ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20"

Transcript

1 Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

2 Αριθµητική Επίλυση Συνήθων ιαφορικών Εξισώσεων Συνήθης διαφορική εξίσωση πρώτης τάξης y = f(x, y) (1) όπου y = y(x) µία άγνωστη συνάρτηση του x, που ικανοποιεί την συνθήκη y(x 0) = y 0 (2) µε x 0, y 0 δεδοµένα και f µία γνωστή συνάρτηση των x και y. Υπαρξη και µονοσήµαντο λύσης Είναι γνωστό από τη ϑεωρία των διαφορικών εξισώσεων ότι αν η f(x, y) είναι συνεχής στον τόπο S µε S {(x, y) x 0 x x n, < y < + } (3) και ικανοποιεί µία συνθήκη Lipshitz στην λωρίδα S µε σταθερά L (> 0), δηλαδή f(x, y 1) f(x, x 2) L y 1 y 2, (4) τότε το πρόβληµα των αρχικών τιµών (1)-(2) έχει ακριβώς µία λύση για κάθε x [x 0, x n]. ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

3 Ανάπτυξη αριθµητικών µεθόδων Εύρεση της προσεγγιστικής τιµής της y σε ένα τυχόν σηµείο x x 0. Εκλέγουµε αυθαίρετα ένα ϕυσικό αριθµό n και συµβολίζουµε µε x n την τιµή του x για την οποία µας Ϲητείται η τιµή της y. ιαιρούµε το διάστηµα [x 0, x n] σε n ίσα υποδιαστήµατα µε τα σηµεία x i, i = 1, 2,..., n 1. Είναι ϕανερό ότι τα σηµεία x i, i = 0, 1,..., n ορίζονται από τις σχέσεις x i = x 0 + ih, h = µε i = 0, 1,..., n όπου h είναι το ϐήµα ολοκλήρωσης. xn x0 Ακολούθως εφαρµόζοντας µία από τις αριθµητικές µεθόδους που ϑα αναπτύξουµε στα επόµενα ϐρίσκουµε την y 1 που είναι µία προσεγγιστική τιµή της ακριβούς τιµής y(x 1) µετά, χρησιµοποιώντας την y 1, ϐρίσκουµε την y 2 κ.ο.κ. και τέλος την y n την οποία και δεχόµαστε σαν την αριθµητική λύση του προβλήµατος στο σηµείο x = x n. Στην πράξη λαµβάνουµε n = 1 και ϐρίσκουµε την y n ( y 1). Μετά λαµβάνουµε n = 2 και ϐρίσκουµε την y n ( y 2), n = 4, 8 κ.ο.κ. µέχρις ότου δύο διαδοχικές τιµές για την y n συµφωνούν σε ένα προκαθορισµένο πλήθος δεκαδικών ψηφίων οπότε την τελευταία τιµή y n δεχόµαστε σαν την αριθµητική λύση της διαφορικής εξίσωσης στο σηµείο x = x n. n, ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

4 Η µέθοδος του Euler Η µέθοδος του Euler είναι µία µέθοδος του απλού ϐήµατος όπου η τιµή της παραγώγου της συνάρτησης y(x) σε ένα άγνωστο σηµείο του διαστήµατος [x i, x i+1 ] προσεγγίζεται µε την τιµή της ίδιας της παραγώγου στο σηµείο x i. Ετσι διατηρώντας δύο όρους στο ανάπτυγµα του Taylor έχουµε y(x i+1 ) = y(x i + h) = y(x i ) + hy (x i + θ i h), i = 0, 1,..., n 1 (5) όπου 0 < θ i < 1. ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

5 Αν τώρα προσεγγίσουµε την y (x i + θ i h) µε την y (x) και χρησιµοποιήσουµε τα σύµβολα y i, y i για τις προσεγγιστικές τιµές των y(x i ) και y (x i ), αντίστοιχα, τότε η (5) γίνεται y i+1 = y i + hy i, i = 0, 1,..., n 1. (6) Αλλά άρα η (6) δίνει τελικά y i = f(x i, y i ) (7) y i+1 = y i + hf(x i, y i ), i = 0, 1,..., n 1. (8) ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

6 Η σχέση (8), αν γνωρίζουµε την y(x i ), γίνεται y (x i+1 ) = y(x i ) + hy (x i ), i = 0, 1,..., n 1 όπου ο συµβολίζει την προσεγγιστική τιµή, οπότε το σφάλµα είναι ή p i+1 = y (x i+1 ) y(x i+1 ) = y(x i ) + hy (x i ) y(x i ) hy (x i + θ i h) = hy (x i ) hy (x i ) h2 2! y (x i + θ i h) p i+1 = h2 2 y (x i + θ i h), 0 < θ i < 1, i = 0, 1,..., n 1. Το ανωτέρω σφάλµα καλείται τοπικό σφάλµα αποκοπής και όπως παρατηρούµε είναι ανάλογο του O ( h 2) (δεύτερης τάξης ως προς h). ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

7 Παράδειγµα Εστω το πρόβληµα των αρχικών τιµών y = y + x + 1, 0 x 1 y(0) = 1. Αν n = 10, να υπολογιστεί η y(1.0) µε τη µέθοδο του Euler. Λύση Εχουµε f(x, y) = y + x + 1, x 0 = 0, y 0 = 1, x n = 1.0 h = x n x 0 n = = 0.1 και x i = x 0 + ih = 0.1i οπότε η µέθοδος του Euler είναι η y i+1 = y i + hf(x i, y i ), i = 0, 1,..., n 1 ή y i+1 = y i + h( y i + x i + 1), i = 0, 1,..., 9. ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

8 Εφαρµόζοντας επαναληπτικά τον ανωτέρω τύπο ϐρίσκουµε (i = 0) y 1 = y 0 + h( y 0 + x 0 + 1) = ( ) = 1.0 (i = 1) y 2 = y 1 + h( y 1 + x 1 + 1) = ( ) = 1.01 (i = 2) y 3 = y 2 + h( y 2 + x 2 + 1) = ( ) = (i = 9) y 10 = ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

9 Πίνακας υπολογισµών και σφαλµάτων Η ακριβής λύση είναι η y(x) = x + e x. i x i y i y(x i ) y i y(x i ) Παρατηρούµε ότι τα σφάλµατα αυξάνονται όσο αυξάνεται η τιµή των x i. Η ελεγχόµενη αυτή αύξηση του σφάλµατος οφείλεται στην ευστάθεια της µεθόδου του Euler, πράγµα που δηλώνει ότι τα σφάλµατα στρογγύλευσης αναµένονται να αυξηθούν ανάλογα µε το h. ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

10 Η µέθοδος της σειράς Taylor Η µέθοδος της σειράς Taylor είναι η γενίκευση της µεθόδου του Euler και είναι περισσότερο ακριβής. Συνιστάται δε στην περίπτωση όπου οι παράγωγοι ανώτερης τάξης της f(x, y) µπορούν να υπολογιστούν εύκολα. Οπως και στη µέθοδο του Euler αναπτύσσουµε κατά Taylor κρατώντας k + 1 όρους, οπότε y(x i+1 ) = y(x i + h) = y(x i ) + hy (x i ) hk k! y(k) (x i + θ i h) (9) όπου 0 < θ i < 1, i = 0, 1,..., n 1, ή y(x i+1 ) = y(x i )+hy (x i )+...+ hk k! y(k) (x i )+O ( h k+1), i = 0, 1,..., n 1. (10) ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

11 Τοπικό σφάλµα αποκοπής ίνεται τώρα από τον τύπο hk+1 p i+1 = (k + 1)! y(k+1) (x i + θ i h), 0 < θ i < 1, i = 0, 1,..., n 1. Από την (10) έχουµε y i+1 = y i + hy i + h2 2! y i hk k! y(k) i, i = 0, 1,..., n 1 που αποτελεί τη γνωστή σαν µέθοδο της σειράς Taylor. ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

12 Παράδειγµα 1 Να χρησιµοποιηθεί η µέθοδος του Taylor µε τρεις και τέσσερις όρους για το πρόβληµα y = y + x + 1, 0 x 1, y(0) = 1. Λύση Η µέθοδος του Taylor µε τρεις όρους είναι η y i+1 = y i + hy i + h2 2 y i, i = 0, 1,..., n 1 οπότε µας χρειάζονται οι εκφράσεις της πρώτης και δεύτερης παραγώγου της y. Εχουµε y = y + x + 1 y = ( y + x + 1) = y + 1 = y x = y x. Αρα για n = 10, x 0 = 0, y 0 = 1, x n = 1.0, h = xn x0 = 0.1 έχουµε n y i+1 = y i + h( y i + x i + 1) + h2 2 (y i x i ), i = 0, 1,..., 9. ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

13 Εποµένως (i = 0) y 1 = y 0 + h( y 0 + x 0 1) + h2 2 (y 0 x 0 ) = ( ) + (0.1)2 (1 0) 2 = = = (i = 1) y 2 = y 1 + h( y 1 + x 1 1) + h2 2 (y 1 x 1 ) = ( ) + (0.1)2 ( ) 2 = (i = 9) y 10 = ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

14 Παράδειγµα 2 Να χρησιµοποιηθεί η µέθοδος του Euler στο ακόλουθο πρόβληµα αρχικών τιµών y = y y(0) = 1 του οποίου η λύση είναι η y(x) = e x. Πιο συγκεκριµένα να ϐρεθεί η y(0.4) όταν h = 0.1 και h = 0.2. Λύση Εχουµε f(x, y) = y, x 0 = 0, y 0 = 1, x n = 0.4, h = 0.1 και x i = x 0 + ih, i = 0, 1,..., 4 ή x 0 = 0, x 1 = 0.1, x 2 = 0.2, x 3 = 0.3 και x 4 = 0.4. Η µέθοδος του Euler είναι η ή y i+1 = y i + hf(x i, y i ), i = 0, 1,..., n 1 y i+1 = y i + h( y i ), i = 0, 1,..., 3 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

15 συνεπώς (i = 0) y 1 = y 0 hy 0 = = 0.9 (i = 1) y 2 = y 1 hy 1 = = 0.81 (i = 2) y 3 = y 2 hy 2 = = (i = 3) y 4 = y 3 hy 3 = = ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

16 Πίνακας υπολογισµών και σφαλµάτων Οταν h = 0.2 έχουµε i x i y i e xi e xi y i i x i y i e xi e xi y i Παρατηρούµε ότι το σφάλµα αυξάνει όσο αυξάνει το x. Επίσης τα σφάλµατα για h = 0.2 είναι περίπου δύο ϕορές µεγαλύτερα από την περίπτωση όπου h = 0.1. Από το αριθµητικό αυτό παράδειγµα παρατηρούµε ότι το σφάλµα είναι ανάλογο του h, πράγµα που αληθεύει σύµφωνα µε τη ϑεωρία. ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

17 Αριθµητική επίλυση συνήθων διαφορικών εξισώσεων µε συνοριακές συνθήκες Συνήθης ιαφορική Εξίσωση 2ης τάξης Εστω η συνήθης διαφορική εξίσωση 2ης τάξης y = f(x) (11) µε y(a) = α, y(b) = β µε a, b (a < b), α, β γνωστά και f γνωστή συνάρτηση του x. Με την προϋπόθεση ότι το παραπάνω πρόβληµα έχει µία λύση ορίζουµε αυθαίρετα ϕυσικό αριθµό n και στη συνέχεια το ϐήµα ολοκλήρωσης. h = b a n ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

18 Ε πίσης ορίζουµε τα σηµεία x i = x 0 + ih, i = 0, 1,..., n µε x 0 = a. Το πρόβληµά µας είναι να ϐρούµε τις προσεγγιστικές τιµές y i των y(x i ), 1 i n 1 που να επαληθεύουν την y = f(x) όταν γνωρίζουµε ότι Αντικαθιστώντας λαµβάνουµε y 0 = α και y n = β. y i y i 1 2y i + y i+1 h 2, i = 1, 2,..., n 1 y i 1 2y i + y i+1 = h 2 f(x i ), i = 1, 2,..., n 1. (12) ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

19 Τριδιαγώνιο Γραµµικό Σύστηµα Οι παραπάνω εξισώσεις αποτελούν ένα σύστηµα n 1 γραµµικών εξισώσεων µε n 1 αγνώστους που λόγω των συνοριακών τιµών λαµβάνει την ακόλουθη µορφή ή 2y 1 y 2 = α h 2 f(x 1 ) y 1 +2y 2 y 3 = h 2 f(x 2 ) y n 3 +2y n 2 y n 1 = h 2 f(x n 2 ) y n 2 +2y n 1 = β h 2 f(x n 1 ) (13) Ay = k (14) ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

20 όπου και A = k = α h 2 f(x 1 ) h 2 f(x 2 ). hf(x n 2 ) β h 2 f(x n 1 ). ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική (Περιττοί) : Ανάλυση Επίκ. Καθηγητής Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 96 Αριθµητική Ολοκλήρωση

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 19 εκεµβρίου 2015 Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων 1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 36 Αριθµητική Παραγώγιση

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ Μαρτίου 00 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 21Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 21Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 1 εκεµβρίου 15 Ανάλυση (ή Επιστηµονικοί 1Υπολογισµοί) εκεµβρίου

Διαβάστε περισσότερα

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) Αριθµητικές Μέθοδοι και Προγραµµατισµός Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 7 Οκτωβρίου 2014 ιδάσκοντες: Καθηγητής Ν. Μισυρλής,Επίκ.

Διαβάστε περισσότερα

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50

Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και2015 Ιδιοδιανυσµάτων 1 / 50 Αριθµητική Γραµµική Αλγεβρα Κεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ΕΚΠΑ 2 Απριλίου 205 Αριθµητική Γραµµική ΑλγεβραΚεφάλαιο 4. Αριθµητικός Υπολογισµός Ιδιοτιµών 2 Απριλίου και205

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 4 Νοεµβρίου 2014 Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) 4

Διαβάστε περισσότερα

Αριθµητική Ανάλυση 1 εκεµβρίου / 43

Αριθµητική Ανάλυση 1 εκεµβρίου / 43 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 Αριθµητική Ανάλυση 1 εκεµβρίου 2014 1 / 43 Κεφ.5. Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων ίνεται ένας πίνακας A C n n και Ϲητούνται να προσδιορισθούν οι

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ Καθηγητής ΦΤζαφέρης ΕΚΠΑ 3 Μαρτίου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν Μισυρλής,Τµήµα Β Αριθµητική

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Τµήµα Α ( Αρτιοι) : Καθηγητής Ν.Μισυρλής,Τµήµα Β (Περιττοί) : Επίκ. Αριθµητική Καθηγητής Ανάλυση Φ.Τζαφέρης

Αριθµητική Ανάλυση. Τµήµα Α ( Αρτιοι) : Καθηγητής Ν.Μισυρλής,Τµήµα Β (Περιττοί) : Επίκ. Αριθµητική Καθηγητής Ανάλυση Φ.Τζαφέρης Αριθµητική Ανάλυση Τµήµα Α ( Αρτιοι) : Καθηγητής Ν.Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης 3 Οκτωβρίου 2016 3 Οκτωβρίου 2016 1 / 54 Τρόπος ιδασκαλίας Η διδασκαλία ϑα στηρίζεται στις διαλέξεις.

Διαβάστε περισσότερα

ιαφορικές Εξισώσεις 1

ιαφορικές Εξισώσεις 1 Κεφάλαιο 6 ιαφορικές Εξισώσεις 1 6.1 Γενικά Για τη επίλυση των διαφόρων προβληµάτων υπάρχουν γενικά δύο τύποι µαθηµατικών µοντέλων. 1. Στατικά µοντέλα, π.χ. το κυκλοφοριακό σύστηµα µιας πόλης, ελαχιστοποίηση

Διαβάστε περισσότερα

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)

QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1) ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 5ο κεφάλαιο: Πρόοδοι ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα 1 ΠΡΟΟ

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ ΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Έστω [ α, b], f :[ α, b], y. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: Ζητείται µια συνάρτηση y :[

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί) ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 8 εκεµβρίου 04 Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί) εκεµβρίου

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

y r = y r y r 1. y r+ 1 + y r 1 δy r = y r+ 1 y sinh 1 z = z 1 6 z z z7 +,

y r = y r y r 1. y r+ 1 + y r 1 δy r = y r+ 1 y sinh 1 z = z 1 6 z z z7 +, 58 ΚΕΦΑΛΑΙΟ 6. ΙΑΦΟΡΙΚ ΕΣ ΕΞΙΣ ΩΣΕΙΣ Συνεπώς, E = e hd και hd = ln E = ln1 + ). Από την τελευταία σχέση µπορούµε να υπολογίσουµε την τιµή της παραγώγου µιας συνάρτησης σε ένα σηµείο x r, όταν είναι γνωστές

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28

Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28 Αριθµητική Ανάλυση Κεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 Αριθµητική ΑνάλυσηΚεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 1 / 28 Τα πολυώνυµα Chebyshev Αν η f (n+1) (x) είναι συνεχής, τότε υπάρχει ένας αριθµός

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Πεπερασμένες και Διαιρεμένες Διαφορές Εισαγωγή Θα εισάγουμε την έννοια των διαφορών με ένα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 15 Μαΐου 2013 Ασκηση 1. Εστω n 3 ακέραιος.

Διαβάστε περισσότερα

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ

5.2 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ 5. ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟ ΟΣ ΘΕΩΡΙΑ. Ορισµός Μια ακολουθία λέγεται αριθµητική πρόοδος, αν και µόνο αν κάθε όρος της προκύπτει από τον προηγούµενο του µε πρόσθεση του ίδιου πάντοτε αριθµού.. Μαθηµατική έκφραση

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε.

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. Κεφάλαιο 4 Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. 4.1 Προβλήματα αρχικών τιμών Στο κεφάλαο αυτό θα ασχοληθούμε με μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville Κεφάλαιο : Προβλήµατα τύπου Stur-Liouvie. Ορισµός προβλήµατος Stur-Liouvie Πολλές τεχνικές επίλυσης µερικών διαφορικών εξισώσεων βασίζονται στην αναγωγή της µερικής διαφορικής εξίσωσης σε συνήθεις διαφορικές

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Αριθµητικη Επιλυση Συνηθων ιαϕορικων Εξισωσεων

Αριθµητικη Επιλυση Συνηθων ιαϕορικων Εξισωσεων Τµηµα Μαθηµατικων και Στατιστικης Πανεπιστηµιο Κυπρου Αριθµητικη Επιλυση Συνηθων ιαϕορικων Εξισωσεων ΜΑΣ 471 Σηµειώσεις διαλέξεων Α. Καραγιωργης Λευκωσια 2018 c 2018 Ανδρέας Καραγιώργης. Ολα τα δικαιώµατα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4) -- Αριθµητική Ανάλυση και Περιβ. Υλοποίησης Απαντήσεις στα Θέµατα Ιουνίου (3 και 4) Θέµα 3 [6µ] Θεωρούµε ότι κατά την επίλυση ενός προβλήµατος προσέγγισης προέκυψε ένα γραµµικό σύστηµα Αxb, µε αγνώστους,

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 4 1 / 48

Διαβάστε περισσότερα

Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία

Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή για την εκπαιδευτική διαδικασία Πρόγραµµα Μεταπτυχιακών Σπουδών "Υπολογιστικά Μαθηµατικά και Πληροφορική" Κατεύθυνση: Τεχνολογίες Πληροφορικής και Επικοινωνιών στην Εκπαίδευση Αριθµητική επίλυση εξισώσεων και παρεµβολή µέσω υπολογιστή

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ /5/007 η Οµάδα Ασκήσεων ΑΣΚΗΣΗ (Θεωρία). α) Έστω fl() x η παράσταση

Διαβάστε περισσότερα

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ SECTION 0 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 0. Ορισµοί Συνήθης διαφορική εξίσωση (Σ Ε) καλείται µια εξίσωση της µορφής f [y (n), y (n ),..., y'', y', y, x] 0 όπου y', y'',..., y (n ), y (n) είναι οι παράγωγοι

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση

Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση Τµηµα Επιστηµης και Τεχνολογιας Υλικων Πανεπιστηµιο Κρητης Ηλεκτρονικοί Υπολογιστές ΙΙ : Εισαγωγή στην Αριθµητική Ανάλυση Σηµειώσεις ιαλέξεων και Εργαστηρίων Μ. Γραµµατικακης Γ. Κοπιδακης Ν. Παπαδακης

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

P (Ηρ) = 0.4 P (Αρ) = 0.32 P (Απ) = 0.2

P (Ηρ) = 0.4 P (Αρ) = 0.32 P (Απ) = 0.2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2014 ιδάσκων : Π. Τσακαλίδης Λύσεις Πρώτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/09/2014 Ηµεροµηνία Παράδοσης

Διαβάστε περισσότερα

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ . ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Κλασµατική εξίσωση : Ονοµάζουµε κλασµατική εξίσωση κάθε εξίσωση η οποία έχει τον άγνωστο σ έναν τουλάχιστον παρονοµαστή. ΣΧΟΛΙΟ ιαδικασία επίλυσης : i) Αναλύουµε τους παρονοµαστές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi

ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ. Εστω f πραγµατική συνάρτηση, της οποίας είναι γνωστές µόνον οι τιµές f(x i ) σε n+1 σηµεία xi ΚΕΦΑΛΑΙΟ 5 ΠΑΡΕΜΒΟΛΗ 5 Πολυωνυµική παρεµβολή Εστω f πραγµατική συνάρτηση της οποίας είναι γνωστές µόνον οι τιµές f(x ) σε + σηµεία x = του πεδίου ορισµού της Το πρόβληµα εύρεσης µιας συνάρτησης φ (από

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 1 Σφάλµατα στους Αριθµητικούς Υπολογισµούς. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 1 Σφάλµατα στους Αριθµητικούς Υπολογισµούς. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 1 Σφάλµατα στους Αριθµητικούς Υπολογισµούς Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 2 1 / 57 Αριθµητική Ανάλυση

Διαβάστε περισσότερα

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2

0 x < (x + 2) 2 x < 1 f X (x) = 1 x < ( x + 2) 1 x < 2 0 x 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 6-7 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 9 Επιµέλεια : Γιαννόπουλος Μιχάλης Ασκηση Εστω X συνεχής Τ.Μ. µε Συνάρτηση Πυκνότητας

Διαβάστε περισσότερα

1 Πολυωνυµική Παρεµβολή

1 Πολυωνυµική Παρεµβολή 1 Πολυωνυµική Παρεµβολή εδοµένων n + 1 ανά δύο διαφορετικών σηµείων x o, x 1, x,..., x n και των αντίστοιχων συναρτησιακών τιµών y o = f(x o ), y 1 = f(x 1 ), y = f(x ),...,y n (x n ) επιθυµούµε να προσεγγίσουµε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 4 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 Ηµεροµηνία αποστολής στον φοιτητή: 9 Φεβρουαρίου 5. Τελική ηµεροµηνία αποστολής από τον φοιτητή: Μαρτίου 5.

Διαβάστε περισσότερα

ΘΕΜΑ 2ο. Άσκηση εφαρµογής της µεθόδου Newton Raphson

ΘΕΜΑ 2ο. Άσκηση εφαρµογής της µεθόδου Newton Raphson ΘΕΜΑ 2ο Άσκηση εφαρµογής της µεθόδου Newton Raphson Θέµα 2: Η ακόλουθη αντίδραση πραγµατοποιείται σε έναν αντιδραστήρα αέριας φάσης: H 2 S+O 2 H 2 +SO 2 Όταν το σύστηµα φτάσει σε ισορροπία στους 600Κ και

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 Αριθµητική Ανάλυση 7 Οκτωβρίου 06 / 7 Επαναληπτικές Μέθοδοι για την επίλυση Γραµµικών Συστηµάτων ίνεται το γραµµικό σύστηµα Ax = b όπου A R n n είναι µη ιδιάζων πίνακας

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ 12) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ 3 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Άσκηση. ( µον.). Έστω z ο µιγαδικός αριθµός z i, µε, R. (α) ίνεται η εξίσωση: z

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Εισαγωγικές έννοιες και ταξινόμηση Σ.Δ.Ε. Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ 1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης ΤΜΗΜΑ Β ΕΞΕΤΑΣΤΙΚΗ ΧΕΙΜΕΡΙΝΟΥ ΕΞΑΜΗΝΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΚΑ. ΕΤΟΣ - ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν Σέρρες, 7 Φεβρουαρίου ΘΕΜΑ ον ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ :

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

x(t) 2 = e 2 t = e 2t, t > 0

x(t) 2 = e 2 t = e 2t, t > 0 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 216-17 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις σε Σήµατα και Συστήµατα Ασκηση

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 2 Αριθµητική Επίλυση µη Γραµµικών Εξισώσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 2 Αριθµητική Επίλυση µη Γραµµικών Εξισώσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 2 Αριθµητική Επίλυση µη Γραµµικών Εξισώσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 2 1 / 115 ΕΝΟΤΗΤΑ 2

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 23 Μαρτίου 2017 1 / 20 Επιλογή Το πρόβληµα

Διαβάστε περισσότερα

4. Σειρές Τέηλορ και Μακλώριν

4. Σειρές Τέηλορ και Μακλώριν Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής Σειρές Τέηλορ και Μακλώριν Το θεώρηµα του Τέηλορ Το θεώρηµα του Τέηλορ (Tayl) µάς δίνει τη δυνατότητα να αναπτύσσουµε συναρτήσεις

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

Παρεµβολή και Προσέγγιση Συναρτήσεων

Παρεµβολή και Προσέγγιση Συναρτήσεων Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ανοικτά Ακαδημαϊκά Μαθήματα. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Δρ Ι. Φαμέλης

Αριθμητική Ανάλυση. Ανοικτά Ακαδημαϊκά Μαθήματα. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Δρ Ι. Φαμέλης Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Αριθμητική Ανάλυση Δρ Ι. Φαμέλης Τμήματος Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΥΨΗΛΗΣ ΤΑΞΗΣ ODE ΜΕ ΥΨΗΛΗΣ ΤΑΞΗΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν

Διαβάστε περισσότερα

1 η δεκάδα θεµάτων επανάληψης

1 η δεκάδα θεµάτων επανάληψης 1 η δεκάδα θεµάτων επανάληψης 1. Έστω η εξίσωση (k 5k+ 4) x (k 1)x + 1= 0 Να βρείτε την τιµή του k ώστε η εξίσωση να έχει µία µόνο ρίζα την οποία ρίζα να προσδιορίσετε i Να βρείτε την τιµή του k ώστε η

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου.

Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Συνήθεις ιαφορικές Εξισώσεις, Απαντήσεις-Παρατηρήσεις στην Εξέταση Περιόδου Σεπτεµβρίου. Ανδρέας Ζούπας 22 Ιανουαρίου 203 Οι λύσεις απλώς προτείνονται και σαφώς οποιαδήποτε σωστή λύση είναι αποδεκτή! Θέµα-

Διαβάστε περισσότερα

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία)

1η Οµάδα Ασκήσεων. ΑΣΚΗΣΗ 1 (Θεωρία) ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟ ΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ KAI THΛΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΘΕΩΡΗΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ 13/3/8 1η Οµάδα Ασκήσεων ΑΣΚΗΣΗ 1 (Θεωρία) 1.1 Σε ένα σύστηµα

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

Κρυπτογραφία και Πολυπλοκότητα

Κρυπτογραφία και Πολυπλοκότητα Απόδειξη του Αλγορίθµου Tonelli - Shanks Σχολή Εφαρµοσµένων και Φυσικών Επιστηµών ευτέρα 13 Φεβρουαρίου 2011 Το Πρόβληµα Να ϐρούµε x 1, x 2 Z p τέτοια ώστε: για κάποιο a Z p. x 2 i a (mod p) i 1, 2 (1)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες-Χειµερινό Εξάµηνο 08-09 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 Ασκηση Το πείραµά µας συνίσταται στη ϱίψη 3 τίµιων κερµάτων. Συµβολίζουµε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε

Διαβάστε περισσότερα

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης

Θεωρια Αριθµων. Θεωρητικα Θεµατα. Ακαδηµαϊκο Ετος ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Θεωρια Αριθµων Θεωρητικα Θεµατα Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης & Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 2 Απριλίου 2013 Το παρόν κείµενο

Διαβάστε περισσότερα

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )

Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 ) Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι

Διαβάστε περισσότερα

Οι πραγµατικοί αριθµοί

Οι πραγµατικοί αριθµοί Οι πραγµατικοί αριθµοί Προλεγόµενα Η ανάγκη απαρίθµησης αντικειµένων, οδήγησε στην εισαγωγή του συνόλου των φυσικών αριθµών Η ανάγκη µέτρησης µεγεθών, οδήγησε στην εισαγωγή του συνόλου των ρητών αριθµών

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ :

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2008 ΕΥΤΕΡΟ ΜΕΡΟΣ : ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ - ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ:

ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: ΘΕΜΑΤΑ ΕΞΕΤΑΣΗΣ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ: Ιανουάριος-Φεβρουάριος 7 ΜΑΘΗΜΑ: Αριθµητική Ανάλυση ΕΞΑΜΗΝΟ: ο Ι ΑΣΚΩΝ: Ε Κοφίδης Όλα τα ερωτήµατα είναι ισοδύναµα Καλή επιτυχία! Θέµα ο α Χρησιµοποιείστε

Διαβάστε περισσότερα