Product Identities for Theta Functions

Σχετικά έγγραφα
Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Matrices and Determinants

2 Composition. Invertible Mappings

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Numerical Analysis FMN011

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

EE512: Error Control Coding

Concrete Mathematics Exercises from 30 September 2016

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Reminders: linear functions

Trigonometric Formula Sheet

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fractional Colorings and Zykov Products of graphs

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CRASH COURSE IN PRECALCULUS

Tridiagonal matrices. Gérard MEURANT. October, 2008

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Every set of first-order formulas is equivalent to an independent set

Quadratic Expressions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Example Sheet 3 Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

If we restrict the domain of y = sin x to [ π 2, π 2

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Finite Field Problems: Solutions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Homework 3 Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

New bounds for spherical two-distance sets and equiangular lines

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Congruence Classes of Invertible Matrices of Order 3 over F 2

Math221: HW# 1 solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

C.S. 430 Assignment 6, Sample Solutions

5. Choice under Uncertainty

Uniform Convergence of Fourier Series Michael Taylor

Other Test Constructions: Likelihood Ratio & Bayes Tests

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

ST5224: Advanced Statistical Theory II

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

PARTIAL NOTES for 6.1 Trigonometric Identities

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

( y) Partial Differential Equations

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Areas and Lengths in Polar Coordinates

Section 7.6 Double and Half Angle Formulas

Statistical Inference I Locally most powerful tests

Areas and Lengths in Polar Coordinates

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Partial Differential Equations in Biology The boundary element method. March 26, 2013

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

D Alembert s Solution to the Wave Equation

Homomorphism in Intuitionistic Fuzzy Automata

An Inventory of Continuous Distributions

6.3 Forecasting ARMA processes

Approximation of distance between locations on earth given by latitude and longitude

Srednicki Chapter 55

Iterated trilinear fourier integrals with arbitrary symbols

Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II

Lecture 15 - Root System Axiomatics

TMA4115 Matematikk 3

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Lecture 21: Properties and robustness of LSE

Lecture 10 - Representation Theory III: Theory of Weights

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Homework 8 Model Solution Section

Second Order Partial Differential Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Lecture 2. Soundness and completeness of propositional logic

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Lecture 13 - Root Space Decomposition II

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Chapter 3: Ordinal Numbers

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Generating Set of the Complete Semigroups of Binary Relations

Cyclic or elementary abelian Covers of K 4

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Commutative Monoids in Intuitionistic Fuzzy Sets

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

12. Radon-Nikodym Theorem

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

1. Πόσοι αριθμοί μικρότεροι του διαιρούνται με όλους τους μονοψήφιους αριθμούς;

Bounding Nonsplitting Enumeration Degrees

Transcript:

Product Identities for Theta Functions Zhu Cao April 7, 008

Defining Products of Theta Functions n 1 (a; q) 0 = 1, (a; q) n = (1 aq k ), n 1, k=0 (a; q) = lim (a; q) n, q < 1. n Jacobi s triple product identity z n q n = ( qz; q ) ( q/z; q ) (q ; q ), q < 1. n= Ramanujan s general theta function For ab < 1, f(a, b) = n= a n(n+1)/ b n(n 1)/ = ( a; ab) ( b; ab) (ab; ab). 1

Ramanujan For k Z +, f(a, b) = Define ϕ(q) : = f(q; q) = n= ψ(q) : = f(q, q 3 ) = 1 f(1, q) = f( q) : = f( q, q ) = (q; q). n= a n(n+1)/ b n(n 1)/ = q n = ( q; q ) (q ; q ), k 1 r=0 n=0 n= q n(n+1)/ = (q ; q ) (q; q ), a (kn+r)(kn+r+1)/ b (kn+r)(kn+r 1)/. U k = a k(k+1)/ b k(k 1)/, V k = a k(k 1)/ b k(k+1)/. f(a, b) = f(u 1, V 1 ) = k 1 r=0 U r f( U k+r, V k r ). U r U r

Products of Two or more theta functions Problem: Conditions under which the product of two or more theta functions can be written as linear combinations of other products of theta functions. Motivation M.D.Hirschhorn s generalization of Winquist s identity, 1987 Ramanujan, 1919 p(11n + 6) 0 (mod 11), where p(n) is the number of partitions of the positive integer n. Theorem 1 (Winquist, 1969). For any nonzero complex numbers a, b and for q < 1, ( 1) m+n q 3m +3n +3m+n m= n= (a 3m b 3n a 3m b 3n+1 a 3n+1 b 3m 1 + a 3n+ b 3m 1 ) =(q; q) (a; q) (a 1 q; q) (b; q) (b 1 q; q) (ab; q) (a 1 b 1 q; q) (ab 1 ; q) (a 1 bq; q). 3

Main idea Let z i 0, l i Z +, h i Z, (i = 1,,..., n). n S : = ( z i q l i h i ; q l i ) ( z 1 i q h i ; q l i ) (q l i ; q l i ) = i=1 x 1 = x = x n = z 1 x 1 z x z n x n q n j=1 ( 1 l j h j )x j + 1 l jx j. y = Ax, A is an integral matrix, det A 0. x 1 y 1 x = x., y = y.. x = A 1 y = 1 det A A y, k = det A, B = sgn(det A)A. x n x = 1 k By. y n 4

By 0 (mod k). If y c i (mod k) (i = 1,,..., m) is the solution set of the above system of congruences, we substitute y with ky + c i in x = 1 k By. Then we have x = By + 1 k Bc i (i = 1,,..., m). A system of congruences a i (mod n i ) with 1 i k is called a covering system if every integer y satisfies y a i (mod n i ) for at least one value of i. A covering system in which each integer is covered by just one congruence is called an exact covering system. We can take {By + 1 k Bc 1,, By + 1 k Bc m} as an exact covering system of Z n. We need the coefficients of all y i y j = 0 (i j, i, j = 1,,..., n) in order to separate y 1, y,..., y n. Generalized Orthogonal Relation l 1 b 11 b 1 + l b 1 b + + l n b n1 b n = 0, l 1 b 11 b 13 +.. l b 1 b 3 + +.. l n b n1 b n3 = 0,. l 1 b 1(n 1) b 1n + l b (n 1) b n + + l n b n(n 1) b nn = 0. 5

Procedure for obtaining series-product identities 1. For fixed positive integers l 1, l,..., l n, find n n matrices B satisfying The generalized orthogonal relation, det B = ±k n 1, kb 1 is an integral matrix, where k N.. Solve system of congruences By 0 (mod k). Suppose we have m solutions to it. By computing the contribution of each solution, we can write each product of n theta functions as a linear combination of m products of n theta functions. 6

Products of Two Theta Functions The generalized orthogonal relation is l 1 b 11 b 1 + l b 1 b = 0. Without lose of generality, we can assume three entries of matrix B are positive, one is negative. We also assume det B = k. Choose ( ) k1 k B =, 1 1 Corollary 1. If ab < 1, (cd) = (ab) k 1k, where both k 1 and k are positive integers, then f(a, b)f(c, d) = k 1 +k 1 i=0 a i +i b i i f(a k 1 +k 1 +k 1 i b k 1 k 1 +k 1 i d, a k 1 k 1 k 1 i b k 1 +k 1 k 1 i c) f(a k +k +k i b k k +k i c, a k k k i b k +k k i d). 7

Proof. det B = k = k 1 + k. B = y 1 y 0 ( k1 k 1 1 ), (mod k). k cases: y 1 y 0 (mod k),..., y 1 y k 1 (mod k). For y 1 y i (mod k), replace y 1 by ky 1 + i and y by ky + i in x = 1 k By. We find that ( ) ( ) ( ) ( ) x1 k1 k = y1 i +. x 1 1 y 0 Summing up the k parts in the sum S, we obtain Corollary 1. 8

Special case For ab = cd, f(a, b)f(c, d) = f(ad, bc)f(ac, bd) + af( c a, a c abcd)f(d a, a d abcd). Gasper, three term relation for sigma functions. Corollary. b(ad, q/ad, bc, q/bc, d/a, qa/d, c/b, qb/c; q) +c(ab, q/ab, cd, q/cd, b/a, qa/b, d/c, qc/d; q) +d(ac, q/ac, bd, q/bd, c/a, qa/c, b/d, qd/b; q) = 0 Hirschhorn s generalization of the quintuple product identity For cd = (ab), f(a, b)f(c, d) =f(ac, bd)f(a 3 bd, ab 3 c) + af( d a, a d abcd)f(bc a, a bc a b c d ) + bf( c b, b c abcd)f(ad b, b ad a b c d ). 9

Göllnitz-Gordon functions ( q; q ) n S(q) : = q n = (q ; q ) n T (q) : = n=0 n=0 f(1, q)f(1, q 7 ) = ( q; q ) n (q ; q ) n q n +n = 7 i=0 1 (q; q 8 ) (q 4 ; q 8 ) (q 7 ; q 8 ), 1 (q 3 ; q 8 ) (q 4 ; q 8 ) (q 5 ; q 8 ). q i i f(q 7+i, q 1 i )f(q 1+7i, q 35 7i ), ψ(q)ψ(q 7 ) =f(q, q 7 )f(q 1, q 35 ) + q 3 f(q 3, q 5 )f(q 49, q 7 ) + qψ(q )ψ(q 14 ) + ψ(q 8 )ϕ(q 8 ) + q 6 ϕ(q 4 )ψ(q 56 ). f( 1, q)f( 1, q 7 ) = m i=0 ( 1) i q i i f(q m+i, q 1 i )f(q m m +mi, q m +3m mi ) = 0, f(q, q 7 )f(q 1, q 35 ) + q 3 f(q 3, q 5 )f(q 49, q 7 ) = ψ(q 8 )ϕ(q 8 ) + q 6 ϕ(q 4 )ψ(q 56 ) + qψ(q )ψ(q 14 ). 10

ψ(q)ψ(q 7 ) = ψ(q 8 )ϕ(q 8 ) + q 6 ϕ(q 4 )ψ(q 56 ) + qψ(q )ψ(q 14 ), ψ(q)ψ(q 7 ) = f(q, q 7 )f(q 1, q 35 ) + q 3 f(q 3, q 5 )f(q 49, q 7 ), ψ(q )ϕ( q 3 ) = f( q 3, q 5 )f( q 9, q 15 ) + q f( q, q 7 )f( q 3, q 1 ), ψ(q)ϕ( q ) = f ( q 3, q 5 ) + qf ( q, q 7 ), ψ(q 6 )ϕ(q) = f(q, q 7 )f(q 9, q 15 ) + qf(q 3, q 5 )f(q 3, q 1 ). Corollary 3 (S.-S. Huang, 00). S(q 7 )T (q) q 3 S(q)T (q 7 ) = 1, S(q 3 )S(q) + q T (q 3 )T (q) = (q3 ; q 3 ) (q 4 ; q 4 ) (q; q) (q 1 ; q 1 ), S (q) + qt (q) = (q ; q ) 6, (q; q) 3 (q 4 ; q 4 ) 3 S(q 3 )T (q) qs(q)t (q 3 ) = (q; q) (q 1 ; q 1 ) (q 3 ; q 3 ) (q 4 ; q 4 ). 11

Definition 1. Let P (q) denote any power series in q. Then the t-dissection of P is given by m-dissection of ϕ(q)ϕ(q m ) ϕ(q)ϕ(q m ) = m-dissection of ψ(q)ϕ(q m ) ψ(q)ϕ(q m ) = P (q) =: m 1 i=0 4-dissection of ψ ( q )f ( q) m 1 i=0 t 1 k=0 q k P k (q t ). q i f (q m +mi, q m mi ). q i i f (q 4m m+4mi, q 4m +m 4mi ). ψ ( q )f ( q) = ϕ ( q 8 )f( q 8 ) qψ(q 8 )f ( q 4 ). 1

B = ( 1 1 ) Corollary 4. For ab = cd, f(a, b)f(c, d) =f(a bc, ab d )f(ab 3 c, a 3 bd) + af(a 3 b c, bd )f(bc/a, a 5 b 3 d) + cf(a 4 b 3 c, d /a)f(b c 3 d, a d) + acf(a 5 b 4 c, b/c )f(b c, a 4 b d) + adf(ac, a b 3 d )f(c/a, a 6 b 4 d). Special case The septuple product identity (z; q ) (z 1 q ; q ) (z ; q ) (z q ; q ) (q ; q ) =(q 4 ; q 10 ) (q 6 ; q 10 ) (q 10 ; q 10 ) {z3 (z 5 q 8 ; q 10 ) (z 5 q ; q 10 ) + (z 5 q ; q 10 ) (z 5 q 8 ; q 10 ) } (q ; q 10 ) (q 8 ; q 10 ) (q 10 ; q 10 ) {z(z 5 q 4 ; q 10 ) (z 5 q 6 ; q 10 ) + z (z 5 q 6 ; q 10 ) (z 5 q 4 ; q 10 ) }. 13

Products of Three or More Theta Functions B = 6 1 1 1 1 0 1 1 1. The set of the 3 columns of B is an orthogonal set. det B = 196 = 36 3 1. 36 B 1 is an integer matrix. k = 36. y 1 + y + y 3 0 (mod 6), y 1 y 0 (mod 6), y 1 + y y 3 0 (mod 6). 14

S :=(z 1 ; q) (z 1 1 q; q) (z ; q) (z 1 q; q) (z 3 ; q) (z 1 3 q; q) (q; q) 3 =( z 1 z z 3 q; q 6 ) ( z 1 1 z z 1 3 q 5 ; q 6 ) (q 6, q 6 ) (z 1 z 1 z 3 q; q 3 ) (z 1 1 z z 1 3 q ; q 3 ) (q 3, q 3 ) ( z 1 z 1 3 q; q ) ( z 1 1 z 3 q; q ) (q, q ) + B = 6 1 1 1 1 0 1 1 1 1 + + 1 = 6 1 + ( 1) + 1 = 3 1 + 0 + ( 1) = z 1 z z 3 z 1 z 1 z 3 1 z 1 z 3. 15

Corollary 5. For a, b 0, and q < 1, (a; q) (a 1 q; q) (b; q) (b 1 q; q) (ab; q) (a 1 b 1 q; q) (q; q) =( ab 1 q; q ) ( a 1 bq; q ) (q, q ) {( a 3 b 3 q; q 6 ) ( a 3 b 3 q 5 ; q 6 ) (q 6, q 6 ) a b ( a 3 b 3 q 5 ; q 6 ) ( a 3 b 3 q; q 6 ) (q 6, q 6 ) } + ( ab 1 q ; q ) ( a 1 b; q ) (q, q ) {a b( a 3 b 3 q 4 ; q 6 ) ( a 3 b 3 q ; q 6 ) (q 6, q 6 ) a( a 3 b 3 q ; q 6 ) ( a 3 b 3 q 4 ; q 6 ) (q 6, q 6 ) }. Corollary 6. 16(q; q) 8 = m,n= {(n 6m + 1)(n + 6m ) q m (n 6m 3)(n + 6m + ) q m + (n 6m 1)(n + 6m + ) q n+m (n 6m + 1)(n + 6m) q n m }q n +3m. 16

l 1 = l = 1, l 3 = B = 4 1 1 1 1 1 1 1 0 1 Corollary 7. For a 1 b 1 = a b = q, a 3 b 3 = q, q < 1, f(a 1, b 1 )f(a, b )f(a 3, b 3 ) =f(a 1 a a 3, b 1 b b 3 )f(a 1 b, b 1 a )f(a 1 a b 3, b 1 b a 3 ) + a 1 f(a 1 a a 3 q, b 1 b b 3 /q)f(a 1 b q, b 1 a /q)f(a 1 a b 3 q, b 1 b a 3 /q) + a 1 a f(a 1 a a 3 q, b 1 b b 3 /q )f(a 1 b, b 1 a )f(a 1 a b 3 q, b 1 b a 3 /q ) + a 1 a 3 f(a 1 a a 3 q 3, b 1 b b 3 /q 3 )f(a 1 b q, b 1 a /q)f(a 1 a b 3 /q, b 1 b a 3 q)., 17

l 1 = l = l 3 = l 4 = 1 B = 8 1 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 For q = a 1 b 1 = a b = a 3 b 3 = a 4 b 4, q < 1,. f(a 1, b 1 )f(a, b )f(a 3, b 3 )f(a 4, b 4 ) is a linear combination of eight products of four theta functions. Corollary 7 is a special case of the identity generated by this matrix. 18

Generalized Schröter Formula T (x, q) = n= xn q n, where x 0, q < 1. Theorem (Schröter s Formula). For positive integers a, b, T (x, q a )T (y, q b ) = a+b 1 n=0 y n q bn T (xyq bn ; q a+b )T (x b y a q abn, q ab +a b ). Theorem 3. For positive integers a, b, k i (i = 1, ), k k 1 b and k a, T (x, q a )T (y, q b ) = a/k +k 1 b/k 1 n=0 y n q bn T (xy k 1 q k 1bn ; q a+bk 1 ) T (x k 1b/k y a/k q abn/k, q ab k 1 /k +a b/k ). 19

Special case: W. Chu and Q. Yan, 007 Corollary 8. Let α, β, γ be three natural integers with gcd(α, γ) = 1 and λ = 1 + αβ γ. For two indeterminate x and y with x 0 and y 0, there holds the algebraic identity αβ γ x; q α x βγ y; q γ = ( 1) l q (l )α x l ( 1) αβ x λ y αβ q (αβ )γ+lα ; q λα l=0 where x; q = (q; q) (x; q) (q/x; q). ( 1) βγ yq (βγ+1 )γ lαβγ ; q λγ, 0

Corollary 9. For positive integer a, b,and k, with k a, T (x, q a )T (y, q b ) = a k +bk 1 n=0 y n q bn T (xy k q bkn, q a+bk )T (x b y a k q ab k n, q ab + a b k ). Corollary 10 (Blecksmith-Brillhart-Gerst Theorem, 1988). Define f 0 (a, b) = f(a, b) and f 1 (a, b) = f( a, b). Let a, b, c and d denote complex numbers such that ab, cd < 1, and suppose that there exist positive integer α, β, and m such that Let ε 1, ε {0, 1}. Then f ε1 (a, b)f ε (c, d) = r R (ab) β = (cd) α(m αβ) ( 1) ε r c r(r+1)/ d r(r 1)/ f δ1 ( a(cd) α(α+1 n)/ c α ), b(cd)α(α+1+n)/ d α ( (a/b) β/ (cd) (m αβ)(m+1+n)/ f δ, (b/a)β/ (cd) (m αβ)(m+1 n)/ d m αβ c m αβ ), 1

where R is a complete residue system (mod m), { 0, if ε1 + αε δ 1 = is even, 1, if ε 1 + αε is odd, and δ = { 0, if ε1 β + ε (m αβ) is even, 1, if ε 1 β + ε (m αβ) is odd.