REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL

Σχετικά έγγραφα
Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C Mn Si STEEL

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

Grey Cast Irons. Technical Data

ER-Tree (Extended R*-Tree)

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

College of Life Science, Dalian Nationalities University, Dalian , PR China.

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

ect of Modified Wheat Starches on the Textural Properties of Baked Products, such as Cookies

Abstract: JFE JFE SA440. TiN B FL. 100 mm

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Shenzhen Lys Technology Co., Ltd

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Second Order RLC Filters

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

MECHANICAL PROPERTIES OF MATERIALS

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

High Speed, Low Loss Multi-layer Materials

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Parts Manual. Trio Mobile Surgery Platform. Model 1033

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Data Sheet High Reliability Glass Epoxy Multi-layer Materials (High Tg & Low CTE type) Laminate R-1755V Prepreg R-1650V

ZnO-Bi 2 O 3 Bi 2 O 3

Electronic Supplementary Information (ESI)

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Figure 1 - Plan of the Location of the Piles and in Situ Tests

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Congruence Classes of Invertible Matrices of Order 3 over F 2

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Supporting Information

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

High order interpolation function for surface contact problem

Development of Accurate Quantitative Analytical Methods to Determine Trace Amounts of Carbon, Sulfur, and Oxygen in Steel

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4


Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Microwave Sintering of Electronic Ceramics

Emulsifying Properties of Egg Yolk as a Function of Diacylglycerol Oil

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Buried Markov Model Pairwise

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Nguyen Hien Trang* **

SPECIAL FUNCTIONS and POLYNOMIALS

High Frequency Chip Inductor / CF TYPE

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Second Order Partial Differential Equations

Quick algorithm f or computing core attribute

C.S. 430 Assignment 6, Sample Solutions

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Single-value extension property for anti-diagonal operator matrices and their square

4.6 Autoregressive Moving Average Model ARMA(1,1)

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Τεχνικές παρασκευής ζεόλιθου ZSM-5 από τέφρα φλοιού ρυζιού με χρήση φούρνου μικροκυμάτων και τεχνικής sol-gel


2 Composition. Invertible Mappings

ADVANCED STRUCTURAL MECHANICS

Fenton. COD ρ NH N TP ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY

(Mechanical Properties)

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Matrices and Determinants

Homework 8 Model Solution Section

ΠΑΡΑΣΚΕΥΗ ΝΑΝΟΣΥΝΘΕΤΩΝ ΒΙΟΔΡΑΣΤΙΚΟΥ ΓΥΑΛΙΟΥ/ΠΟΛΥ(D,L-ΓΑΛΑΚΤΙΚΟΥ ΟΞΕΟΣ) ΚΑΙ IN- VITRO ΜΕΛΕΤΗ ΤΗΣ ΒΙΟΣΥΜΒΑΤΟΤΗΤΑΣ

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Μέτρηση της Ρυθµικής Ικανότητας σε Μαθητές Γυµνασίου που Ασχολούνται µε Αθλητικές ραστηριότητες Συνοδευµένες ή Όχι από Μουσική

; +302 ; +313; +320,.

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Strain gauge and rosettes

Transcript:

Λ 48 E Λ 9 2 Vol.48 No.9 2012! 9 K Λ 1074 1080 ß ACTA METALLURICA SINICA Sept. 2012 pp.1074 1080 +cξ$ ρ`e)lf.rsqy) p ffl»νfl Ωfi ( Pflk.zP @CH I 100083) w 14:Nbx + t ENμT bx & () TWeD$ν 8/rWe zvxb 8 F0ff- ΦΠ-"ΩS%);F Π-4( (}Wy5> Π-}HDyß l. h4 SEM XRD "Ω EBSD }ν'4twe# 8y>O l/rx"d. %Xhy 3ß l g8v5> Π-yzv ffi_;"stπ: fi t ENμT# χ ffi Π- lvy0 Mn 0 C fl bx &# 5~ Π-P&ZIvyfl]0 C 2Zf yt+ Dff0 WeQ" 3 &8P FSzv@Z 10% ]vy5> Π- ff5~ Π-P&ZIvyfl]0 C Uν3b8v 5> Π-ypDΩ4P FSyHffs7sxqM yν4. ;SA)y5> Π-PpffiZIvy TRIP i v 3b8zP nffipzivzvxk yμd.sfim _ffywx=ffiaffiuyr`%g. 7Ψ%X" 8y=ffiΞ@ Zx 2 Pa % J-=ffil; 00 MPa K =ffi@z 900 MPa LffnP 1% "f =FfflkO}Vuisx 39 J. ;H' &8 5> Π- ΦΠ- F0ff- TRIPi Λh03O@ T113 koffi_x A k fi@ 0412 191(2012)09 1074 07 REULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL REN Yongqiang XIE Zhenjia SHAN Chengjia School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 Correspondent: SHAN Chengjia professor Tel: (010)2332428 E-mail: cjshang@ustb.edu.cn Supported by National Basic Research Program of China (No.2010CB30801) Manuscript received 2012 04 17 in revised form 2012 0 08 ABSTRACT The development of high performance steels needs to realize the combination of high strength high plasticity and high toughness. Multiphase microstructure which contains a specific proportion of retained austenite is conductive to enhance the toughness and plasticity of the steel. Making use of the quenching+intercritical reheating quenching and partitioning () process a multiphase microstructure which was composed of intercritical ferrite martensite and well distributed retained austenite (primarily distributed in the prior austenitic grain boundary and the phase boundary) can be obtained in the steel. By means of SEM XRD and EBSD microstructures of the steel in different heat treatment stages were characterized. The results indicated that the obtention of the retained austenite was mainly dependent on the following two stages: the first one is the enrichment of the carbon and manganese in the reversed austenite during the intercritical reheating process; the second stage is the secondary enrichment of carbon in retained austenite during the following quenching and partitioning process. After the two stages of element enrichment treatment more than 10% volume fraction of retained austenite was obtained and the second stage of treatment plays an important role in the formation and stabilization of the metastable austenite. Due to the strengthening and toughening effect of the widely distrubuted retained austenite this kind of steel obtained a continuous work hardening ability and thus achieved a good combination of strength and plasticity. Test results W Π VΨ;χY rflπaν 2010CB30801 ffsr< 3 : 2012 04 17 ffsy5< 3 : 2012 0 08 ν^ρ : Z3= ß 1983 "r & r DOI: 10.3724/SP.J.1037.2012.00210

Λ 9 2 Y2< : %7u4=±ΞxΦTΨμl tffx_ 1075 indicated that steel treated by the process shows excellent comprehensive mechanical properties: the product of strength and elongation is greater than 2 Pa % the yield strength and tensile stength is more than 00 and 900 MPa respectively the uniform elongationg is above 1% and the half thickness size impact toughness at room temperature reaches to 39 J. KEY WORDS low carbon steel retained austenite martensite intercritical ferrite TRIP effect ;vfl91/ zψzο!λ;>ffl ;Wvd;χ v. flfffifl ;9/>ffldWvz 9j'!ΛR5 >tb]χ>t. 1#^ Q;9/χv' UoψZ y DP(ν]) [12] TRIP(]χ:rχv) [3 ] TWIP(± 5:rχv) [7 9] #ff Q&P(cy +') [1011] ~ρ UXfE%. Ω< [1213] #» TRIPj+Λ;91/ χvz9j'!. 25(5zE+m #ffffi fi» ο9wz?φ±.0s»mψuebx.zω<u± ψzyc9 TRIP j+z ρmo9 `1fi. ο ±.9 [1415] Ψ±.9 (Q&P 9) [10111 20] ο±. 9 [21] #ffwjψ±.9 [22] ~. Qi5 TRIP j+w bnj+q<`f0flq@ c.wwtfficfiifiz?φ±. 5wομßLχ 9wz C ^w# i5wvdr_v. VS 25f E+m `fψu.wzρ]»m #ff`f0fl Q.wwtfficfiIfiz?Φ±.Λ5wzΩ<} ± [10111723 27]. ρeο=^ C wb 0.23%(tw+ ) z Mn Si 9 w?φ±.z»mψue%ff5nλsb0sy(# dω<. 25u]FOνUE%ΨU9wψΦχΦ±. z C $ffl #D w>-1 C z:l. 0fi3[c y +'Xf ywt7φ1fi. Ψ±.# ffffic+z?φ±.iezρ]»m. i5d : (SEM) X k[fflk (XRD) #ff ffiνckfflk (EBSD) ~ρ fi»ο4c9(5uxf$»z?p» m0sy#e 5w=9w?Φ±.οnΛvflz-` 0sy!. 1 ^v"ua1/ z 5 925 25 kg bs + νq tλe+ (tw+ %)B: C 0.23 Mn 1.80 Si 1.35 S 0.0075 P 0.000 Fe?w. ffi±ω SE 0 mm 80 mm 240 mm z?') }mνut 1250 Ξ HMt 1 h 1100 ΞIX 8[?u^UXqE mm lz9fi. yxfflb 80 Ξ XoSdrΦ. 25U (!8w4c9z A C3 =84 Ξ A C1 =742 Ξ M s = 338 Ξ M f =28 Ξ (5w A C3 ΛνUwUN1fi. O-ΦχEΦ±.zyyffl A C1 ΛνUw R.dΦ ±.ΦχzI~ffl M s ΛdQwΨ±.Φχz8~ ffl M f BdQwΨ±.Φχzyyffl). nλvflz $zzω B`9figffiXd?=E z mm 20 mm 180 mm ff). #z 8fiz A C3 i 1 8yTWeD$ I Fig.1 Schematics of Q (a) and Q IQ IQ&T (b) treatments applied to the steel (T 1 =800 Λ T 2 =750 Λ T 3 =320 Λ T 4 =280 Λ T 5 =770 Λ T =300 Λ T 7 =300 Λ t 5 =15 min t 7 =15 min) A C1 M s d M f fflb3m 25`7 1a $ E%0 suxf (). flu ffiω Q^ wνut 900 Ξ 30 min }k;oφ±.t oοcrφ wtoψ±.»m (Q E%); ffi O^νUt 750 800 Ξzu]Fρzμflffl (ρz wm 770 ΞOν U 15 min) Q4fflT}ksE)fiffjzΦ1fi. #ffψφχφ±. %3[ }ψφχφ±.1 Mn d 1 C "oοcr 290 320 ΞkοfflFzμfl)fi ffl (ρz wmcyr 300 Ξ By3Rflffgz M: Qcy5οwνay)fiffjz?!P[ UscyfflQ 770 300 Ξkοz/HdflB 100 Ξ/s 25 # w 8 4.7 s cyomt 5hoz8;8) OΠfl( a^ w 300 Ξ~Xf 15 min osdrφ ( E%). Byfl<ο4c9@$»wz»mχt UΞffnΛsB0sΩ< 4Q Ω 5 μy 900 Ξ

(107 S([(V(Q A 30 min 102 (Q)900 C02 +770 C> /02 (IQ) 900 C02 +770 C> /02 +300 C? A S 2 (IQ&T) 3 25-53R2. 4153)M 1b 7 JE. 4T?5RID5-532.1 L QT+U 3 50 mm + FVPLQ 5 mm 10 mm 55 mm + USTUM Charpy V QWVT (Charpy impact test) L Q. A VP8HWW B/T 228 2002 1 2 VP5. X R 3 2.5 10 3 s 1 ; A VT8HW W B/T 229 2007 12. HVPLQXXUVWW AIQF I4STO 3% \] SNUXYV <E Z 9. 5%Y Oxford EBSD ^Z_ ZEISS ULTRA 55 Z75FA (SEM/EBSD) 7 )5 - &2.B C H 9 F W1-788 01 3@12H[3F EBSD 5\B3 0.12 μm. @ D DMAX RB 12KV ` Y[ X 7 B E7Z (XRD) 7)77880112=:3 H 5 F[ 40 kv F X 150 ma \\3 0.02. a \8 01 200 220 311 E7X1- $71 200 211 E7X 4]]7K/7B; XRD = ^1 20b [28] _+2;$71 (α) 801 (γ) > YZ= Kα Kγ 5D (1) 0bY+LE7X27 88011`3= BJ;788011`3=3< LX2788011`3=L^. 9 9 - ) ^ 48 Vi = 1 1+ (1) Ia K γ Iγ K α D7 Vi %<LX2788011`3=; Iα Iγ 3 ]3)7$71801)#E7Xa` + ;14 2`Z/ [28] 0b;O. 78801 C @:D (2) 120b [29]: ω(c)γ = (aγ 0.3547)/0.004 (2) ) D7 ω(c)γ % 788 01 7 C?:3 = %; aγ % 78801)Z^= nm ;14 Cohen U[_ / [30] b\801<le7x;. /`KS]_O % C: Si Mn 7:788 01 )Z^ = D K : C <U;4 ]/D7`5KZ Si Mn D [29]. 2 2.1./:; <=>?@ABCDEF 3P:7)/ 53<3[1B79 SEM P 01 (IQ) +770 A (IQ&T) 3 2 M 2 JE. M a0ro1 2 4/ 4 7 <8 0102 (Q) 02 +770 C> /02 1-02 C L5 532 > /02 +300 C? S2.1QF 9 F W1 3F ) C ; c ID]]022.)a4OFc 01 9b E S F (M 2a); ID1 d > / 15 min A?&10 2-B;LQ Cb DA$71 [31] (IF) 1-0 1 (M) (M 2b); M 2c 3M 2b J75LQ e 2 Q IQ IQ&T SEM Fig.2 SEM images of the steel after treatments of Q (a) IQ (b) IQ&T (c) and enlarged image of the square in Fig.2c (d) (IF intercritical ferrite M martensite TM tempered martensite)

9 & # : $ %'%(& '&%&''! ')" / 300 C?AS21 9FW M 2d 3M 2c 7b\.d/cS2 01 9Qc ^ C M 2d ;c / 300 C7 )1 2 15 min _+S22.1-7 01 9?dS2-.;e`V <4O-7Æ HOf0g. M 3 3 I 532. (M 1a) 1 0.23C 1.8Mn 1.35Si ) <C 9. C M 3a ;c df8 0 1 )e h ID 2.1)7 1 9/ 1 @= X IQ 2.1)b DA$71F W (M 2b). b\ M 3b c 1- M 2 ;c.@ i 3 2) K ) 7dD A$71 [31] (IF) - f 0 gh OS2 0 1 [232] (TM - H O f 0 g be -M 2d 7 j) R h ao 4 +=KL788 01 (RA) bg k S2 0 1 [32] (UM ;e[e01 [2433] ). )M 3c 7JE H I ( 1077 )a4o< 4 4S+ 9bESF. Kl'% Nc@D SEM W]a5 P<'^d 3FO@i 9778801@:--3@SF -Y 5 _K@D1+\ XRD 1- EBSD 1/+12 =3F fcm 2 M 3 ;h @D SEM ;1`m dgao&2.<b7 J ; 9. ;c4 5 3824 9(e%b3'<. J 2.2 IQ&T @A>?KCDLMNO 532.1)= 3 1 foi IQ&T @#. C3;c )K IQ&T ) +? fl ipr1-v1pbr>;<'( j;he )/VT!# &`.## gk )^AU MST (5 mm 10 mm 55 mm) VT!#i< 39 J fr3g'( 24 J. M 4 3 ID IQ&T 2.1)I5= I5.c B. C M 7;c / 0 8.1% I5.h n IQ&T )I5=a 4 OX d d( S 9 - ) I5=X d d(l ' (<I5. 0 18.8% i\ hn jl'1gt5.m?-jjxd?5n0 = <o :3g. 1 gj IQ&T k lpkhm nliqoe (frmogopnpopshlqj) P Table 1 Mechanical properties of the steel after IQ&T and treatments (Impact toughness values of the IQ&T and steels are obtained by the half thickness size samples) Rm Rp0.2 Agt A Rm A Akv MPa MPa % % Pa % J IQ&T 1152 803 5.3 15.0 17.280 15 91 18 1.4 28. 2.198 39 Process Note: Rm tensile strength Rp0.2 yield strength Agt uniform elongation A total elongation Rm A products of tensile strength to total elongation Akv V type gap Charpy impact toughness 3 SEM Fig.3 SEM images of the steel after treatment (a) and enlarged images of the square I (b) and square II (c) in Fig.3a (RA/UM retained austenite or untempered martensite) e ^ t ir t 4 IQ&T Fig.4 True tensile stress true strain curves of the samples treated by the IQ&T and process

(1078 3 3.1 S([(V(Q QRSTU>?VWX CDYZ[\] ^_` abcd[\] efd^_ 7I 1532. 4 C IQ IQ&T XRD 1QF788 01 @:1 2 =. Y XRD j )M 5 JE. CM7;c I IQ 532.QF7q/ ' < 788 01 X. QF/ T 1 300 C 15 min?as2 (IQ&T) 2.1 k =kf3'<7880 1X. jl'id>/a?&jjj?37880 14-f(;=# _EID1dfB+M? A S 22. ;5leJ3l. 7: 53LQ @D XRD j;1i? < dh[<8 01 X s C- += :;O-778801@:3 14%. M 3ID IQ IQ&T 1-532.1QF 7788 011 `3 = 788 01 7 C @:. C M;c 7:I IQ 2.J;) IDT1 300 C 15 min? A S2 (IQ&T) 2. )7788 01 @: I 48 O4'<R9 jl' 300 C_+S2/H2r+@u?788 01 3l; ` h o8788 01 L@ C :- < d( (C 1.01% @d< 1.45%). ;c I 300 C_+S21 IQ )7 J =k788 01 4 -i(@ C : j3'@ C (78801S2m =; <(:@ C?78801. ID 2.J ;)7788011`3= (14%) 1-788017 C @: (1.4%) % 3 )7 ( j;m]3' 02 3% (Q&P) B7k8 01 /3%Dr7[ EC C 7)7D;801F--/ AR ; = q/?<ny><. I ) ghik C cd[\]djk l mbnocpqrsrtnduv 4 7 )VP31 97788 0 1 3@ n1 2 3F ) M JE Kl ' % C 3.2 EBSD ^ m 7. : Æ EBSD 5\B t T / M 7 u /+=OST/ 0.12 μm 1 R 788 01 d` M 7 J qvo788 01 :<?:8oQF7788 01 @:. H M 7a 7 ;1p< ID 2.R1QF7788 01 / w 1 @a 4 Æ3@ S F; / h H@ j v 788 01 ww ap bg_b ` h /f8 01 )e21-) + v 788 01 x n a^^æj q bgb q\? Kikuchi st+ BC ^/c jvæjq\t+ /c-; %[E01bgS201 [230]. M 7b w 5 IQ IQ&T XRD Fig.5 XRD patterns of the steel treated by IQ IQ&T and process ^ n C IQ IQ&T Fig. Volume fraction and carbon content of retained austenite in steel treated by IQ IQ&T and process x rr r 7 EBSD Fig.7 EBSD analysis of retained austenite distribution in the steel before (a) and after (b) stretching (white corresponds to fcc lattice retained austenite)

Λ 9 2 Y2< : %7u4=±ΞxΦTΨμl tffx_ 1079 B}1 VXz 9HMfio»»mwz?Φ±.+. B7 7a wzd]o»m0sffψrfi mχq koz 9w?Φ±.z w»vffi pez Kikuchi nbffl BC ofcz wvξwρ. &h7 4 w 9zb+n +χh[r#8j Q]o[ Jw "qχwzwm?φ±.q Wmzρ+n ο5t ψsydψ±.z]χ `fi}w V21z 9FX`7 7b $ zqfi. h7 7a #ff7 3 Rfi8[ E%Xfo wzφ1fi. (vyψ±.).fxtwω _fi /Ωz»mqfi?Φ±.ffDvyΨ±.~1 C ] QqfigVFcΩ _kωzgq ffic+qφ±. 5) _Φ1fi..fi/kο QiρA[T `k 1 C ]qrp}ez. `# gj `kqω»mffiφ 1fi..+=EyWΩ _cω. `ρtgfifl ` kqω»mλ7cy9q 770 Ξ~ $sezψφ χφ±.φtfi^z. pcy9q^ wνur ;< A C1 z 770 Ξ0s~ Xfw QΦ±.5 )gffiqergzkωψφχφ±. fiqfi/ψ±.» )XVqEmwzcΩ#ffOkΩzψΦχΦ±.. 7< 770 ΞX<u]F KQ4fflT~ 15 min o o $w»mbffiφ±.5)#ffψ±.fi/fi)~xs EzRgkΩΦ±. cωφ±.#ffφ1fi.~]$»ezρ]»m. 4ρ]»m8["ozcy +'od rφfiw`7 3 d7 7a $ z»m. &h7 5 d7 R#8j 8[Ξflz 770 Ξ u]foνu%cyxfozψφχ»mwflj wi wfiifiz?φ±. `-+?Φ±.zMe==i g 5IfitΛ7<u]FOνU[Jw C d Mn ~ h-efiz J1Φ [34 3] ; fifm-+zu]fψφ χφ±.](bifith-efiz^w(jfiq"oz dq[jwφχeyψ±.. 9 ur8jg zu ]FψΦχΦ±.dQχBΨ±.`flXe Qw / fltλ(rψz $# 3Q"oz 300 ΞvyR#Q flfijfflgχ 9wzρ+n#ffEgfflffl fi}9zχ Wvwt; oλk!wν9wz?φ±.^w. fi `Yffi8[Ξflz 770 Ξu]FOνUXfozψΦ χ»mdqrψ±.i~φχffl (M s ) #T Ψ±. Φχ&»ffl (M f ) #gzfflfc }k-+ψ±. t % ]pffjz?φ±. Q` /flt0sfl fiwοz+'xf}k }1 C fiifi [37] SoOdr Φ VR# w7?φ±. Ψ±.#ffΦ1fi. IEzρ]»m (7 7a). &h9znλvfl8ω&y R#8 T ` b/h'zρ]»m&iw}49 w>ffldχvzsa' %fl»v;4c9zp~ Wv. 4 JW (1) 8cy + u]foνu cy +' () E%Xfo Q 9w wy7φ 1fi. Ψ±.#ff?Φ±.~»Ezρ]»m. 5w z?φ±.t&+<φ±.5)d])~x 5Q 9wz.Π+ A[y 14%. (2) 4ρ]»m h-9wφiφ±.z wλμχ `<#Tu±: flλu]foνu$»ψφχ»mwφ±.z1 Mn 1 C ffiλcy +'$» Φ±.Q+ '[Jwzffi^1 C 3[g uzefi1φxfr# }4c9QΦT wa[ 10%.Π+ z?φ±. fi Φ±.Q+'[Jwzffi^1 C Vο49wΦI Φ±.zqEff5QΦTzIfidQ8tyrN}μ zο5. (3) 7<TB+z?Φ±.Qqχ[Jwz>t #ffwtο5 }w4c9 Q]oχq[Jw wyψ >zl}νe/tfln 0fizXy>fflBχvzsa& h. Ω<#» 4c9zL]>fflA[ 900 MPa K.> ffla[ 00 MPa HMfioΠjt 1.4% >χπa[ 2 Pa % > lp~wvjty 39 J. #Kko [1] McFarlan W H. US Pat 337830 198 [2] Hayami S Furukawa T. Microalloying 75. New York: Union Carbide Corp 1977: 311 [3] Matsumura O Sakuma Y Takechi H. Scr Metall 1987; 21: 1301 [4] Matsumura O Sakuma Y Takechi H. ISIJ Int 1987; 27: 570 [5] Matsumura O Sakuma Y Takechi H. ISIJ Int 1992; 32: 1014 [] Sugimoto K Misu M Kobayashi M Shirasawa H. ISIJ Int 1993; 33: 775 [7] rässel O Frommeyer. Mater Sci Technol 1998; 14: 1213 [8] Bouaziz O uelton N. Mater Sci Eng 2001; A319 321: 24 [9] Barnett M R. Mater Sci Eng 2007; A44: 1 [10] Speer J Matlock D K De Cooman B C Schroth J. Acta Mater 2003; 51: 211 [11] Matlock D K Brautigam V E Speer J. Mater Sci Forum 2003; 42 432: 1089 [12] Sakuma Y Matsumura O Takechi H. Metall Mater Trans 1991; A22: 489 [13] Herrera C Ponge D Raabe D. Acta Mater 2011; 59: 453 [14] irault E Jacques P Harlet Ph Mols K Van Humbeeck J Aernoudt E Delannay F. Mater Charact 1998; 40: 111 [15] Ray A Dhua S K. Mater Charact 199; 37: 1 [1] Speer J Streicher A M Matlock D K Rizzo F C Krauss. In: Damm E B Merwin M eds. Austenite Formation and Decomposition Warrendale: TMS 2003: 505 [17] EdmondsDVHeKRizzoFCDeCoomanBCMatlock D K Speer J. Mater Sci Eng 200; A438 440: 25

1080 + ffl Λ 48 E [18] De Cooman B C Speer J. In: Lee H C ed. The 3rd Int Conf on Advanced Structural Steels. yeongju: The Korean Institute of Metals and Materials 200: 798 [19] Streicher A M Speer J Matlock D K De Cooman B C. In: Speer J ed. Proc Int Conf on Advanced High Strength Sheet Steels for Automotive Applications. Warrendale: AIST 2004: 51 [20] Speer J Edmonds D V Rizzo F C Matlock D K. Opin Curr Solid State Mater Sci 2004; 8: 219 [21] Sugimoto K Tsunezawa M Hojo T Ikeda S. ISIJ Int 2004; 44: 108 [22] Raabe D Ponge D Dmitrieva O Sander B. Scr Mater 2009; 0: 1141 [23] Shi J Sun X J Wang M Q Hui W J Dong H Cao W Q. Scr Mater 2010; 3: 815 [24] Wang C Y Shi J Cao W Q Dong H. Mater Sci Eng 2010; A527: 3442 [25] LiHYLuXWWuXCMinYAJinXJ.Mater Sci Eng 2010; A527: 255 [2] Santofimia M J Zhao L Sietsma J. Metall Mater Trans 2009; A40: 4 [27] Mukherjee M Mohanty O N Hashimoto S Hojo T Sugimoto K. ISIJ Int 200; 4: 31 [28] Fan X. Metallic X ray Physics. Beijing: Mechanical Industry Press 1989: 159 (# x. X jz. μ7: ldρsfll 1989: 159) [29] Sugimoto K Usui N Kobayashi M Hashimoto S. ISIJ Int 1992; 32: 1311 [30] Cullity B D. Elements of X ray Diffraction. Massachusetts: Addison Wesley 1978: 359 [31] Santofimia M J Nguyen Minh T Zhao L Petrov R Sabirov I Sietsma J. Mater Sci Eng 2010; A527: 429 [32] Thomas A Speer J Matlock D K. Metall Mater Trans 2011; 42A: 352 [33] Zhang K Xu W Z uo Z H Rong Y H Wang M Q Dong H. Acta Metall Sin 2011; 47: 489 ([ N Affl Vgj ]1q <ΩB fl ß.» 2011; 47: 489) [34] Santofimia M J Zhao L Petrov R Kwakernaak C Sloof WSietsmaJ.Acta Mater 2011; 59: 059 [35] Nouri A Saghafian H Kheirandish Sh. JIronSteelRes Int 2010; 17(5): 44 [3] Speich R Demarest V A Miller R L. Metall Mater Trans 1981; 12A: 1419 [37] Santofimia M J Zhao L Sietsma J. Metall Mater Trans 2011; 42A: 320 (μ Ψff: Φ ffi)