Kinematics ( ) Deformation Mapping. Eulerian/Lagrangian descriptions of motion. Deformation Gradient. x const. i ik k. u(x) e 2. e 1. e 3.

Σχετικά έγγραφα
Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Homework 8 Model Solution Section

α & β spatial orbitals in

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

V. Finite Element Method. 5.1 Introduction to Finite Element Method

8.323 Relativistic Quantum Field Theory I

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Quantum ElectroDynamics II

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Parametrized Surfaces

1 Complete Set of Grassmann States

Geodesic Equations for the Wormhole Metric

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6.4 Superposition of Linear Plane Progressive Waves

Phasor Diagram of an RC Circuit V R

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Theory of the Lattice Boltzmann Method

Higher Derivative Gravity Theories

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

( ) Sine wave travelling to the right side

1 String with massive end-points

8.324 Relativistic Quantum Field Theory II

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

DuPont Suva 95 Refrigerant

Areas and Lengths in Polar Coordinates

Eulerian Simulation of Large Deformations

C.S. 430 Assignment 6, Sample Solutions

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva 95 Refrigerant

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Answer sheet: Third Midterm for Math 2339

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Space-Time Symmetries

Other Test Constructions: Likelihood Ratio & Bayes Tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

ADVANCED STRUCTURAL MECHANICS

Areas and Lengths in Polar Coordinates

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Second Order Partial Differential Equations

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

( ) 2 and compare to M.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

4.4 Superposition of Linear Plane Progressive Waves

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

Strain gauge and rosettes

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

2 Composition. Invertible Mappings

Finite Field Problems: Solutions

Statistical Inference I Locally most powerful tests

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Example Sheet 3 Solutions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Forced Pendulum Numerical approach

CRASH COURSE IN PRECALCULUS

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

[1] P Q. Fig. 3.1

2. Chemical Thermodynamics and Energetics - I

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Empirical best prediction under area-level Poisson mixed models

Solution Series 9. i=1 x i and i=1 x i.

The Simply Typed Lambda Calculus

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

D Alembert s Solution to the Wave Equation

Homework 3 Solutions

EE512: Error Control Coding

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

12. Radon-Nikodym Theorem

Spherical Coordinates

Section 8.3 Trigonometric Equations

Srednicki Chapter 55

1 Lorentz transformation of the Maxwell equations

EE 570: Location and Navigation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Capacitors - Capacitance, Charge and Potential Difference

Uniform Convergence of Fourier Series Michael Taylor

ST5224: Advanced Statistical Theory II

Transcript:

Knematcs Deformaton Mappng y = x + u ( x, x, x,) t 3 Euleran/Lagrangan descrptons of moton = + = = t x = const t e y u y x u ( x, t) v ( x, t) y y = + = = t x = const t x = const x Orgnal Confguraton y x u ( y, t) v ( y, t) a ( y, t) y u(x) Confguraton δ u yk u y v (,) v (,) k = = a y t = + vk y t yk t t x const y= const t t x const y= const y = = k Deformaton Gradent y ( ( )) y= x+ ux = F ( ) u or = x + u = δ + = F x x x dy = F dx dy = F dx k k e dx x Orgnal Confguraton u(x+dx) u(x) dy Confguraton

Knematcs Sequence of deformatons e dx x u () (x) y dy u () (y) z dz Orgnal Confguraton After frst deformaton After second deformaton () () () () dz = F dx wth F= F F or dz = Fdx F = Fk Fk Lagrange Stran T E= ( F F I) or E = ( Fk Fk δ ) ( δl) 0 δ l l 0 0 l0 l l l mem = E mm = = + e l 0 m Orgnal Confguraton l Confguraton

Knematcs Volume Changes dv det ( ) dv = F = J 0 e dy dv 0 dx dz dv dr dv dw Undeformed Area Elements T 0 0 0 k k 0 dan= JF da n dan = JF n da e da 0 n 0 dp (n) 0 u(x) n dp (n) da x Orgnal Confguraton t Confguraton e Infntesmal Stran Approxmates L-stran T ( ( ) ) or u u ε= u + u ε = + x x y B u u O uk u k u u E = + + + ε x x x x x x l 0 C l 0 A x y l 0 (+ε ) yy O l 0 B π/ γ xy (+ε ) xx A x C elated to Engneerng Strans ε = ε xx = εyy ε ε = ε = γxy / = γyx /

Prncpal values/drectons of Infntesmal Stran or ε () () en () () klnl = en l ε n = Knematcs e n () n () n () Orgnal Confguraton Ι+ε n () Infntesmal rotaton T ( ( ) ) or u u w = u u w = x x Decomposton of nfntesmal moton n () Ι+ε n () I+w u x = ε + w e n () Orgnal Confguraton n () Confguraton

Knematcs Left and ght stretch tensors, rotaton tensor F= U F= V U,V symmetrc, so U= λu u + λ u u + λu u () () () () (3) (3) 3 V = λv v + λ v v + λ v v () () () () (3) (3) 3 λ prncpal stretches U u () v () u () u () u () e u () Orgnal Confguraton u (3) u (3) λ u () v () λ λ 3 u () Confguraton u () Left and ght Cauchy-Green Tensors T C= F F= U T B= F F = V

Generalzed stran measures Knematcs Lagrangan Nomnal stran: ( λ ) u 3 = 3 Lagrangan Logarthmc stran: log( λ ) u = () () u () () u Euleran Nomnal stran: ( λ ) v 3 = 3 Euleran Logarthmc stran: log( λ ) v = () () v () () v Euleran stran * T * E = ( I F F ) or E = ( δ Fk Fk )

Knematcs u(x) Velocty Gradent L v = yv L = y e x Orgnal Confguraton y Confguraton v dv = v ( y+ dy) v ( y) = dy y dv = F d d d dv = dy ( Fdx ) Fdx Fk dy dt = dt = L= F F k dt Stretch rate and spn tensors dl l dt = ndn =nd n T T D= ( L+ L ) W= ( L L ) e l 0 l n Orgnal Confguraton Confguraton

Knematcs v ω= v = ω= dual( W) ω = k W k y Vortcty vector curl( ) ω k k Spn-acceleraton-vortcty relatons v v a= = + ( vv) + W v t t y k k k k x = const y = const k k v v a= = + ( vv) + ω v t t y k k k k x = const y = const k a ω v = + k k k Dω y t x= const yk k ω

Knetcs S 0 S b t = lm da 0 Surface tracton dp da da dp e ρb = 0 Orgnal Confguraton lm dv 0 dp dv t Confguraton Body Force dv dp Internal Tracton dp n T(n) t Tn ( ) = lm da 0 ( n) dp da da t e T(-n) -n esultant force on a volume P = Tn ( ) da + ρ b dv A V S 0 e 0 Orgnal Confguraton t S V b n Confguraton T(n)

Knetcs estrctons on nternal tracton vector T(n) Newton II T( n) = Tn ( ) n T(-n) -n Newton II&III da e da (n) n T(n) da (n) Tn ( ) = n σ or T ( n) = n σ - T(- ) da Cauchy Stress Tensor σ e σ 3 σ 33 σ 3 σ 3 σ 3 σ σ σ

Other Stress Measures S 0 S b F I u u = + F = δ + J = det( F) x e 0 Orgnal Confguraton t Confguraton n 0 dp (n) 0 n dp (n) e da 0 u(x) da Krchhoff τ σ τ = J = Jσ x Orgnal Confguraton t Confguraton Nomnal/ st Pola-Krchhoff Materal/ nd Pola-Krchhoff S JFk σ k ( n) 0 = da0 n S S= JF σ = dp T σ Σ k σ kl l Σ= JF F = JF F ( 0) ( ) n = dp n ( n dp 0) = da0 n 0 Σ F dp

eynolds Transport elaton e x 0 S 0 C 0 y Orgnal Confguraton u(x) S n C Confguraton d φ v φ φv dv dv dv dt t y t y φ = + φ = + V V = const V = const x y

Conservaton Laws for Contnua V Mass Conservaton ρ v ρ v dv 0 + ρ = + ρ = 0 t x= const y t x= const y ρ ρv ρ + = 0 + y ( ρv) = 0 t y t y= const y= const e S 0 x 0 V 0 y Orgnal Confguraton S u(x) V n Confguraton Lnear Momentum Conservaton σ y σ + ρ b = ρ a or + ρb = ρa y e S 0 x 0 y Orgnal Confguraton S u(x) t V b n Confguraton T(n) Angular Momentum Conservaton σ = σ

Work-Energy elatons ate of mechancal work done on a materal volume ( ) d n r = T vda + ρbv dv = σddv + ρvv dv dt A V V V e S 0 x 0 y Orgnal Confguraton S u(x) t V b n Confguraton T(n) Conservaton laws n terms of other stresses S S+ ρ b= ρ a + ρ = ρ a 0 0 0b 0 x ( k Fk ) Σ T Σ F + ρ b= ρ a + ρ b = ρ a 0 0 0 0 x Mechancal work n terms of other stresses ( n) d r = T vda + ρbv dv = SF dv0 + ρ0vv dv0 dt A V V V 0 0 ( n) d r = T vda + ρbv dv = Σ E dv0 + ρ0vv dv0 dt A V V V 0 0

Prncple of Vrtual Work (alternatve statement of BLM) δl δv δv δ v = δd = + y y y e S 0 x 0 y Orgnal Confguraton S u(x) b S t V Confguraton dv If σδ D dv + ρ δv dv ρbδv dv tδ v da = 0 dt for all δ v V V V S Then σ y + ρb = dv ρ dt nσ = t on S

Thermodynamcs S 0 S b Temperature θ Specfc Internal Energy ε Specfc Helmholtz free energy Heat flux vector q External heat flux q Specfc entropy s ψ = ε θs e 0 Orgnal Confguraton t Confguraton d Frst Law of Thermodynamcs ( Ε+ KE) = Q + W dt ε ρ t x= const ds dη Second Law of Thermodynamcs 0 dt dt q = σ D + q y s ( q / θ ) q ρ + 0 t y θ Dsspaton Inequalty D q θ ψ σ ρ s θ + 0 θ y t t

Transformatons under observer changes Transformaton of space under a change of observer y = y () t + Q()( t y y ) * * 0 0 d Ω= Q Q dt All physcally measurable vectors can be regarded as connectng two ponts n the nertal frame These must therefore transform lke vectors connectng two ponts under a change of observer * * * * b = Qb n = Qn v = Qv a = Qa * Inertal frame e e * e * Observer frame Note that tme dervatves n the observer s reference frame have to account for rotaton of the reference frame * * * dy d T * * dy dy0 * * = = = 0 t = 0 T y* y n Confguraton b Confguraton v Qv Q Q Q ( y y ( )) Ωy ( y ( t)) dt dt dt dt * * * * * d y d T * * d y d y0 dω * * dy dy0() t a = Qa = Q = Q Q ( y y 0( t)) = + ( Ω y y0( t)) Ω( ) dt dt dt dt dt dt dt b * n *

Some Transformatons under observer changes Obectve (frame ndfferent) tensors: map a vector from the observed (nertal) frame back onto the nertal frame t = n σ Inertal frame n * T * σ = QσQ D = QDQ T e y b Invarant tensors: map a vector from the reference confguraton back onto the reference confguraton T 0 = m Σ * = Σ Σ * * e * e y* Confguraton b * n * Mxed tensors: map a vector from the reference confguraton onto the nertal frame dy = Fdx * = F QF Observer frame Confguraton

Some Transformatons under observer changes * * 0 0 The deformaton mappng transforms as y( X,) t = y () t + Q() t ( yx (,) t y ) * y y The deformaton gradent transforms as F = = Q = QF X X The rght Cauchy Green stran Lagrange stran, the rght stretch tensor are nvarant * * * T * T T * * C = F F = F Q QF = C E = E U = U The left Cauchy Green stran, Euleran stran, left stretch tensor are frame ndfferent * * * T T T T * T B = F F = QFF Q = QCQ V = QVQ The velocty gradent and spn tensor transform as * * * T T L = F F = QF + QF F Q = QLQ + Ω * * * T ( ) W = ( L L )/= QWQ + Ω The velocty and acceleraton vectors transform as * * * dy d T * * dy dy0 * * = = = 0 t = 0 v Qv Q Q Q ( y y ( )) Ωy ( y ( t)) dt dt dt dt * * * * * d y d T * * d y y0 dω * * dy y = = = 0 0 t = + 0 t d d () t a Qa Q Q Q ( y y ( )) Ω ( y y ( )) Ω( ) dt dt dt dt dt dt dt (the addtonal terms n the acceleraton can be nterpreted as the centrpetal and corols acceleratons) * T The Cauchy stress s frame ndfferent σ = QσQ (you can see ths from the formal defnton, or use the fact that the vrtual power must be nvarant under a frame change) The materal stress s frame nvarant T Σ * = Σ * T T T σ σ (note that ths The nomnal stress transforms as S = J( QF) Q Q = JF Q = SQ transformaton rule wll dffer f the nomnal stress s defned as the transpose of the measure used here )

Consttutve Laws Equatons relatng nternal force measures to deformaton measures are known as Consttutve elatons General Assumptons:. Local homogenety of deformaton (a deformaton gradent can always be calculated). Prncple of local acton (stress at a pont depends on deformaton n a vanshngly small materal element surroundng the pont) e Orgnal Confguraton Confguraton estrctons on consttutve relatons:. Materal Frame Indfference stress-stran relatons must transform consstently under a change of observer. Consttutve law must always satsfy the second law of thermodynamcs for any possble deformaton/temperature hstory. D q θ ψ σ ρ s θ + 0 θ y t t

Fluds Propertes of fluds No natural reference confguraton Support no shear stress when at rest Knematcs Only need varables that don t depend on ref. confg e y t S b Confguraton L v = + = + = v ω = k = y = L D W D ( L L )/ W ( L L )/ y W k k v v yk v v v a = = + = Lkvk + = ( Dk + Wk ) vk + t x = const yk t t y = const t y = const t y = const k v ( ) = vv k k + Wkvk = + ( vv k k ) + k ω vk y t y = const y Conservaton Laws k ρ ρ ρv + ρd 0 or kk = + = 0 t t y x= const y= const σ v v y y t + ρb = ρ vk + σ = σ k y = const ε q ρ = σ D + q t x= const y D q θ ψ σ ρ s θ + 0 θ y t t

General Consttutve Models for Fluds Obectvty and dsspaton nequalty show that consttutve relatons must have form Internal Energy ε= ˆ( ε ρθ, ) Entropy s= sˆ( ρθ, ) Free Energy ˆ (, ) Stress response functon Heat flux response functon ψ= ψ ρθ = ε θs ˆ (,, ) ˆ (, ) ˆ vs σ = σ θ ρd = πeq ρθδ + σ ( ρθ,, D ) θ q = qˆ θ, ρ,, D y In addton, the consttutve relatons must satsfy ψˆ ψ ˆ πeq = ρ sˆ= ρ θ ˆ πeq ˆ sˆ πeq ˆ ε = ρ ˆ πeq = θ + ρ θ ρ θ ρ c v ψˆ c ˆ v θ πeq = θ = θ ρ ρ θ vs θ θ σ ( ρθ,, D ) D 0 q ρθ,, 0 y y where ˆ ε c v ( θ, ρ) = θ

Consttutve Models for Fluds ψ= ψˆ ( ρθ, ) = ε θs vs eq σ = ˆ σ ( θ, ρ, D ) = ˆ π ( ρθδ, ) + ˆ σ ( ρθ,, D ) Elastc Flud ψ= ψˆ ( ρ) σ = π ( ρδ ) eq Ideal Gas p ε = c θ = ψ = c θ θ ( c logθ log ρ s ) σ = pδ = ρθδ ( γ ) ρ v v v 0 Newtonan Vscous ψ= ψˆ ( ρθ, ) σ = ( π ( ρθ, ) κ( ρθ, ) D ) δ + η( ρθ, )( D D δ /3) eq kk kk Non-Newtonan ψ= ψˆ ( ρθ, ) σ = π ( ρθδ, ) + η( I, I, I, ρθδ, ) + η ( I, I, I, ρθ, ) D + η ( I, I, I, ρθ, ) D D eq 3 3 3 3 k k

Unknowns: Derved Feld Equatons for Newtonan Fluds pv, Must always satsfy mass conservaton ρ ρ ρv + ρd 0 or kk = + = 0 t t y x= const y= const Combne BLM σ v v v + ρb= ρa a= v + = + ( vv) + ω v y y t t y Wth consttutve law. Also recall k k k k k k y = const yk= const v v D = + y y p Compressble Naver-Stokes ( ) Wth densty ndep vscosty + η( ρθ, ) D D δ /3 + ρb = ρa p= π ( ρθ, ) κ( ρθ, ) D y y kk eq kk πeq η v κ η v + + + b= a ρ y ρ y y ρ 3ρ y y For an ncompressble Newtonan vscous flud For an elastc flud (Euler eq) πeq v + ρb= ρ + ρ ( vv) + ρ ω v y t y p η v + + b = a ρ y ρ y y Incompressblty reduces mass balance to k k k k y = const k v y = 0

Derved Feld Equatons for Fluds ecall vortcty vector ω v k = k = k W y a ω v = + k k k Dω y t x= const yk ω Vortcty transport equaton (constant temperature, densty ndependent vscosty) η ρ η + + + + = ρ y y ρ y y y y y y y t x= ω v k v l v ( ) k ω k η κ k bk Dω ω l l 3 l k k const For an elastc flud v ( ) k ω k bk + Dω ω = x y t x k = const For an ncompressble flud η ω ω + + ( ) k bk + Dω = y y x t x ρ = const If flow of an deal flud s rrotatonal at t=0 and body forces are curl free, then flow remans rrotatonal for all tme (Potental flow)

Derved feld equatons for fluds For an elastc flud Bernoull πeq H= ψ + + vv +Φ= constant along streamlne ρ For rrotatonal flow H πeq = ψ + + vv +Φ= constant everywhere ρ For ncompressble flud p ρ + vv +Φ= constant

Solvng fluds problems: control volume approach Governng equatons for a control volume (revew) B

Example Steady D flow, deal flud Calculate the force actng on the wall Take surroundng pressure to be zero A 0 v 0 ρ 0 A 4 α v A 3 A A 5 d n σda + ρbdv = ρvdv + ( ρvvn ) da dt B B A v A 0 0ρ0 0 α 0 A ( p n da) A v sn + ( p p ) da= 0 3 F = A 0 ρ 0 v 0 sn α

Exact solutons: potental flow If flow rrotatonal at t=0, remans rrotatonal; Bernoull holds everywhere Irrotatonal: curl(v)=0 so v Ω = y Mass cons v y Ω = 0 = 0 y y Bernoull p Ω + vv constant ρ +Φ+ = t Example: flow surroundng a movng sphere e a V avα( yα Vt) Ω= α r = ( y V t)( y V t) α α α α r

Exact solutons: Stokes Flow Steady lamnar vscous flow between plates Assume constant pressure gradent n horzontal drecton η v v b η y const p p f + + + = 0 ρ y ρ y v t = L y k y h V y Solve subect to boundary condtons y p v= V y ( h y ) h L e ηv p h σ = + y h L

Exact Solutons: Acoustcs Assumptons: Small ampltude pressure and densty fluctuatons Irrotatonal flow Neglgble heat flow Neglect body forces Irrotatonal: v Ω = y Approxmate N-S as: p y v ρ t y = const k p y y v ρ y t y k = const p y t v ρ t y k = const For small perturbatons: Mass conservaton: p δρ = cs t t δρ t x= const c s v + ρ = 0 y p = ρ s = const Combne: c s t Ω Ω = 0 y y δ p = ρ Ω 0 t (Wave equaton)

Wave speed n an deal gas Assume heat flow can be neglected Entropy equaton: s θ t x= const q = + q s = const y v v v ( log log ) ε = c θ ψ = c θ θ c θ ρ + s p= ρθ ( ) c / v 0 0 s= c logθ log ρ + s θ = ρ exp[( s s ) / c ) v / c = γ so p= kρ γ v 0 v Hence: p γ p cs = = kγρ = γ = γ θ ρ ρ s= const

Applcaton of contnuum mechancs to elastcty S 0 e x 0 y u Orgnal Confguraton t S b Confguraton Modulus G' (N/m ) 0 9 0 5 Glassy Glass Transton temperature T g Vscoelastc ubbery Melt (frequency) - Materal characterzed by

S 0 e x 0 General structure of consttutve relatons y u Orgnal Confguraton t S b Confguraton F C B u = δ + = F F x k k = F F k k = k k Q JF q S JFk σ k S= JF σ = T σ Σ k σ kl l Σ= JF F = JF F S x v + ρ 0b = ρ0 t x = const θ ψ θ Σ C Q ρ0 + s 0 θ x t t * = F QF * * * T B = F F = QBQ * * T * C = F F = C T * = Σ Σ Frame ndfference, dsspaton nequalty ˆ ψˆ ψˆ Σ = ρ0 sˆ = C θ Σˆ sˆ = ρ0 θ C Q k θ 0 x k

Forms of consttutve relaton used n lterature I 3 = trace( B) = B ( B B) ( k k ) I = I = I B B I = det B = J Stran energy potental 0 kk W = ρψ I Bkk I = = /3 /3 J J I B B Bk Bk I = = I 4/3 I 4/3 = 4/3 J J J J = det B B= λ b b + λ b b + λ b b () () () () (3) (3) 3 W( F) = Wˆ ( C) = U( I, I, I ) = U( I, I, J) = U ( λ, λ, λ ) 3 3 σ = J F k W F k σ σ U I U B U = + B B + I U δ k k 3 I3 I I I I3 U U U U δ U U = /3 + I B I + I B 4/3 k Bk + δ J J I I I I 3 J I J σ λ U λ U λ U () () () () 3 (3) (3) = b b + b b + b b λλ λ3 λ λλ λ3 λ λλ λ3 λ3

Specfc forms for free energy functon Neo-Hookean materal µ K U = ( I 3) + ( J ) µ σ δ ( ) δ J 3 = 5/3 B Bkk + K J Mooney-vln µ µ K U = ( I 3) + ( I 3) + ( J ) µ µ σ δ δ δ ( ) δ J 3 J 3 3 = [ ] 5/3 B Bkk + 7/3 Bkk B Bkk Bk Bk + Bkn Bnk + K J N N Generalzed polynomal functon K ( 3) ( 3) ( ) + = = U = C I I + J Ogden U N µ α α α K = ( λ + λ + λ 3 3) + ( J ) α = Arruda-Boyce 3 K U = µ ( I 3) + ( I 9) + ( I 4 7) +... + J 0β 050β ( )

Solvng problems for elastc materals (sphercal/axal symmetry) Assume ncompressbllty Knematcs σ rr 0 0 Frr 0 0 Brr 0 0 σ 0 σθθ 0 F 0 Fθθ 0 B 0 Bθθ 0 0 0 σ φφ 0 0 F φφ 0 0 B φφ dr r dr r Frr = Fφφ = Fθθ = Brr = Bφφ = Bθθ = d d φ θ r e e e θ e φ Consttutve law dr r = d σ σ 3 3 3 3 r a = A U U I U I U U = + I B B + p rr rr rr I I 3 I 3 I I U U I U I U U = = + I B B + p θθ σφφ θθ θθ I I 3 I 3 I I Equlbrum (or use PVW) dσ dr rr ( σrr σθθ σφφ ) ρ0 + + br = 0 r (gves ODE for p(r) Boundary condtons u ( a) = g u ( b) = g σ r a r b ( a) = t σ ( b) = t rr a rr b

Lnearzed feld equatons for elastc materals Approxmatons: Lnearzed knematcs All stress measures equal Lnearze stress-stran relaton S 0 e 0 Orgnal Confguraton t S b Confguraton u u σ u = + = Ckl ( kl kl ) + b = x x x t ε σ ε α θ ρ ρ * * = ( ) on σ = ( ) on u u t n t t Elastc constants related to stran energy/unt vol C kl ˆ σ ˆ U = = = = ε ε ε θ ε θ U σ β kl kl ε = Sσ + α T σ= Cε ( α T ) Isotropc materals: + ν ν ε = σ σkkδ + α Tδ E E E ν Eα T σ = ε + εkkδ δ + ν ν ν

Solvng lnear elastcty problems sphercal/axal symmetry Knematcs Consttutve law σ 0 0 ε 0 0 σ 0 σθθ 0 ε 0 εθθ 0 0 0 σ φφ 0 0 ε φφ du u ε = εφφ = εθθ = d du σ E ν ν d Eα T σ = θθ ( + ν)( ν ) ν u ν θ e e e θ φ e e φ Equlbrum dσ d ( σ σθθ σφφ ) ρ0 + + b = 0 ( u) ( ) ( ν) ( )( ) ( ν) d u du u d d + d T + + = d d = d d d E α ν ν ν ρ 0b ( ) Boundary condtons u ( a) = g u ( b) = g σ r a r b ( a) = t σ ( b) = t rr a rr b

Some smple statc lnear elastcty solutons Naver equaton: uk u b ρ0 u + + ρ 0 = k k k ν x x x x µ µ t Potental epresentaton (statcs): ( + ν ) u = Ψ + Ψ E 4( ν ) x ( φ x ) k k φ = ρ0b = ρ0bx k k Ψ x x x x P Pont force n an nfnte sold: Ψ = φ = 0 4π ( + ν ) Px k kx u = + (3 4 ν ) P 8 ( ) πe ν ( + ν ) 3 Px k kxx Px k kδ Px + Px ε = ( ) + ν 3 8 πe( ν) 3 Px k kxx Px + Px δpx k k σ = ( ν) + 3 8 π( ν) Pont force normal to a surface: P ( νδ ) 3 ( ν)( ν) φ log( 3 ) Ψ = = + x π π u ( + ν) P xx 3 δ 3 ( ) (3 4 ) ν x = + ν δ 3 3 + π E + x 3 ν ( xx x3 x3( 3x 3x) ) ( 3 3 ) P xx x3 ( ν )( + x3) ( ) σ = 3 + 3 + δ δ + δ + δ δ δ π ( + x3) ( + x3)

Dynamc elastcty solutons Plane wave soluton u = a f ( ct x p ) k k Naver equaton uk u b ρ0 u + + ρ 0 = k k k ν x x x x µ µ t ( µ ρ ) µ + = ν 0c ak pap k 0 Solutons: 0 ap = 0 c = c = ρ / µ L a = η p c = c = µ ( ν) / ρ ( ν) 0