Aspects of the BMS/CFT correspondence

Σχετικά έγγραφα
Aspects of the BMS/CFT correspondence

Space-Time Symmetries

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Higher spin gauge theories and their CFT duals

Symmetric Stress-Energy Tensor

Cosmological Space-Times

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Tutorial problem set 6,

Geodesic Equations for the Wormhole Metric

Higher Derivative Gravity Theories

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Graded Refractive-Index

Parallel transport and geodesics

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Relativistic particle dynamics and deformed symmetry

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

A Short Introduction to Tensors

Geometry of the 2-sphere

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Derivation of Optical-Bloch Equations

Lecture 26: Circular domains

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SPECIAL FUNCTIONS and POLYNOMIALS

3.5 - Boundary Conditions for Potential Flow

Dual null formulation (and its Quasi-Spherical version)

Parametrized Surfaces

D Alembert s Solution to the Wave Equation

Spherical Coordinates

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Inverse trigonometric functions & General Solution of Trigonometric Equations

Homework 8 Model Solution Section

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Symmetry. March 31, 2013

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

[Note] Geodesic equation for scalar, vector and tensor perturbations

Variational Wavefunction for the Helium Atom

A Short Introduction to Tensor Analysis

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Orbital angular momentum and the spherical harmonics

Dark matter from Dark Energy-Baryonic Matter Couplings

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

A Short Introduction to Tensor Analysis 2

The Spiral of Theodorus, Numerical Analysis, and Special Functions

3+1 Splitting of the Generalized Harmonic Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Non-Abelian Gauge Fields

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

NonEquilibrium Thermodynamics of Flowing Systems: 2

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Reminders: linear functions

On the Einstein-Euler Equations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Answer sheet: Third Midterm for Math 2339

Cosmology with non-minimal derivative coupling

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Solutions to Exercise Sheet 5

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Differential equations

Matrices and Determinants

Constitutive Relations in Chiral Media

CURVILINEAR COORDINATES

Markov chains model reduction

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Dirac Matrices and Lorentz Spinors

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

( ) 2 and compare to M.

1 Lorentz transformation of the Maxwell equations

Axisymmetric Stationary Spacetimes of Constant Scalar Curvature in Four Dimensions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

1 Conformal transformations in 2d

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Physics 554: HW#1 Solutions

CRASH COURSE IN PRECALCULUS

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Math 5440 Problem Set 4 Solutions

CORDIC Background (4A)

Uniform Convergence of Fourier Series Michael Taylor

Second Order Partial Differential Equations

Forced Pendulum Numerical approach

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Sixth lecture September 21, 2006

AdS black disk model for small-x DIS

1 String with massive end-points

Ακτινοβολία Hawking. Πιέρρος Ντελής. Εθνικό Μετσόβιο Πολυτεχνείο Σ.Ε.Μ.Φ.Ε. July 3, / 29. Πιέρρος Ντελής Ακτινοβολία Hawking 1/29

Transcript:

DAMTP, Cambridge. February 17, 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et mathématique Université Libre de Bruxelles & International Solvay Institutes

Overview Classical gravitational aspects of AdS3/CFT2 correspondence 4d flat case, null infinity: asymptotic symmetries 3d flat case, null infinity: BMS3/CFT1 correspondence 4d flat case, null infinity: solution space work done in collaboration with C. Troessaert

AdS3/CFT2 Asymptotic symmetries Fefferman-Graham ansatz g µν = l 2 r 2 0 0 g AB g AB = r 2 γ AB (x C )+O(1) r t, φ 2d metric γ AB conformal to flat metric on the cylinder γ AB = e 2ϕ η AB η AB dx A dx B = dτ 2 + dφ 2, τ = t l, ϕ = ϕ(xa ) asymptotic symmetries L ξ g rr =0=L ξ g ra, L ξ g AB = O(1), general solution determined by conformal Killing vector ξ r = 1 2 ψr, ξ A = Y A + I A, I A = l2 2 Bψ r dr r Y A of η AB g AB = l2 4r 2 γ AB B ψ + O(r 4 ). ψ = D A Y A

AdS3/CFT2 Asymptotic symmetries metric dependence ξ µ = ξ µ (x, g) δ g ξ 1 g µν = L ξ1 g µν modified bracket [ξ 1, ξ 2 ] µ M =[ξ 1, ξ 2 ] µ δ g ξ 1 ξ µ 2 + δg ξ 2 ξ µ 1 faithful representation of conformal algebra [ξ 1, ξ 2 ] r M = 1 2 ψr, [ξ 1, ξ 2 ] A M = Y A + I A, Y A =[Y 1,Y 2 ] A, ψ = DA Y A light-cone coordinates x ± = τ ± φ, 2 ± = τ ± φ, γ ABdx A dx B = e 2ϕ dx + dx Y ± (x ± ) ± = n Z c n ±l ± n, l ± n ± = (x ± ) n+1 ±, [l ± m,l ± n ]=(m n)l ± m, [l ± m,l n ]=0 include Weyl rescalings of boundary metric L ξ g rr =0=L ξ g ra, L ξ g AB =2ωg AB + O(1) direct sum with abelian algebra of Weyl rescalings ( Y,ω) = [(Y 1, ω 1 ), (Y 2, ω 2 )] Y A = Y B 1 B Y A 2 Y B 2 B Y A 1, ω =0

AdS3/CFT2 Solution space existence of general solution integration constants Ξ ++ = Ξ ++ (x + ), Ξ = Ξ (x ) when ϕ =0 g AB dx A dx B = (r 2 + l4 r 2 Ξ ++Ξ )dx + dx + l 2 Ξ ++ (dx + ) 2 + l 2 Ξ (dx ) 2, BTZ black hole Ξ ±± =2G(M ± J l ) ADS3 general solution g AB dx A dx B = e 2ϕ r 2 +2γ + r 2 e 2ϕ (γ + 2 + γ ++ γ ) dx + dx + +γ ++ (1 r 2 e 2ϕ γ + )(dx + ) 2 + γ (1 r 2 e 2ϕ γ + )(dx ) 2, γ ±± = l 2 Ξ ±± (x ± )+ 2 ±ϕ ( ± ϕ) 2 γ + = l 2 + ϕ

AdS3/CFT2 Conformal properties asymptotic symmetries transform solutions into solutions g AB = g AB (x, Ξ,ϕ) g AB (x, δξ, δϕ) =L ξ g AB conformal transformation properties δ Y +,Y,ωΞ ±± = Y ± ± Ξ ±± +2 ± Y ± Ξ ±± 1 2 3 ±Y ± δ Y +,Y,ωϕ = ω

AdS3/CFT2 Charge algebra Hamiltonian approach Q ξ surface charge generators, Dirac algebra centrally extended charge representation of conformal algebra covariant version Q ξ [g ḡ, ḡ] = 1 8πG 2π 0 dφ (Y + Ξ ++ + Y Ξ ) Q ξ1 [L ξ2 g, ḡ] Q [ξ1,ξ 2 ] M [g ḡ, ḡ]+k ξ1,ξ 2, K ξ1,ξ 2 = Q ξ1 [L ξ2 ḡ, ḡ] = 1 8πG 2π 0 dφ ( φ Y τ 1 2 φy φ 2 φy τ 2 2 φy φ 1 ) modes Strominger: combine with Cardy formula to argue for a microscopic derivation of the Bekenstein-Hawking entropy of BTZ black hole

BMS4/CFT2 Asymptotically flat spacetimes BMS ansatz g µν = Minkowski u = t r η µν = e2β V r + g CDU C U D e 2β g BC U C e 2β 0 0 g AC U C 0 g AB u 1 1 0 0 1 0 0 0 0 0 r 2 0 0 0 0 r 2 sin 2 θ g AB dx A dx B = r 2 γ AB dx A dx B + O(r) r x A = θ, φ ζ, ζ Sachs: unit sphere γ AB = e 2ϕ 0γ AB 0 γ AB dx A dx B = dθ 2 + sin 2 θdφ 2 Riemann sphere ζ = e iφ cot θ 2, γ ABdx A dx B = e 2 eϕ dζd ζ dθ 2 +sin 2 θdφ 2 = P 2 dζd ζ, P(ζ, ζ) = 1 2 (1 + ζ ζ), ϕ = ϕ ln P determinant condition fall-off conditions det g AB = r4 4 e4 eϕ β = O(r 2 ), U A = O(r 2 ), V/r = 1 2 R + O(r 1 )

BMS4/CFT2 Asymptotic symmetries asymptotic symmetries general solution L ξ g rr =0, L ξ g ra =0, L ξ g AB g AB =0, L ξ g ur = O(r 2 ), L ξ g ua = O(1), L ξ g AB = O(r), L ξ g uu = O(r 1 ) ξ u = f, f = f ϕ + 1 ξ A = Y A + I A, I A = f,b dr (e 2β 2 ψ f = eϕ T + 1 g AB 2 ), r ξ r = 1 2 r( D A ξ A f,b U B +2f u ϕ), ψ = D A Y A u 0 du e ϕ ψ, Y A = Y A (x B ) T = T (x B ) conformal Killing vectors of the sphere generators for supertranslations spacetime vectors with modified bracket form faithful representation of bms 4 algebra [(Y 1,T 1 ), (Y 2,T 2 )] = ( Y, T ) Y A = Y1 B B Y2 A Y1 B B Y2 A Sachs 1962, T = Y1 A A T 2 Y2 A A T 1 + 1 2 (T 1 A Y2 A T 2 A Y1 A ) standard GR choice: restrict to globally well-defined transformations SL(2, C)/Z 2 SO(3, 1) Y A generators of Lorentz algebra

BMS4/CFT2 New proposal CFT choice : allow for meromorphic functions on the Riemann sphere solution to conformal Killing equation Y ζ = Y ζ (ζ), Y ζ = Y ζ( ζ) generators l n = ζ n+1 ζ, ln = ζ n+1 ζ, n Z T m,n = ζ m ζn, m, n Z commutation relations [l m,l n ]=(m n)l m+n, [ l m, l n ]=(m n) l m+n, [l m, l n ]=0, [l l,t m,n ]=( l +1 2 m)t m+l,n, [ l l,t m,n ]=( l +1 2 n)t m,n+l. Poincaré subalgebra l 1,l 0,l 1, l 1, l 0, l 1, T 0,0,T 1,0,T 0,1,T 1,1,

BMS3/CFT1 ansatz for asymptotically flat metrics g µν = Asymptotic symmetries e 2β Vr 1 + r 2 e 2ϕ U 2 e 2β r 2 e 2ϕ U e 2β 0 0 r 2 e 2ϕ U 0 r 2 e 2ϕ Minkowski spacetime ds 2 = du 2 2dudr + r 2 dφ 2 u = t r fall-off conditions β = O(r 1 ), U = O(r 2 ) V = 2r 2 u ϕ + O(r) asymptotic symmetries L ξ g rr =0=L ξ g rφ, L ξ g φφ =0, L ξ g ur = O(r 1 ), L ξ g uφ = O(1), L ξ g uu = O(1) ξ u = f, ξ φ = Y + I, I = e 2ϕ φ f dr r 2 e 2β = 1 r r e 2ϕ φ f + O(r 2 ), ξ r = r φ ξ φ φ fu + ξ φ φ ϕ + f u ϕ, u f = f u ϕ + Y φ ϕ + φ Y f = e ϕ T + u 0 du e ϕ ( φ Y + Y φ ϕ) solution involves 2 arbitrary functions on the circle spacetime vector form faithful representation of Y = Y (φ), T = T (φ) bms 3 algebra [(Y 1,T 1 ), (Y 2,T 2 )] = ( Y, T ) Y = Y 1 φ Y 2 (1 2), T = Y1 φ T 2 + T 1 φ Y 2 (1 2)

BMS3/CFT1 Solution space and conformal properties general solution parametrized by Θ = Θ(φ), Ξ = Ξ(φ) s uφ = e ϕ Ξ + u 0 ds 2 = s uu du 2 2dudr +2s uφ dudφ + r 2 e 2ϕ dφ 2, s uu = e 2ϕ Θ ( φ ϕ) 2 +2 2 φϕ 2r u ϕ, du e ϕ 1 2 φθ φ ϕ[θ ( φ ϕ) 2 +3 2 φϕ]+ 3 φϕ. bms 3 transformation properties δ Y,T Θ = Y φ Θ +2 φ Y Θ 2 3 φy, δ Y,T Ξ = Y φ Ξ +2 φ Y Ξ + 1 2 T φθ + φ T Θ 3 φt, covariant charges Q ξ [g ḡ, ḡ] 1 16πG K ξ1,ξ 2 = 1 8πG 2π 0 dφ 2π 0 dφ (ΘT +2ΞY ) φ Y 1 (T 2 + φt 2 2 ) φ Y 2 (T 1 + φt 2 1 )

BMS3/CFT1 Charge algebra modes Y (θ) 1 copy of Wit algebra acting on i 1 iso(2, 1) charge algebra: relation to AdS 3 similar to contraction between so(2, 2) iso(2, 1) L ± m = 1 2 ( lp ±m ± J ±m ) l collaboration with G. Compère

BMS4/CFT2 solution space ansatz g AB = r 2 γ AB + rc AB + D AB + 1 4 γ ABC C DC D C + o(r ) determinant condition C A A =0=D A A Sachs: power series and D AB =0 guarantees absence of log terms equations of motion imply β = β(g AB ) U A = 1 2 r 2 DB C BA 2 3 r 3 (ln r + 1 3 ) D B D BA 1 2 CA B D C C CB + N A + o(r 3 ε ), angular momentum aspect N A (u, x A ) u dependence fixed log terms also absent when D ζζ = d(ζ), D ζ ζ = d( ζ), D ζ ζ =0.

BMS4/CFT2 Solution space V r = 1 2 R + r 1 2M + o(r 1 ) mass aspect M(u, x A ) u dependence fixed news tensor u C AB (u, x A ) only arbitray function of u general solution: 4 arbitrary functions of 3 variables & 3 arbitrary functions of 2 variables g AB (u 0,r,x A ) u C AB (u, x A ) M(u 0,x A ) N A (u 0,x A ) for simplicity ϕ =0 γ AB dx A dx B = dζd ζ C ζζ = c, C ζ ζ = c, C ζ ζ =0 redefinitions M = M 2 c 2 c Ñ ζ = 1 12 [2N ζ +7 c c +3c c] evolution equations u M = ċ c 3 u Ñ ζ = M 2 3 c ( c +3 c )ċ

BMS4/CFT2 Conformal properties bms4 transformations δc = fċ + Y A A c +( 3 2 Y 1 2 Ȳ )c 2 2 f δd = Y A A d +2 Y d f = T + 1 2 uψ δċ = f c + Y A A ċ +2 Y ċ 3 Y δ M = fċ c + Y A A M + 3 2 ψ M + c 3 Y + c 3 Ȳ +4 2 2 T δñ ζ = Y A A Ñ ζ +( Y +2 Ȳ )Ñ ζ + 1 (ψ d) 3 f( M +2 2 c + cċ) f M 3 +2 3 c +( c +3 c )ċ

BMS4/CFT2 Conclusions and perspectives 4d gravity is dual to some conformal field theory classifiy (non)-central extensions; study representation theory of bms4 to be done: surface charge algebra non extremal Kerr/CFT correspondence? angular momentum problem in GR: Lorentz = bms4(old)/supertranslations versus bms4(new)/supertranslations = Virasoro

References Asymptotically flat spacetimes & symmetries

References Gravitational AdS3/CFT2 & Kerr/CFT

References

References Holography at null infinity in 3 & 4 dimensions

References This work based on