάριν απλότητας, ας µελετήσουµε το σφάλµα στρογγύλευσης στον τύπο f (x 0 ) = f(x 0 + h) f(x 0 h) 2h h2 6 f(3) (ξ). (27) Ας υποθέσουµε ότι κατά τον υπολογισµό των f(x 0 + h) και f(x 0 h) υπεισέρχονται σφάλµατα στρογγύλευσηςε 1 καιε 1, τότε οι προσεγγιστικές τιµές f1 και f 1 δίνονται από τους τύπους fi = f i ε i, i = 1, 1 (28) όπου f i, i = 1, 1 συµβολίζουν τις ακριβείς τιµές της f(x) στα σηµεία x i, i = 1, 1. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 29 / 36

Το σφάλµα για τον υπολογισµό της f (x 0 ) δίνεται από την ποσότητα ή λόγω της (28) [ E = E = f (x 0 ) f 1 f 1 2h f (x 0 ) f 1 f 1 2h και τελικά, λόγω της (27), λαµβάνουµε ] + ε 1 ε 1 2h E = h2 6 f(3) (ξ)+ ε 1 ε 1. (29) 2h Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 30 / 36

Από την (29) παρατηρούµε ότι το σφάλµα έχει ένα τµήµα που οφείλεται στο σφάλµα στρογγύλευσης και ένα τµήµα που οφείλεται στο σφάλµα αποκοπής. Υποθέτοντες ότι τα σφάλµατα στρογγύλευσης είναι ϕραγµένα, δηλαδή ε i ε και f (3) (ξ) < M, η (29) γράφεται E ε h + h2 M = g(h). (30) 6 Για την ελαχιστοποίηση του E είναι ϕανερό ότι αρκεί να ελαχιστοποιηθεί η g(h) ως προς h. Ετσι, από την g (h) = 0 προκύπτει ( ) 1 3ε 3 h =. M Στην πράξη όµως δεν είναι δυνατόν να υπολογίσουµε την ακριβή ϐέλτιστη τιµή του h αφού δεν γνωρίζουµε το M. Ανάλογα συµπεράσµατα ισχύουν και για τους άλλους τύπους αριθµητικής παραγώγισης. Αξίζει λοιπόν να σηµειωθεί ότι η αριθµητική παραγώγιση είναι ασταθής καθόσον µικρές τιµές του h ελαττώνουν το σφάλµα αποκοπής αλλά συγχρόνως αυξάνουν το σφάλµα στρογγύλευσης. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 31 / 36

Σηµειώµατα Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 32 / 36

Σηµείωµα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήµιον Αθηνών 2015, Νικόλαος Μισυρλής, Αριθµητική Ανάλυση. Ενότητα 6- Αριθµητική Παραγώγιση και Ολοκλήρωση Εκδοση:1.01. Αθήνα 2015. ιαθέσιµο από τη δικτυακή διεύθυνση:http://opencourses.uoa.gr/courses/di12/. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 33 / 36

Σηµείωµα Αδειοδότησης Το παρόν υλικό διατίθεται µε τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εµπορική Χρήση Παρόµοια ιανοµή 4.0 [1] ή µεταγενέστερη, ιεθνής Εκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. ϕωτογραφίες, διαγράµµατα κ.λ.π., τα οποία εµπεριέχονται σε αυτό και τα οποία αναφέρονται µαζί µε τους όρους χρήσης τους στο «Σηµείωµα Χρήσης Εργων Τρίτων». [1] http://creativecommons.org/licenses/by-nc-sa/4.0/ Ως Μη Εµπορική ορίζεται η χρήση: που δεν περιλαµβάνει άµεσο ή έµµεσο οικονοµικό όφελος από την χρήση του έργου, για το διανοµέα του έργου και αδειοδόχο που δεν περιλαµβάνει οικονοµική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προορίζει στο διανοµέα του έργου και αδειοδόχο έµµεσο οικονοµικό όφελος (π.χ. διαφηµίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος µπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιµοποιεί το έργο για εµπορική χρήση, εφόσον αυτό του Ϲητηθεί. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 34 / 36

ιατήρηση Σηµειωµάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού ϑα πρέπει να συµπεριλαµβάνει: το Σηµείωµα Αναφοράς το Σηµείωµα Αδειοδότησης τη δήλωση ιατήρησης Σηµειωµάτων το Σηµείωµα Χρήσης Εργων Τρίτων (εφόσον υπάρχει) µαζί µε τους συνοδευόµενους υπερσυνδέσµους. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 35 / 36

Σηµείωµα Χρήσης Εργων τρίτων Το Εργο αυτό κάνει χρήση του ακόλουθου έργου: Εισαγωγή στην Αριθµητική Ανάλυση : Μια αλγοριθµική προσέγγιση, αυτο-έκδοση, Αθήνα, 2009, Νικόλαος Μισυρλής. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 36 / 36