AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Σχετικά έγγραφα
RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Delta Inconel 718 δ» ¼

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

2 SFI

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Blowup of regular solutions for radial relativistic Euler equations with damping

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 4(181).. 501Ä510

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

ƒšˆœˆ Ÿ Œˆ ˆ ˆ ˆ Šˆ ƒˆÿ.. Ê μ Î ±μ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

v w = v = pr w v = v cos(v,w) = v w

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

Ανώτερα Μαθηματικά ΙI

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Εφαρμοσμένα Μαθηματικά

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Transcript:

Ù Ù 11 Vol. No.11 008 «11 Ù 135 1359 «ACTA METALLURGICA SINICA Nov. 008 pp.135 1359 Mg ²» ¼ (Đ Ý Ê ß Ï Ö Đ ÑÛ Ö, 11189) ( ß ³ ¼, 111) ¾ ß Â Mg Ø 75 00, 15 0 MPa ĐÈ Þ: Ò ĐÈ, Ú Ø ÈÈ, ÅÕ; Ó Ø ¹, È Æ, ÈÏ; ¹ Ê ¹ È, È ¼Ò.» Ú ½, Ú Â Mg Ø ÅÕ Ê, Ê n ¹.3.9, ű Ê, n >7; 76.0 89. kj/mol.» Ê Ã ± Å Ã,  Mg Ü Î Æ ÎÆ Í, Î ÆÃ ÎÆÄÖ.  Mg,, Î Æ, ÎÆ TG111.8, TG16. ¹º ± A ¹ 01 1961(008)11 135 06 AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg YAN Jingli, SUN Yangshan, XUE Feng Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 11189 TAO Weijian Nanjing Welbow Metals Co.,Ltd., Nanjing 111 Correspondent: SUN Yangshan, professor, Tel: (05)5090689 0, E-mail: yssun@seu.edu.cn Supported by Natural Science Foundation of Jiangsu Province (No.BK0008) and the Foundation for Excellent Doctoral Dissertation of Southeast University Manuscript received 008 0 1, in revised form 008 08 06 ABSTRACT The creep behaviors of pure Mg in different states at the temperature range of 75 00 under the stress range of 15 0 MPa were studied. The results indicate that the grain size has remarkable effect on the creep behavior. The as cast Mg with coarse column grains has low creep rate. However, the creep rate increases significantly as the grains become fine equiaxed due to dynamic recrystallization after extrusion, and decreases when the grains coarsen after annealing. The stress exponents n lie in a range of.3.9 under low stresses, which is corresponding to dislocation climb mechanism. However, the n values are over 7 under high stresses. The apparent activation energies range from 76.0 to 89. kj/mol. According to the stress exponents and the activation energies as well as the microstructure analysis during creep, the creep are affected by dislocation climb, grain boundary sliding and twinning, among which the former two mechanisms play dominant role. KEY WORDS pure Mg, creep, dislocation climb, grain boundary sliding ÖÆ ÔÙ Å Ç Ð º. ½µ Ä ² Û ÓÖÁ Þ Ö ÞÅ * Å Þ BK0008 Ã Þ Ø³ Þ Ù Û ³ : 008 0 1, Û ³ : 008 08 06 ÊÞ : ²Å,, 1981 Í, ³ Í Ë µ ܺÖÁÓ Ü, Þ À Ó ¾ÃÍÎ ²³. «, ÖÆ Ö «, ², Ä Ö É, «² Ý, ÖÆ À. Đ², ¼ßË Ö Æ ¹ Ü ¼Î Í Ý [1 ]. Ö Ô ÖÆ ² Ö Â. ¼º ß ² Ö Æ ÑÖ

u 11 Æ%Lm : I Mg ie p8, 1355 :G >rn 7KV\Uk., & 6hV g G k S _ Li^, qg ed k. gj k< C, ) g W * J 5 Y C - L aq k s ) C. 9 G 5 <E. <, O Q, -R: a h f r k ), 6 X p r N C& > k L. Q k G E l? d G E k 5 <edz q ) C -K Mg C 75 00 (0.38 0.51 T, T tj, CJlQZ) )$> yl S! Q k 9C x) k G E, " E G f 1 > S Xy G q9 qnjk q. : M k Q< d k, & N G E i 5 < Z K Mg k! 6 9uÆ` (a=0.31 nm, c= Yk L, E* VK Mg CN> ykg q9l 0.51 nm), s> r r. K Mg ^! k ) S a G e J. ).8.9 MPa,! k( L O r, N) 1 '1 [! 6. Y. <, C jr N G q9 k 0! kk Mg w } % # ;G l } 9 ) f,!ok Mg 7f. a)oivk Mg kg ed, Y /, K >99.90%, N GB399 003 k /= J N 5 kxj rn G q9 k, 9 ~. p } p C 315 t & } e Q q, Y (w }) > 7Æjm >rn CJlQ! _!. ~ 9 360, p }%> ~ 9 350, p } 9 9 # 9`,.K Mg kg q9k -&). 1, p } S k u S I:.. ` H J C CO " i ) k f\ C Ql v 80 &, * V O, & : q,. ` > 9 500, ` y $ 9 1 L 3 h, a h V1 Y< { y k 5 d. Shi L Northwood ))$!Q ku.!.g ku 0!Bw!~ Jones o Vagarali L Langdon C -K Mg kg (GB/T039 1997) ~ko LBU (!9 100 mm, `, hf<w pg k?ded; Roberts C [+ 10 mm). G C RD 3 m&>g eq -i({v! W CG v Æ k!; Milic ka q, >?dc ±1 k 7. T5 Z0!>{T o G 9 d xqm< Wk) = ( Æ > m< W 5* (OM) LMyz* (SEM) <, G E k5< O d x J } x W M k W l y< W Y d k 6 Y<C JEOL JEM000EX m(sz* (TEM) } x< W W > = pg f? ded. $`, Q q. ) k - \ p V O }G q9 k - C, '1 O>S{k, >! Power Law (w_ ) s + 1a 9K Mg kw Z. %+i= 9F, K [5 7] m [8] [9] [10] [11] [1] + J js Y (a) as cast (b) as extruded 1 Mg Fig.1 Microstructures of pure Mg (c) annealed for 1 h after extrusion (d) annealed for 3 h after extrusion m

1356 Þ Ü Ù Mg Û ±É Ø, Ø 1 mm, µ, 50 00 µm Ý. ÔÐË, Ù ½ Î, Ì Ç ÓÓ, É Í 30 0 µm, Á 1b. 1c Ä d ÔÐË Ã Mg 1 Ä 3 h º ÀÂË., º ÀÂË, Ç ÓÓ µµ, É Í 100 Ä 00 µm «. Îà Mg Û Ù 15, 0 0 MPa. Ç, «Ö ËÉ, Ò, «Ö ÚÇ Ý. Ë ÀÜ, ÍÕ ÀÜ, Ú 1 Æ Ú Ý «ÍÀ, Ú Æ Ú ÝÅÕ, Ç Â Ú 3 Æ. ε s Æ. à Mg Û Ù 75 00, 15 0 MPa 1. Ç ¹ßÌØ, à Mg Ö Ç, 150, 0 MPa É, 5.67 10 8 s 1. Ä/ Ë À Ü, À. µ É Ã Mg 150, 0 MPa Á 3a, 3b ( )., Ú 1 Æ Ñ É, ²Õ ½ºÈ, «Â Æ. ² Creep strain s, % Creep strain s, % 8 6 0 5 3 1 (a) 0 MPa 5 MPa 30 MPa 35 MPa 0 MPa 0 0 0 60 80 100 10 10 160 Time, h (b) 90 min 15 min 0 0 50 100 150 00 50 300 350 Time, min Ú Â Mg 15, 0 0 MPa Fig. Creep curves of as cast pure Mg specimen at 15 under the stress range of 0 0 MPa (a) and 0 MPa (b) 3a : Û Ã Mg Ù ½µÅÖ (5.67 10 8 s 1 ); 3 h º À ٠µ (5.7 10 8 s 1 ); «1 h º ÀÂ Ù É 7.83 10 8 s 1, ²Î 0%; Ô Ð Ù 1.58 10 7 s 1, º Û Ù 3. Î Î, Û Î½µ 3 µýñ Æ ( b) 90 min( ) Ä 15 min( Ë ) Ë ÕÎ ¾, Á. Ú 1 Æ, ܺ ÀÜ, µ É 1 Ü Ä Mg Ú 75 00 Å, 15 0 MPa Ð À Æ Table 1 Steady state creep rates of the as cast pure Mg at the temperature range of 75 00 under the stress range of 15 0 MPa (10 8 s 1 ) Temperature Stress, MPa 15 0 5 30 35 0 Creep strain s, % Creep rate s, 10-1 s -1 75 1.67 1.73 100 1.0.5 10.9 3.5 15 1.06.7 1.6 3. 19 150 1.3 5.67 1.5 66.5 38 636 175 5.86 1.5 59.7 00 1.8 (a) 10 As-cast. s,10-8 s -1 As-extruded 8 Annealed for 1 h 15.8 Annealed for 3 h 5.67 6 0 7.83 5.7-0 0 0 0 60 80 100 10 10 160 180 00 Time, h 50 (b) 00 150 100 8 6-0 0 0 0 60 80 100 10 10 160 180 00 Time, h 3 ß È Mg 150, 0 MPa Fig.3 Creep curves (a) and creep rate curves (b) of the pure Mg treated at different conditions

Ù 11 ƱÄÑ : Á Mg Ô Đ 1357 3 µ 5  Mg Ú Ø 15, 0 MPa Ê Fig.5 Microstructures of the as cast pure Mg specimen after creep at 15 and 0 MPa (a) optical photograph showing the wedge shaped crack at triple joint grain boundaries (b) SEM image showing the fracture morphology, ÐÄÆ ε s ½ Ë Å É Power Law À [1] : ε s = Aσ n exp( Q app /(RT)) (1)  Mg 15, 0 MPa È TEM È Fig. TEM photographs of the as cast pure Mg during steady state creep at 15 and 0 MPa (a) initial stage, dislocation cells (sub boundaries) formed, as shown by arrows (b) final stage, sub grains formed. Â Æ Ë, Ü Ïµ À Îܺ ; Ü, ¾¾, Ï Ó Ï ( a ³ ), ² ÙÚ ÕÓ, ÒÆ Î. ܺ Ä Ë Æ «Ö. Õ, Î Æ Ë, Ù Ó Î Í, Á b. à Mg Û Ù 15, 0 MPa Ë Á 5. Ç 5a, ºÃ½ À Ó, ² Ã;, É ÎßÌ. 5b Î Ë ÓÓ., À Î., A Ôº, σ Ô Ü Ë, n Ô Ë, R Ô, Q app Ô, T Ô Ëß. (1) Ì ln ε s = lna + nlnσ Q app /(RT) () ¼ (), Ë n É, ln ε s ½ lnσ» ; «Q app ËÉ, ln ε s ½ 1/T». ¼ Ë n Ä Q app Õ. 6 Ô ¼ Û Ù» ½ Ë ( 6a) Ä ( 6b) Ý. Ç Ë n Ä Å. ¹ [13,1], n=3, Ï ( Ï»Þ ) ; n= 6, Ï ; n >7, Ô (1). Ç, Q app 135 kj/mol (Mg Ä ), Ý Mg Ä ; Q app 80 kj/mol (Mg Ä ), Ý Ä. «Ö ËÉ, Ù Ë Àº.3.9,

1358 Þ Ü Ù Æ Five Power Law [15], ÔÝ Ï ; «² Ë, Ë º 7. «, Ç ÉÀ, 76.0 89. kj/mol, ºÃ Mg Ä (80 kj/mol), ÔÝ Ä., º Ð ( fcc, bcc Ä hcp Ó) À, Ï ½ Ä [15]. «½ Mg ln ( s, s -1 ). ln( s, s -1 ). -1-13 -1-15 -16-17 -18-19 -0-11 -1-13 -1-15 -16-17 -18-19 (a) 100 o C 15 o C 150 o C 175 o C.7.3 n=.5-8.0-7.8-7.6-7. -7. -7.0-6.8 ln (, MPa) (b) 76. Q app =86.7 kj/mol 77.9 85.6 89. 76.0.9 8. 8.1 7.8 15 MPa 0 MPa 5 MPa 30 MPa 35 MPa 0 MPa.1..3..5.6.7.8.9 1/T, 10-3 K -1 6 Ê Fig.6 Stress σ (a) and temperature T (b) dependences of steady state creep rate ε s 3.0 Ä, ß «Ö É (<0.5 T m ), Ä Ô Õ. Đ², ÕÌ µ ¹ Power Law Q app ½ Ð Ä [15]. Î [15 17] Î ÅР( Mg), Óº Ä. Ô, Àŵ Power Law Î, ½ Ä µ½ Æ, ÇÅ º Ä, «º Ä Ï Ä [18 0]. ̽. ÑÉ, µ ºÃ Mg Õ ¹, µ ßËŠε, Æ º ÐÅ µ. Î µî [8 10,1,1,] à Mg. Ç, µ ˼ µ, ÅÌ «, Ô Ë À 3.70 5.86, º Ä, ¹ËØ ¹ º Ý Ï. Æ µ Î Ü, É, Ï Ò. ØÉ, Ô µý Ë É ÓÔ Å «. Ð Æ ÆÎ Ï ( Ï Ï Ó) (Ï ± Ä) Ì ÎÓ µ Î, Langdon [3] É : ε s = ε g + ε gbs + ε diff(l) + ε diff(gb) + ε twin + (3), ε g Ï, ε gbs Ï, ε diff(l) Ä ε diff(gb) ÄÄ Ä, ε twin Î. ÔÉ Ï»Ä Mg À Ð Table Creep mechanisms of pure Mg reported in the previous investigations Temperature, Stress σ, MPa (Strain rate, s 1 ) n Q app, kj/mol Mechanism Ref. 150 50 0 50 5.86 106 1 [8] 197 17 ( 10 6 ).5 105 1 [9] 197 17 ( 10 6 ) 8 355.3 [9] 37 77 5. 135 1 [10] (>37) 77 >.5 6.0 10+95/σ [10] (>37) 77 <.5 1.0 139 3 [10] 17 517 <30 13.5+8.0/σ, [1] 17 517 >0 133.3.6σ 5 [1] 188 81 5.5 117 1 [1] 19 558.0 17 [1] 100 300 3.70.65 1 [] Note: 1 dislocation climb, cross slip, 3 Nabarro Herring diffusion, slip motion of dislocations on pyramidal slip system limited by nucleation of kink motion, 5 nonconservative motion of jogs on screw dislocations gliding in basal plane

Ù 11 ƱÄÑ : Á Mg Ô Đ 1359, Ô ÉÐ. º Û À, É²Ü Ù TEM Ä, Ï Ò., ËÙ Ì ¾ Î Ó Ì ( 5a), «Ó Ô± Ï, Á 7, ß Ï Å. Langdon [3,] ¹ ß, Ï Ò, «É ß, º ÎÀ. Bell Ä Langdon [5] ¹Î Mg 0.78Al Æ Ï, É 357 µm Ù 00, 0.7 MPa É Ï ÍÅ Í Æ 6%. Ƽ, µ Ù ß, É (ÔРĺ 1 h Ù ),. Á Ô½ ± Ï, Ô ÉÇ, ÀÅ, Ì ¹ÁØ «Ï, ² Ö, «É Í ß «Ö É. Ì ß Ì ÔÊ Î Ï, «Î Ï, Ò Ï ½µÒ. ±º Ä ² Ö ËÉÆ Î [15], É, (3) Ä ( ε diff(l) Ä ε diff(gb) ) Í µ. Ƽ, ËÙ Ì ¾ Î, ß Î ÃÖ Å. Ô Æº É Î º ε. Æ, É, Ý Ï Ï Ä Î, Ò ε s = ε g + ε gbs + ε twin () Ï Ä Ï Å Ø. «, Ù Ô, () Ö ßÎ, µ Í ß ½ Ë Ð É Ó «Å., ͵ ¹ º Ų ¾, µ¹å º Ù Ã. 7 ÎÆ Ò Fig.7 Schematic of cuneiform crack caused by grain sliding (1) É Õ µ Ö. Ó É, Û ÉÉ, «Ö; ÔÐËÆÎÎ ÉÇ, É ; º ˱º É, É ½Ó. () Û Ã Mg Ù «Ö Ë, Ë n À º.3.9, «² Ë, n >7; 76.0 89. kj/mol. ¼ Ý µ Ë ßÂÐ, Ë, Ý Ï ; «, Ô Ä. е Ð ßÎ ÝÂÐ º Ö. ÆÌ Ä, à Mg Ý Ï Ï Ð Î, Ï Ä Ï Åµ Ø. ¹º [1] Luo A A. Int Mater Rev, 00; 9: 13 [] Wang Q D, Zeng X Q, Lü Y Z, Ding W J. Mater Rev, 000; 1(3): 1 (¾, Á, Í,. ¹, 000; 1(3): 1) [3] Wang X Q, Li Q A, Zhang X Y. Light Metals, 007; 6: 5 (¾ ³, Ã, ÆÐ., 007; 6: 5) [] Zhang J, Pan F S, Li Z S. Foundry, 00; 53: 770 (Æ µ, Í, Ã. Ú, 00; 53: 770) [5] Mordike B L. Mater Sci Eng, 00; A3: 103 [6] Pekguleryuz M O, Kaya A A. Adv Eng Mater, 003; 1: 866 [7] Zhang X M, Peng Z K, Chen J M, Deng Y L. Chin J Nonferr Metals, 00; 1: 13 (Æ Þ, Đ,, Ô. Æ Þ, 00; 1: 13) [8] Shi L, Northwood D O. Acta Metall Mater, 199; : 871 [9] Jones R B, Harris J E. Joint Int Conf Creep, Part 3A, London: The Institution of Mechanical Engineers, 1963: 1 [10] Vagarali S S, Langdon T G. Acta Metall, 1981; 9: 1969 [11] Roberts S. Trans Am Inst Min Metall Eng, 1953; 197: 73 [1] Milička K, Čadek J, Ryš P. Acta Metall, 1970; 18: 1071 [13] Kim W J, Chung S W, Chung C S, Kum D. Acta Mater, 001; 9: 3337 [1] Chung S W, Watanabe H, Kim W J, Higashi K. Mater Trans JIM, 00; 5: 166 [15] Kassner M E, Pérez Prado M T. Fundamentals of Creep in Metals and Alloys. Oxford: Elsevier Ltd., 00: 1 [16] Sherby O D, Burke P M. Prog Mater Sci, 1968; 13: 33 [17] Sherby O D, Weertman J. Acta Metall, 1979; 7: 387 [18] Poirier J P. Acta Metall, 1978; 6: 69 [19] Nabarro F R N. Mater Sci Eng, 00; A387 389: 659 [0] Nabarro F R N. Acta Mater, 006; 5: 63 [1] Tegart W J. Acta Metall, 1961; 9: 61 [] Northwood D O, Daly K E, Smith I O. Mater Sci Eng, 1985; 7: 51 [3] Langdon T G. Philos Mag, 1970; (178): 689 [] Langdon T G. J Mater Sci, 006; 1: 597 [5] Bell R L, Langdon T G. J Mater Sci, 1967; : 313