Kul Models for beam, plate and shell structures, 09/2016

Σχετικά έγγραφα
Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 08/2016

Kul Models for beam, plate and shell structures, 07/2016

Kul Models for beam, plate and shell structures, 02/2016

Kul Models for beam, plate and shell structures, 10/2016

Kul Models for beam, plate and shell structures, MT

Spherical Coordinates

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Geodesic Equations for the Wormhole Metric

Homework 8 Model Solution Section

Lecture 26: Circular domains

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Second Order Partial Differential Equations

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Answer sheet: Third Midterm for Math 2339

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Matrices and Determinants

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Approximation of distance between locations on earth given by latitude and longitude

4.6 Autoregressive Moving Average Model ARMA(1,1)

derivation of the Laplacian from rectangular to spherical coordinates

Parametrized Surfaces

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ADVANCED STRUCTURAL MECHANICS

Inverse trigonometric functions & General Solution of Trigonometric Equations

Srednicki Chapter 55

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Example Sheet 3 Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

( ) 2 and compare to M.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Kul Finite element method I, Exercise 08/2016

If we restrict the domain of y = sin x to [ π 2, π 2

Orbital angular momentum and the spherical harmonics

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Geometry of the 2-sphere

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

3.5 - Boundary Conditions for Potential Flow

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Solutions to Exercise Sheet 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

1 String with massive end-points

Homework 3 Solutions

Section 8.3 Trigonometric Equations

Solution to Review Problems for Midterm III

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

Reminders: linear functions

Chapter 7 Transformations of Stress and Strain

Areas and Lengths in Polar Coordinates

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Strain gauge and rosettes

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Empirical best prediction under area-level Poisson mixed models

Math221: HW# 1 solutions

A Introduction to Cartesian Tensors

PARTIAL NOTES for 6.1 Trigonometric Identities

CRASH COURSE IN PRECALCULUS

The Simply Typed Lambda Calculus

Mechanics of Materials Lab

Kul Finite element method I, Exercise 07/2016

2 Composition. Invertible Mappings

Tutorial problem set 6,

Second Order RLC Filters

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Parallel transport and geodesics

Exercises to Statistics of Material Fatigue No. 5

Differential equations

D Alembert s Solution to the Wave Equation

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

Trigonometric Formula Sheet

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Differentiation exercise show differential equation

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Concrete Mathematics Exercises from 30 September 2016

( y) Partial Differential Equations

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

CYLINDRICAL & SPHERICAL COORDINATES

w o = R 1 p. (1) R = p =. = 1

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Graded Refractive-Index

Dr. D. Dinev, Department of Structural Mechanics, UACEG

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

10.7 Performance of Second-Order System (Unit Step Response)

Transcript:

Kul-49.45 Models for beam, plate and shell structures, 9/6 Demo problems. Derive the component forms of the membrane equations in spherical φθ n coordinate system and geometry. Use the component form N + b = ( d N +Γ N +Γ N + b) e = j ji kjk ji jki jk i i and expressions Γ φφn =Γ θθn =, Γ φθφ = cot θ, dφ = φ, sinθ dθ = θ, and d n = n. Answer T [csc θnφφ, φ + Nθφ, θ + cot θ ( Nθφ + Nφθ )] + bφ e φ eθ [csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ )] + bθ = e n ( Nφφ + Nθθ ) + bn. Consider a simply supported (long) circular cylindrical shell of radius, thickness t, and filled with liquid of density ρ in cylindrical φn coordinates. Determine the mid-surface stress resultants N φφ, N φ and N by assuming that there are no axial forces at the ends of the shell and bending deformation is negligible. (J.N.eddy: Example.3.) g L x Answer N p ρg cosφ φφ Nφ = ρg( L )sinφ+ A N ( ρg L )cos φ (A and p are constants) 3. Consider a truncated cone, as shown in the figure. Determine the mid-surface stress resultants due to its own weight. Acceleration by gravity g, density of the material ρ, and thickness of the cell t wall are constants. Use cylindrical φn coordinates and assume that the cone stands freely on a frictionless foundation. The coordinate value of the free end is. (J.N.eddy: Problem.8 modified somewhat). y α x g

Answer N φφ tρgtan α Nφ = N tρg( + tan α) ( ) The demo problems are published in the course homepage on Fridays. The problems are related to the topic of the next weeks lecture (Wed.5-. hall K3 8). Solutions to the problems are explained in the weekly exercise sessions (Thu.5-4. hall K3 8) and will also be available in the home page of the course. Please, notice that the problems of the midterms and the final exam are of this type.

Derive the component forms of the membrane equations in spherical φθ n coordinate system and geometry. Use the component form N + b = ( d N +Γ N +Γ N + b) e = j ji kjk ji jki jk i i and expressions Γ φφn =Γ θθn =, Γ φθφ = cot θ, dφ = φ, sinθ dθ = θ, and d n = n. Solution A compact representation of gradient operator in terms of directed derivatives di = e i, gradient of the basis vectors in terms of Christoffel symbols Γ ijk = e i ( e j ) e k, and summation convention aid in writing the component forms of the equilibrium and constitutive equations from the coordinate system invariant forms. Notice that curvature and Christoffel symbols are related by κ = Γ jniee i j ). For example ( Γ = e ( e ) e de = Γ e ) ijk i j k i j ijk k N= ( ed) ( N ee ) = e ( dn ) ee + e N ( de ) e + e N e ( de ) i i jk j k i i jk j k i jk i j k i jk j i k N = ( d N +Γ N +Γ N ) e. j ji kjk ji jki jk i The non-ero quantities of the spherical coordinate system corresponding to the midsurface n = are Γ φφn =Γ θθn =, Γ φθφ = cot θ, dφ = φ, sinθ dθ = θ, and d n = n By considering each component at a time (notice that the components of the stress resultants do not depend on n, components with n vanish, and only the 6 of the Christoffel symbols are non-eros ) i = φ : ( N b) eφ = d jn jφ +Γ kjk N jφ +Γ jkφn jk + bφ = dφ Nφφ + dθ Nθφ +Γ φθφ Nθφ +Γ φθφ Nφθ + bφ = Nφφ, φ + Nθφ, θ + cot θ ( Nθφ + Nφθ ) + bφ =. sinθ i = θ : ( N b) eθ = d jn jθ +Γ kjk N jθ +Γ jkθn jk + bθ = dφ Nφθ + dθ Nθθ + Γ φθφ Nθθ +Γφφθ Nφφ + bθ = Nφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ =. sinθ

i = n: ( N b) e = d N +Γ N +Γ N + b = n j jn kjk jn jkn jk n Γ φφnnφφ +Γ θθ nnθθ + bn = Nφφ + Nθθ + b n =.

Consider a simply supported (long) circular cylindrical shell of radius, thickness t, and filled with liquid of density ρ in cylindrical φn coordinates. Determine the mid-surface stress resultants N φφ, N φ and N by assuming that there are no axial forces at the ends of the shell and bending deformation is negligible. (J.N.eddy: Example.3.) g L x Solution The membrane equations of the cylindrical coordinate system are (formulae collection) Nφ, φ + N, + b =, Nφ, + Nφφ, φ + bφ =, and Nφφ + b n =. Definition of the external distributed force b = f dn + t take into account the volume forces acting on the body and given traction acting on the outer and inner surfaces. In the present case f = and the traction part is due to the hydrostatic pressure of the liquid inside the cylinder: p p gx = ρ, t = pen where x= cosφ in which p is the pressure difference between inner and outer surfaces and p is constant. Let us denote the pressure difference between the outer surface and center of the container by p (positive when the inner pressure is larger) to get b =, b φ =, and b = p + ρgx = p + ρg cosφ. n The equations to be solved become (notice that integration by a partial differential equation involves unknown functions instead of constants) N p + g cos = φφ ρ φ Nφφ = p ρg cosφ, N + N = Nφ, + ρgsinφ = Nφ = ρg sin φ + A( φ ), φ, φφ, φ N, N, b φ φ + + N, = N, φ φ N, = ρ g cos φ A ( ) φ N = ρ g cos A( ) B( ) φ φ + φ. In the solution, F( φ ) and G( φ ) are arbitrary functions subjected to A( φ) = A( π + φ ) and B( φ) = B( π + φ ) φ (periodicy) as the domain is closed in the φ direction. According to the assumption, force component in the direction of the axis vanishes at the ends. Therefore

N = ρ g cos A( ) B( ) φ φ + φ = {, L} B ( φ ) = and ρ φ φ φ g L cos L A( ) B( ) + = A ( φ) = ρg Lcosφ A( φ) = ρg Lsinφ + A. Solution to force resultants becomes Nφφ = p ρg cosφ, Nφ = ρg( L )sinφ + A, ( )cos N = ρg L φ in which pressure difference p and integration constant A cannot be solved with the information given.

Consider a truncated cone, as shown in the figure. Determine the mid-surface stress resultants due to its own weight. Acceleration by gravity g, density of the material ρ, and thickness of the cell t wall are constants. Use cylindrical φn coordinates and assume that the cone stands freely on a frictionless foundation. The coordinate value of the free end is (J.N.eddy: Problem.8 modified somewhat). y α x g Solution The mapping defining the geometry and the relationship between the basis vectors of the Cartesian and curvilinear coordinate system are (here r ( ) = tanα ) r(, φ, n) = [tanαcosφi + tanαsin φj + k ] + nen giving i sinαcosφ sinφ cosαcosφ e j= sinαsinφ cosφ cosαsinφ eφ k cosα sinα en k = e cosα + e sinα. n If geometry, loading etc. are assumed rotation symmetric, the equilibrium equations of membrane model boil down to ordinary differential equations (given in lecture notes or obtained with Membrane.nb) ( N, r+ Nr Nφφr ) + b T e r + r eφ ( Nφ, r+ Nφr + Nφr ) + bφ =. r + r en [ N ( r ) N ] 3/ φφ + rr + bn r( + r ) External distributed force is due to gravity and there is no contribution from the inner and outer surfaces i.e. t = : b = f dn + t = f dn = ρgkdn = tρgk = tρg( ecosα + ensinα ) b = tρgcosα, b φ =, and b = tρgsinα. n In the present case r ( ) = tanα, r ( ) = tanα, r ( ) =, equilibrium equations simplify to + tan α = / cosα and the

r Nφ, + Nφ = Nφ, + Nφ = N φ =, r rr / Nφφ N + br( ) n + r = ( + r ) Nφφ + tρg tan α = Nφφ = tρgtan α, r N, + ( N Nφφ ) + + r b = r ( N ) Nφφ + tρg = ( ) tan ) N + tρg( + α = N ( tan ) A = tρ g + α +. At the free end, stress resultant vanishes i.e. N ( ) = tan A = tρ g( + α) N = tρg( + tan α) ( ).

Kul-49.45 Models for beam, plate and shell structures INDEX NOTATION (Orthonormal basis) ab = ab = ab + a b + + a b i i i I i i n n a / x a i j ij, δ ij ei ej {,} ( e i e j = δ ij ) ε ijk e i ( e j e k ) {,,} ( e i e j = ε ijk e k ) εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENEAL a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= a ee a = aee ij i a = a c j c ij j i a b = a b b IDENTITIES a ( b c) = ( a b) c a ( b c) = bac ( ) cab ( ) a:( b) = ( a b) ( a) b c CYLINDICAL rφ SYSTEM r = r cosφi + r sinφ j + k er cφ sφ i er er eφ = sφ cφ j eφ= eφ φ e k e e = er + eφ + e r r φ SPHEICAL θφr SYSTEM r( θφ,, r) = r(s θ c φ i + s θ s φ j + c θ k)

eθ cθφ c cθφ s sθ i eφ = sφ cφ j er sθφ c sθφ s cθ k eθ cθ eφ eφ= sθer cθeθ φ er sθeφ eθ er eφ =, θ er eθ = eθ + eφ + e r r θ rsinθ φ r THIN BODY snb SYSTEM FO PLANA BEAMS r(, s n) = r () s + ne () s es r, s / r, s r, s = = e n ess, / ess, ess, = es + en n s n n es en / = s en es / OTHONOMAL CUVILINEA COODINATES eα i α x, α y, α, α x x eβ = [ F] j β = x, β y, β, β y= [ H] y en k x, y, γ γ γ, γ eα eα eα i eβ= ( i[ F])[ F] eβ= [ D] () i eβ i e j = D ijk e k en en en T T eα α eα α = e F H = e D e e T β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n COMPONENT EPESENTATIONS Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s sr rjl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j a= ( a) = dda i i +Γjijda i PLATE GEOMETY ( rφ n) r ( r, φ, n) = [ ir cosφ+ jr sin φ ] + nen Γ ijk = D ir D rjk

er cosφ sinφ i eφ = sinφ cosφ j en k er eφ eφ = er φ e n d = r r d r = d = φ φ n n Γ = Γ = φrφ φφr r dv = dndω BEAM GEOMETY ( snb ) r ( s, n, b) = [ r ( s)] + ne n + be b es r, s es κb es κben en= ess, / ess, en= κb κs en= κseb κbes s eb es en eb κs eb κsen d s = n b) ( s + sb n sn b ( κ κ κ ) d n = n d b = b ssn sns ( n b) b Γ = Γ = κ κ dv = ( nκ ) dads b snb Γ sbn = ( nκb ) κs Γ = CYLINDICAL SHELL GEOMETY ( φ n) r (, φ, n) = [ i cosφ+ jsin φ + k] + nen e i e eφ = sinφ cosφ j eφ = en φ en cos φ sinφ k en eφ d = φ = ( ) φ d n = n d n Γ φφn = Γ φnφ = ( n) dv = ( n ) dn( dφ ) d = ( n ) dndω LINEA ISOTOPIC ELASTICITY σ = E: ε = E: u (minor and major symmetries of the elasticity dyad assumed) ε = [ u + ( u )] c

T T ii ν ν ii ij + ji G ij + ji E = jj E ν ν jj + jk + kj G jk + kj kk ν ν kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj jk + kj (plane stress) ν kk kk ki + ik ki + ik T T ii E ii ij + ji G ij + ji E = jj jj + jk + kj G jk + kj (beam) kk kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj G jk + kj (plate) ν kk kk ki + ik G ki + ik T T ii E ii ij + ji ij + ji E = jj jj + jk + kj jk + kj (uni-axial) kk kk ki + ik ki + ik E Et G = D = ( +ν ) ( ν ) PINCIPLE OF VITUAL WOK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A 3 BEAM EQUATIONS F + b F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ TIMOSHENKO BEAM ( xy ) E = Eii + Gjj + Gkk N + bx Q y + by= Q + b T + cx M y Q + cy= M + Qy + c

N EAu ESψ + ES yθ Qy= GA( v ψ) GS yφ Q GA( w + θ) + GSφ TIMOSHENKO BEAM ( snb ) T GS y( v ψ) + GS( w + θ) + GIrrφ M y = ES yu EIyψ + EI yyθ M ESu + EIψ EI yθ N Qnκ b + bs Qn + Nκb Qbκs + bn= Qb + Qnκ s + bb T Mnκb + cs Mn + Tκb Mbκs Qb + cn= Mb + Mnκ s + Qn + cb N EA( u vκ b) + ESn( θ + φκb ψκ s) ESb( ψ + θκ s) Qn= GA( v + uκ b wκ s ψ ) GSn( φ θκb) Q b GA( w + vκ s + θ ) + GSb( φ θκb) T GSb( w + vκ s + θ ) + GIrr( φ θκb) GSn( v + uκ b wκ s ψ ) Mn = ESn( u vκ b) + EInn( θ + φκb ψκ s) EIbn( ψ + θκ s) M b ESb( u vκ b) EInb( θ + φκb ψκ s) + EIbb( ψ + θκ s) PLATE EQUATIONS F + b = ( M Q+ c) k = F = σ d = iin + ijn + jin + jjn + ( ki + ik ) Q + ( kj + jk ) Q xx xy yx yy x y M = σ d = iim + ijm + jim + jjm + ( ki + ik ) + ( kj + jk ) xx xy yx yy x y EISSNE-MINDLIN PLATE ( xy ) Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Qxx, + Qyy, + b Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M ( ν)( θ φ ) / xy, y, x Qn Q or w w n Nnn Nn or un un = M ns M s or θn θn = N ns Ns or us u s M nn M n or θs θs KICHHOFF PLATE ( xy )

Nxx, x + Nyx, y + b x = Nyy, y + Nxy, x + by Mxx, xx + Mxy, xy + Myy, yy + b ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy ) Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M ( ν ) w xy, xy Nnn Nn or un un = N ns Ns or us us EISSNE-MINDLIN PLATE ( rφ ) Q + M Q M or w w M nn M n or w, n + θ s n nss, ss, = [( rn ) + N N ] / r + b [( rnrφ ), r + Nφφ, φ + Nφr] / r + bφ rr, r φr, φ φφ r = Nrr ur, r + ν ( ur + uφφ, )/ r Et Nφφ = u ν rr, + ( ur+ uφ, φ )/ r ν N ( ν )[( u u ) / r+ u ] / rφ r, φ φ φ, r [( rqr), r + Qφφ, ] / r + b [( rmrr ), r + Mφr, φ Mφφ ] / r Qr + cr = [( rmrφ ), r + Mφφ, φ + Mφr] / r Qφ + cφ Mrr θφ, r + νθ ( φ θr, φ)/ r Mφφ = D νθφ, r + ( θφ θr, φ )/ r M ( ν)[( θ + θ ) / r θ ] / rφ φφ, r rr, Qr w, r + θφ = Gt Qφ w, φ / r θr OTATION SYMMETIC KICHHOFF PLATE D w+ b = d d = ( r ) r dr dr 4 r r ( r ) b ( ) r wr = + a ln + b + cln r+ d D 64 4 4 MEMBANE EQUATIONS IN CYLINDICAL GEOMETY ( φ n) Nφ, φ + N, b Nφ, + Nφφ, φ + bφ = b n Nφφ te [ u, + ν ( u φφ, u n)] N ν te Nφφ = [ ( u φ, φ un) + νu, ] ν Nφ tg( u, φ + uφ, ) MEMBANE EQUATIONS IN SPHEICAL GEOMETY ( φθ n )

cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) bφ csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + bθ = Nφφ + Nθθ b n te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) ( + ν) un] N φφ ν te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( + ν) un] ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHELL EQUATIONS IN CYLINDICAL GEOMETY ( φ n) κ Nφ, φ + N, + b Nφ, + κnφφ, φ κqφ + bφ = κqφ, φ + Q, + κnφφ + bn Mφ, + κmφφ, φ κmφn Qφ + cφ M + κm Q + c =, φ, φ N u, + νκ( uφφ, un) Et Nφφ = u ν, + κ( uφφ, un) ν Nφ ( ν)( uφ, + κu, φ) / M ω, + κνωφφ, κu, Mφφ νω, + κωφφ, + κ ( uφφ, un) M φ D ( ν )( ωφ, κω, φ κuφ, ) / = + Mφ ( ν)( ωφ, + κω, φ + κ u, φ) / M ( νκκ ) ( u + κu + ω) / φn n, φ φ φ Q un, + ω = tg Q ω + κ( u + u ) φ φ n, φ φ ω θ φ = ωφ θ