ZGRADBA PROTEINOV SILE, KI STABILIZIRAJO 3D ZGRADBO PROTEINOV PEPTIDNA VEZ

Σχετικά έγγραφα
IZBIRNI PREDMET, APRIL/MAJ 2013 STRUKTURA IN FUNKCIJA PROTEINOV. 2. predavanje: Od 1D do 3D strukture proteinov 1. del.

Biokemija I, 25. predavanje 1. del, , A. Videtič Paska. Proteini - splošno

STRUKTURNE LASTNOSTI AMINOKISLIN

The effect of curcumin on the stability of Aβ. dimers

Sekundarne struktura proteina Fibrilni proteini

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

[1] P Q. Fig. 3.1

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Areas and Lengths in Polar Coordinates

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

2 Composition. Invertible Mappings

Finite Field Problems: Solutions

Areas and Lengths in Polar Coordinates

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΤΡΙΒΗ

Homework 3 Solutions

AKAΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Η ΧΡΗΣΗ ΒΙΟΚΑΥΣΙΜΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ-ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΠΡΟΟΠΤΙΚΕΣ

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

On a four-dimensional hyperbolic manifold with finite volume

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Tercijarna struktura globuralnih proteina. Rendgenska strukturna analiza proteina Konformaciona stabilnost proteina Supersekundarne strukture/domeni

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Section 8.3 Trigonometric Equations

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους

EE512: Error Control Coding

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

IZPIT IZ BIOKEMIJE ZA BIOLOGE (1. ROK)

I. OSNOVNI STRUKTURNI PRINCIPI

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Section 7.6 Double and Half Angle Formulas

Instruction Execution Times

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Αναερόβια Φυσική Κατάσταση

Example Sheet 3 Solutions

ÂÓÈÎ ÁÈ ÙÔ K ÙÙ ÚÔ 1 Ô KÂÊ Ï ÈÔ 1.1 E Ë Î ÙÙ ÚˆÓ ÚÔÎ Ú ˆÙÈÎ Î ÙÙ Ú

ΙΩΑΝΝΗΣ ΛΑΣΚΑΡΗΣ, ΠΗΓΩΝΙΤΗΣ Ή ΣΥΡΠΑΓΑΝΟΣ, Ο ΚΑΛΟΜΙΣΙΔΗΣ

Nuclear Physics 5. Name: Date: 8 (1)

Pripravili: Ana Bernard in Eva Srečnik Dopolnil: Matic Dolinar

4.6 Autoregressive Moving Average Model ARMA(1,1)

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

BIOXHMEIA, TOMOΣ I ΠANEΠIΣTHMIAKEΣ EKΔOΣEIΣ KPHTHΣ

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Assalamu `alaikum wr. wb.

ΑΝΤΙΓΡΑΦΗ ΚΑΙ ΕΚΦΡΑΣΗ ΤΗΣ ΓΕΝΕΤΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

14 Lesson 2: The Omega Verb - Present Tense

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Celični'stiki' Vrsta&povezave:'' celica.celica' celica.matriks'

ZVIJANJE PROTEINOV, RAZGRADNJA IN USMERJANJE

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Δευτεροταγής Δομή Πρωτεϊνών

a 2,5 b 2,5 upplemental Figure 1 IL4 (4h) in Ja18-/- mice IFN-γ (16h) in Ja18-/- mice 1,5 1,5 ng/ml ng/ml 0,5 0,5 4ClPh PyrC 4ClPh PyrC

the total number of electrons passing through the lamp.

derivation of the Laplacian from rectangular to spherical coordinates

Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης

Approximation of distance between locations on earth given by latitude and longitude

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Section 9.2 Polar Equations and Graphs

Second Order RLC Filters

Concrete Mathematics Exercises from 30 September 2016

Door Hinge replacement (Rear Left Door)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΜΑΡΙΟΛΑΚΟΣ Η., ΦΟΥΝΤΟΥΛΗΣ Ι., ΣΠΥΡΙΔΩΝΟΣ Ε., ΑΝΔΡΕΑΔΑΚΗΣ Ε., ΚΑΠΟΥΡΑΝΗ, Ε.

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

6.3 Forecasting ARMA processes

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Statistical Inference I Locally most powerful tests

Peptidylarginine deiminase 4

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Inverse trigonometric functions & General Solution of Trigonometric Equations

ST5224: Advanced Statistical Theory II

Other Test Constructions: Likelihood Ratio & Bayes Tests

Math 6 SL Probability Distributions Practice Test Mark Scheme

Transcript:

ZGRADBA PROTEINOV SILE, KI STABILIZIRAJO 3D ZGRADBO PROTEINOV PEPTIDNA VEZ α-heliks β-nagubana RAVNINA β-obrat STRUKTURNI MOTIVI STABILNOST PROTEINOV KVARTARNA ZGRADBA PROTEINOV ENA ALI VEČ KONFORMACIJ KONFORMACIJSKE BOLEZNI: prioni, lizocim... 1. PRIMARNA ZGRADBA DOLOČA STRUKTURO PROTEINA! 3D struktura opisuje položaj vseh atomov proteina v prostoru Proteini se med seboj razlikujejo v primarni zgradbi. Imajo isto kovalentno ogrodje, razlikujejo se glede na stranske skupine. Primarna zgradba določa način zvitja in vse višje zgradbe in tako tudi funkcijo proteina! Stranske skupine so spakirane tako, da so hidrofobne (skupina 1) v notranjosti, polarne in nabite (skupini 2 in 3) pa na površini proteina. Proteini, ki sodelujejo pri replikaciji DNA (modro) 2. NAJBOLJ POMEMBNE ZA STABILIZACIJO STRUKTURE SO ŠIBKE NEKOVALENTNE INTERAKCIJE! Kemijske vezi, ki stabilizirajo zgradbo proteinov Primarna struktura - kovalentna vez (peptidna) Sekundarna, Terciarna, Kvartarna struktura disulfidna vez (kovalentna) šibke vezi H-vezi ionske interakcije van der Waalsove interakcije hidrofobne interakcije 12-30 kj/mol 20 kj/mol 0.4-4 kj/mol <40 kj/mol

Stranske skupine aminokislin, ki lahko tvorijo vodikove vezi aminokisline skupine 2 in 3 na površini proteinov aminokisline skupine 1 v notranjosti na površini membranskih proteinov

TRIDIMENZIONALNA STRUKTURA Glavne sile, ki stabilizirajo 3D strukturo so hidrofobne interakcije med stranskimi skupinami nepolarnih aminokislin. V nezvitem ("unfolded") proteinu hidrofobne aminokisline ne morejo tvoriti H- vezi z vodo, nastane urejena struktura vode okoli polipeptidne verige, ki je termodinamsko neugodna: ni stabilizirajočih interakcij med vodo in stranskimi skupinami polipeptidne verige entropija vodnih molekul je zmanjšana Zato se proteinska veriga zvije ("folding") tako, da skrije nepolarne stranske skupine v notranjost proteina. voda tvori H-vezi s stranskimi skupinami na površini proteina. voda se iztisne iz hidrofobne sredice in je navadno v globularnih proteinih v sredini ni! disulfidne vezi dodatno stabilizirajo 3D zvitje proteina. nepolarna molekula polarne stranske skupine HIDROFOBNI EFEKT nepolarna molekula nepolarne stranske skupine nepolarna molekula nepolarna molekula nezvita molekula "unfolded" hidrofobno jedro z nepolarnimi ostanki polarne aminoksiline na površini, kjer lahko tvorijo H-vezi zvita molekula v vodni raztopini "folded" Navadno je prisotna samo ena "nativna" konformacija, ki je najbolj stabilna. Vseeno ohranjena tudi fleksibilnost, ki je včasih nujno potrebna. 100 aminokislin 5 10 47 različnih konformacij Zvijanje proteina je postopno. Prične se s tvorbo lokalne sekundarne strukture in strukturnih motivov (iniciacijska jedra). Preostala veriga se zvije okoli teh jeder. Zvijanje je kooperativno (vsak korak olajša tvorbo ugodnih interakcij). In vivo zvitje proteinov: spontano- samo na osnovi primarne zgradbe pomoč drugih molekul- molekularni šaperoni. Vežejo nezvito ali delno zvito polipeptidno verigo in preprečijo neugodne hidrofobne interakcije med izpostavljenimi deli. Imajo nizko specifičnost. V vseh organizmih, v normalnih ali stresnih (vročina) razmerah. Razvijanje proteinov ("protein unfolding") denaturacija kompletna izguba organizirane strukture (kuhanje jajc!). Poruši se sekunarna in terciarna zgradba, primarna zgradba ostane nespremenjena. Izguba funkcionalnosti!! - ireverzibilna - reverzibilna (organska topila, urea, gvanidinijev hidroklorid, natrijev dodecil sulfat).

PEPTIDNA VEZ Običajno v trans konformaciji Ima 40%-ten značaj dvojne vezi Dolžina 0.133 nm krajša od enojne in daljša od dvojne vezi Dvojna vez zato je 6 atomov peptidne vezi ko-planarnih! trans položaj C α N-atom delno elektropozitiven; O-atom elektronegativen DIMENZIJE PEPTIDNE VEZI KOPLANARNA NARAVA PEPTIDNE VEZI 6 atomov peptidne vezi leži v ravnini! α-ogljik trans položaj α-ogljik glavna veriga stranska skupina

Razporeditev elektronov v peptidni vezi resonančni hibrid Koplanarna konfiguracija peptidne vezi Resonančna stabilizacija planarne strukture (energija stabilizacije cca 88 kj/mol), vez ni vrtljiva v fizioloških razmerah Vrtljivost vezi med α-ogljikovim atomom in atomi iz peptidne vezi α-c CO- ϕ (psi) α-c NH- φ (fi) Celoten potek polipeptidne verige določen s koti ϕ in φ. Nekateri bolj verjetni. amidna ravnina α-ogljik stranska skupina amidna ravnina Nekatere kombinacije kotov se zaradi prekrivanja izključujejo! φ = 0, ϕ = 180 malo verjetna φ = 180, ϕ = 0 malo verjetna φ = 0, ϕ = 0 malo verjetna

RAMACHANDRANOV DIAGRAM prikazuje kombinacije kotov ϕ in φ α desnosučni α heliks paralelna beta struktura antiparalelna beta struktura 3 desnosučni 3 10 heliks π desnosučni π heliks 2 2.2 7 trak II poliprolinski II heliks levosučni a heliks α L LOKALNE STRUKTURE STABILIZIRANE Z H-VEZMI α heliks (α-vijačnica, "α-helix") in druge vrste vijačnicperiodična β-struktura (nagubana ravnina, β-plošča, " β-sheet")- sestavljena iz " β-trakov", periodična zanke (β obrati, "turn")- neperiodična, omega zanke naključna strukturaneperiodična, "random coil" α HELIKS desnosučni število aminokislin na obrat 3.6 višina dviga na ostanek 1.5 Ä višina zavoja 3.6 x 1.5 Ä = 5.4 Ä φ = - 60 0, ϕ = - 45 0 vodikove vezi med n in n+3 ostankom

vodikove vezi v α-heliksu =CO : H-Nn : n+3 ni H-vezi med stranskimi skupinami preveč polarnih ali nabitih ostankov destabilizira heliks N, Y, S, T, I, C, D, E, K, R prolin destabilizira heliks ne tvori H-vezi; upogne α-heliks 3.6 ostankov dipolni moment v α-heliksu mioglobin

HELIKSI imajo lahko različne lastnosti, ki so odvisne od aminokislinske sestave: amfipatični (flavodoksin) hidrofobni (v notranjosti; citratna sintaza) polarni (na zunanjosti; kalmodulin) Predstavitev heliksa kot helikalno kolo ostanki usmerjeni na površino ostanki usmerjeni k proteinu H heliks mioglobina DRUGE VRSTE HELIKSOV 3 10 heliks 3 ostanki/zavoj 6 Ä/zavoj α heliks 3.6 ostankov/zavoj 3.54 Ä/zavoj π heliks 4.4 ostankov/zavoj 5.2 Ä/zavoj

Poliprolinski II heliks 3 ostanki/zavoj 9.4 Ä/zavoj β STRUKTURA paralelna antiparalelna β NAGUBANA RAVNINA iztegnjena veriga; veliko gly in ala trakovi so lahko paralelni ali antiparalelni razdalja med ostanki: 3.47 Ä v antiparalelni konfiguraciji 3.25 Ä v paralelni konfiguraciji

porin zunanje bakterijske membrane trioza-fosfat izomeraza β OBRAT povezuje periodični strukturi (α-heliks, β-trak) omogoča spremembo smeri polipeptidne verige karbonilni C enega ostanka je s H-vezjo povezan z amidnim vodikom glicin (ker je fleksibilen) in prolin (ker obroč omogoča obrat) prevladujeta

omega zanke- daljši neperiodični deli strukture, 6-16 aminokislin, stranske skupine aminokislin zapolnijo notranjost zanke izključno α izključno β mešana α/β mioglobin porin zunanje bakterijske membrane trioza-fosfat izomeraza Aminokislina α helix β sheet obrat Ala 1.29 0.90 0.78 Cys 1.11 0.74 0.80 Leu 1.30 1.02 0.59 Met 1.47 0.97 0.39 Glu 1.44 0.75 1.00 Gln 1.27 0.80 0.97 His 1.22 1.08 0.69 Lys 1.23 0.77 0.96 Val 0.91 1.49 0.47 Ile 0.97 1.45 0.51 Phe 1.07 1.32 0.58 Tyr 0.72 1.25 1.05 Trp 0.99 1.14 0.75 Thr 0.82 1.21 1.03 Gly 0.56 0.92 1.64 Ser 0.82 0.95 1.33 Asp 1.04 0.72 1.41 Asn 0.90 0.76 1.28 Pro 0.52 0.64 1.91 Arg 0.96 0.99 0.88 Relativne frekvence aminokislin v različnih tipih sekundarnih struktur

Struktura je odvisna od konteksta v katerem se določena aminokislina nahaja e.g. VDLLKN peptid STRUKTURNI MOTIVI posamezni elementi sekundarne strukture se lahko povezujejo v stabilne strukturne vzorce- MOTIVI. npr. helix-loop helix αα motiv transkripcijski faktorji βαβ motiv triozafosfat izomeraza (TI) se združujejo v večje strukture, npr. β-sodček pri TI αα motiv myod transkripcijski faktor βαβ motiv trioza-fosfat izomeraza človeški inzulin

1951 Struktura α-heliksa in β-ploskev Pauling and Corey (1951) Proc. Natl. Acad. Sci. USA 27, 205-211; Proc. Natl. Acad. Sci. USA 37, 729-740 The Nobel Prize in Chemistry 1954 Linus Carl Pauling "for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances " Pauling has tried this method in his studies of the structure of proteins with which he has been occupied during recent years. To make a direct determination of the structure of a protein by X-ray methods is out of the question for the present, owing to the enormous number of atoms in the molecule. A molecule of the coloured blood constituent hemoglobin, which is a protein, contains for example more than 8,000 atoms. On this basis Pauling deduced some possible structures of the fundamental units in proteins, and the problem was then to examine whether these could explain the X-ray data obtained. It has thus become apparent that one of these structures, the so-called alpha-helix, probably exists in several proteins.

The Nobel Prize in Chemistry 1962 Max Ferdinand Perutz John Cowdery Kendrew But even if the path was now open for a direct structure determination of haemoglobin and myoglobin, there was still an enormous amount of data to be processed. Myoglobin, the smaller of the two molecules, contains about 2,600 atoms, and the positions of most of these are now known. But for this purpose, Kendrew had to examine 110 crystals and measure the intensities of about 250,000 X-ray reflections. The calculations would not have been practicable if he had not had access to a very large electronic computer. The haemoglobin molecule is four times as large, and its structure is known less thoroughly. In both cases, however, Kendrew and Perutz are currently collecting and processing an even greater number of reflections in order to obtain a more detailed picture. "for their studies of the structures of globular proteins" Delež denaturiranega STABILNOST PROTEINOV Stabilnost proteinov omogočena na račun: elektrostatskih interakcij vodikovih vezi hidrofobnih sil (najbolj pomembno!) disulfidne vezi Denaturacija toplotna ph detergenti kemijska (denaturanti: urea, gvanidinijev hidroklorid Stabilnost proteinov termofilnih organizmov

KVARTARNA ZGRADBA FUNKCIJA PROTEINOV JE POVEZANA S TERCIARNO IN KVARTARNO ZGRADBO Število podenot monomerni, dimerni, tetramerni, oligomerni homo-oligomerni (homotipični) enake podenote hetero-oligomerni (heterotipični) različne podenote ALOSTERIČNE INTERAKCIJE KOOPERATIVNOST Nekateri primeri fibrilarni KERATIN, KOLAGEN, FIBROIN, SPIDROIN globularni MIOGLOBIN monomer HEMOGLOBIN tetramer, hetero-oligomer http://www.scripps.edu/pub/goodsell/ Escherichia coli This illustration shows a cross-section of a small portion of an Escherichia coli cell. The cell wall, with two concentric membranes studded with transmembrane proteins, is shown in green. A large flagellar motor crosses the entire wall, turning the flagellum that extends upwards from the surface. The cytoplasmic area is colored blue and purple. The large purple molecules are ribosomes and the small, L-shaped maroon molecules are trna, and the white strands are mrna. Enzymes are shown in blue. The nucleoid region is shown in yellow and orange, with the long DNA circle shown in yellow, wrapped around HU protein (bacterial nucleosomes). In the center of the nucleoid region shown here, you might find a replication fork, with DNA polymerase (in red-orange) replicating new DNA. David S. Goodsell 1999. V osnovi so proteini narejeni tako, da je čimmanj nespecifičnih interakcij z ostalimi celičnimi komponentami STRUKTURNE IN FUNKCIONALNE PREDNOSTI KVARTARNE ZGRADBE Stabilnost: zmanjšanje razmerja površina/volumen molekule Genetična ekonomičnost in učinkovitost- ne rabiš izdelati dolgega polimera, mesto sinteze in polimerizacije sta lahko različna Kopičenje več katalitičnih mest (npr. multi-encimski kompleksi), katalitska mesta na vmesnih površinah Popravljanje defektov enostavno- zamenjaš podenoto Kooperativnost Pozitivna Negativna

SIMETRIJA ciklična simetrija dihedralna simetrija tetrahedralna simetrija oktaedralna simetrija ikosahedralna simetrija transkripcijski faktor dihedralna GroEL heptaedralna feritin oktaedralna transeritrin- vsak protomer sestavljen iz β-sodčka, ki se v dimeru nadaljuje v antiparalelni orientaciji tako, da tvori dimer β-sendvič podenota helikalni segment heliks aktin helikalna organizacija iz ene proteinske podenote

tubulin ENA KONFORMACIJA??? Prioni S.B. Prusiner. Prion diseases and BSE crisis. Science

C. Dobson (2003) Protein folding and misfolding. Nature 426, 884-890 Lizocim Dobson CM Phil.Trans. R. Soc. Lond. B (2001) 356, 133-145 Dedna renalna amiloidoza Gillmore JD et al (1999) Nephrology Dialysis Transplantation 14, 2639-2644. inzulin SH3 domena lizocim Helen Saibil, Birckbeck College, UK

Fandrich M et al. (2001) Amyloid fibrils from muscle myoglobin. Nature 410, 165-166