Ρεύµατα παρουσία τριβής ανεµογενής κυκλοφορία

Σχετικά έγγραφα
Ανεμογενής Κυκλοφορία

Αλληλεπίδραση θάλασσας ατμόσφαιρας

ΔΙΑΛΕΞΗ 6 Ρεύματα παρουσία τριβής Ανεμογεννής Κυκλοφορία

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΕΠΟΧΙΑΚΗΣ ΠΑΡΑΚΤΙΑΣ ΑΝΑΒΛΥΣΗΣ ΣΤΟ Β.Α. ΑΙΓΑΙΟ. Τμήμα Επιστημών της Θάλασσας, Πανεπιστήμιο Αιγαίου 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Homework 8 Model Solution Section

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Differential equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Section 8.2 Graphs of Polar Equations

Section 8.3 Trigonometric Equations

D Alembert s Solution to the Wave Equation

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Spherical Coordinates

Matrices and Determinants

Inverse trigonometric functions & General Solution of Trigonometric Equations

ST5224: Advanced Statistical Theory II

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Math221: HW# 1 solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Areas and Lengths in Polar Coordinates

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Solutions to Exercise Sheet 5

Trigonometry 1.TRIGONOMETRIC RATIOS

( y) Partial Differential Equations

Forced Pendulum Numerical approach

Lecture 26: Circular domains

Example Sheet 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Finite Field Problems: Solutions

Approximation of distance between locations on earth given by latitude and longitude

derivation of the Laplacian from rectangular to spherical coordinates

Higher Derivative Gravity Theories

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

PARTIAL NOTES for 6.1 Trigonometric Identities


Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Srednicki Chapter 55

1 String with massive end-points

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Geophysical fluids in Motion

Section 7.6 Double and Half Angle Formulas

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Space-Time Symmetries

If we restrict the domain of y = sin x to [ π 2, π 2

Strain gauge and rosettes

Lifting Entry (continued)

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Section 9.2 Polar Equations and Graphs

3.5 - Boundary Conditions for Potential Flow

MET 4302 LECTURE 3A 23FEB18

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Part III - Pricing A Down-And-Out Call Option

Second Order RLC Filters

6.4 Superposition of Linear Plane Progressive Waves

DuPont Suva 95 Refrigerant

Second Order Partial Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

The Simply Typed Lambda Calculus

Finite difference method for 2-D heat equation

ADVANCED STRUCTURAL MECHANICS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

DuPont Suva 95 Refrigerant

[1] P Q. Fig. 3.1

2 Composition. Invertible Mappings

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Local Approximation with Kernels

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Numerical Analysis FMN011

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Answer sheet: Third Midterm for Math 2339

Homework 3 Solutions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

CRASH COURSE IN PRECALCULUS

Chapter 7 Transformations of Stress and Strain

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Chapter 6 BLM Answers

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Trigonometric Formula Sheet

From the finite to the transfinite: Λµ-terms and streams

Derivation of Optical-Bloch Equations

Every set of first-order formulas is equivalent to an independent set

Transcript:

Ρεύµατα παρουσία τριής ανεµογενής κυκλοφορία 6. Wind drien circulation Sarantis Sofianos Dept. of Physics, niersity of thens Ekman Theory Serdrup theory for the wind-drien circulation Stommel and Munk theory of the western boundary intensification

Global atmospheric circulation Coriolis Land/sea Polar Easterlies Westerlies Trades

Wind stress on the sea τ = c D ρ a u 10 u10 Weak winds where: ρ α air density (1.3 kg/m 3 ) u 10 wind speed at10 m (m/sec) c D drag coefficient (unitless) Moderate winds Measurements showed that c D is related to the wind speed (not a constant). Neertheless, we usually use a constant alue for simplicity. Gale winds c D Eamples of c D used: = 14. 10 3 c c D D = 11. 10 3 = (0. 61 + ασθενείς άνεµοι 0. 063u) 10 3 ισχυροί άνεµοι c = (0.29 + 3.1u for 3m / sec u c D D = (0.60 + 0.070u for 6m / sec u 10 10 1 10 + 7.7u 6m / sec 10) 10 2 10 3 )10 26m / sec 3

Eolution of wind-drien circulation theory: Fridtjof Nansen (1898) Vagn Walfrid Ekman (1902) Qualitatie theory, currents transport water at an angle to the wind. Quantitatie theory for wind-drien transport at the sea surface. arald Serdrup (1947) Theory for wind-drien circulation in the eastern Pacific. enry Stommel (1948) Theory for westward intensification of wind-drien circulation (western boundary currents). Walter Munk (1950) Quantitatie theory for main features of the wind-drien circulation Kirk Bryan (1963) Numerical models of the oceanic circulation. The surface wind effect (Nansen theory): Based on obserations of iceberg moements W + F + C = 0

Ekman Theory R o = fl << 1 E k = Viscosity Terms Coriolis Term = L 1 f Θεωρώντας ότι το Η είναι το άθος επίδρασης του ανέµου << του ολικού άθους Και οι εξισώσεις κίνησης γίνονται: 2 fl f V = 2 2 2 u << V 2 u 2 z 1 Ekman Layer τ u,υ f υ = 1 P ρ + V fu = 1 P ρ y + V 2 u z 2 2 υ z 2 () u g,υ g Geostrophic Layer (Interior) Η γεωστροφική ισορροπία συνεχίζει να ισχύει: f υ g = 1 P ρ fu g 1 = ρ P y (B) (Α) - (Β) f (υ υ g ) = V 2 u z 2 f (u u g ) = V 2 υ z 2 Ekman Equations

f ( υ υ g ) 2 u = V z (1) 2 f ( u u g ) 2 υ = V z (2) 2 Boundary conditions: For simplicity, only zonal wind u at z = 0 ρ z = τ υ ;ρ z = 0 at z u = u g ;υ = υ g Multiplying (2) by i = 1 and adding (1): d 2 V dz 2 if V = 0 (3) where V u u g + i( υ υ g ) B=0, since the solution can not become infinite with z becoming - sing the two surface boundary conditions: = τ δ(1 i) 2ρ Substituting in (3): τδ ( 1 i) u u g + i( υ υ g ) = 2ρ = τ ρ z " e $ f # δ 2 remember u g,υ g not z e ( 1+i )z δ = ( 1 i) τ ρ z 2 f 2 e δ 2 cos z δ + 2 2 sin z % δ ' i τ ρ z " e $ & f # δ 2 The solution is: ( V = e 1+i )z/δ + Be ( 1+i )z/δ " cos z δ + isin z % $ ' = # δ & 2 cos z δ 2 2 sin z % δ ' & cos π 4 cos z δ + sin π 4 sin z δ = cos " z δ + π % $ # 4 & ' sin π 4 cos z δ cos π 4 sin z δ = cos " z δ + π % $ # 4 ' & where δ = 2 f u = u g + τ ρ " e z δ cos z f δ + π % $ ' 4 # & υ = υ g τ ρ " e z δ sin z f δ + π % $ ' 4 # &

u = u g + τ ρ " e z δ cos z f δ + π % $ ' υ = υ 4 g τ ρ " e z δ sin z # & f δ + π % $ ' 4 # & ΙI. Surface Ekman elocity: ΙI. Vertical distribution of Ekman solution: at z = 0 u surface = u g + τ ρ! cos π $ # & f 4 " % υ surface = υ g τ ρ! sin π $ # & f 4 " % 45 o τ τ u surface Ekman Spiral Το άθος του στρώµατος Ekman (Ekman layer) ορίζεται ως το άθος όπου η ταχύτητα µειώνεται κατά ένα e (e-folding scale) u u g δ = 2 f D Ekman

ΙIΙ. The ertically integrated Ekman transport: Ολοκληρώνοντας την ταχύτητα λόγω επίδρασης του ανέµου επιφάνεια µέχρι το εσωτερικό του ωκεανού: = V = 0 ( u u g ) dz = 1 ρ f τ y - 0 ( υ υ g ) dz = 1 ρ f τ - Open sea upwelling/downwelling Consequences: Ekman Transport ( u u g ) από την 45 o 90 o Surface Current Coastal upwelling Ekman Transport

IV. Ekman pumping From continuity: 0 dw = δ 0 δ u + υ y + w z = 0 $ u + υ ' & ) dz % y ( $ τ y & % w(o) + w(δ) = 1 ρ f τ y ' ) ( t the bottom of the Ekman layer: w(δ) = 1 ρ f # τ y τ & % ( $ y ' Wind Stress Curl Coastal Ekman pumping w(δ) = L = τ y Lρ f We can not define the deriatie along the coastal zone

Serdrup theory for the wind-drien circulation Starting from the same equations of motion (with friction): f υ = 1 P ρ + V fu = 1 P ρ y + V 2 u z 2 2 υ z 2 (1) (2) (2) (1) y u f + f u f +υ y + f υ y = 1 2 P ρ y + 1 2 P ρ y + 1 3 υ ρ z 1 3 u 2 ρ y z 2 f " u + υ % $ '+ υ = 1 # y & ρ z 2 " υ u % $ ' # y & Integrating from the bottom (-Η) to the sea surface: ρ f 0 " u + υ % 0 $ ' dz + ρdz = # y & sing continuity and the fact that w(0)=w(-)=0 0 " τ y τ $ # y Meridional mass transport M y % ' & since at z = 0 ρ u z = τ ; Wind stress curl ρ υ z = τ y

M y = y τ τ y = wind stresscurl Depth integrated Vorticity equation for the wind-drien circulation - effect sing the depth integrated continuity equation Westerlies Polar Easterlies y τ 0 M y 1 τ = y M () = y East M y d = 1 2 τ y 2 ( East ) Trades East Δ( f +ζ ) +ζ τ = 0 Zonal elocity anishes at one boundary. Selection according to orticity conseration Eastern boundary: Δf ; ζ must be +; balanced by ζ τ Western boundary: Δf ; ζ must be -; does not balanced by ζ τ We need another orticity term

Connection of theories and dynamical features of the wind-drien flow: The wind-stress curl generates Ekman transport and the subsequent Ekman pumping. Ekman transport generates a conergence, which in turn generates geostrophic flow. The sum generates Serdrup transport. The flow center is deflected to the west by the -effect. What is the dynamical balance in the western boundary.

Ο Stommel πρότεινε µια πιο πλήρη σχέση για τη διατήρηση του στροιλισµού, που περιλαµάνει και όρο αποµάκρυνσης του σχετικού στροφιλισµού ζ, της µορφής -Rζ Interior + τ y = 0 τ Rζ + y = 0 WBL Rζ = 0 Ο Munk πρότεινε µια πιο πλήρη διατύπωση για τον όρο αποµάκρυνσης του σχετικού στροφιλισµού ζ, της µορφής: Interior 2 ζ 2 τ WBL ζ + = 0 + τ = 0 y 2 ζ = 0 y

Stommel Model: = Ο ζ R L L R R Munk Model: = Ο 3 3 2 ζ L L We can estimate L or R/.