MICROSCOPIC PHASE FIELD METHOD SIMULATION FOR THE IN SITU TRANSFORMATION OF L1 0 PHASE AND L1 2 PHASE STRUCTURE

Σχετικά έγγραφα
Derivation of Optical-Bloch Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

High order interpolation function for surface contact problem

Congruence Classes of Invertible Matrices of Order 3 over F 2

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Matrices and Determinants

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Homework 8 Model Solution Section

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Assalamu `alaikum wr. wb.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Σπανό Ιωάννη Α.Μ. 148

Galatia SIL Keyboard Information

derivation of the Laplacian from rectangular to spherical coordinates

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Inverse trigonometric functions & General Solution of Trigonometric Equations

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ADVANCED STRUCTURAL MECHANICS

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Section 8.3 Trigonometric Equations

Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

An Inventory of Continuous Distributions

Quick algorithm f or computing core attribute

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ER-Tree (Extended R*-Tree)

Second Order Partial Differential Equations

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Buried Markov Model Pairwise

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

2 Composition. Invertible Mappings

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

CorV CVAC. CorV TU317. 1

,,, (, ) , ;,,, ; -

Example Sheet 3 Solutions

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Λιμνοποτάμιο Περιβάλλον και Οργανισμοί

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Second Order RLC Filters

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Numerical Analysis FMN011

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Capacitors - Capacitance, Charge and Potential Difference

Homework 3 Solutions

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Liner Shipping Hub Network Design in a Competitive Environment

Policy Coherence. JEL Classification : J12, J13, J21 Key words :

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

The challenges of non-stable predicates

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Solution Series 9. i=1 x i and i=1 x i.

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

D Alembert s Solution to the Wave Equation

4.6 Autoregressive Moving Average Model ARMA(1,1)

The ε-pseudospectrum of a Matrix

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

Strain gauge and rosettes

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

EE512: Error Control Coding

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Approximation Expressions for the Temperature Integral

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Prey-Taxis Holling-Tanner

X g 1990 g PSRB

Srednicki Chapter 55

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Influence of Flow Rate on Nitrate Removal in Flow Process

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Transcript:

d 45 z d 5 H Vol.45 No.5 2009 ; 5 % d 630 634 x ACTA METALLURGICA SINICA May 2009 pp.630 634 L1 0 ffi L1 2 ffiff!ß%v οξffiz~ *-( 1) & 4 1,2).2/ 1) 0 ' 1) ), 1) 3+1 1) 1) >ffρykg#ßg!, > 710072 2) >ffρykg>ψk±&nvgrs~, > 710072 " ψ } Ni 80Al 13Cr 7 2k.mswR, %ff, P h3lχe23 pr0πrp;.ff<,$j*, msν Al 0 Cr χe( (100) 0 (200) (e χe23 ;μpu*i Ni 3(Al, Cr) ffip;br!a. ms., (pul:bt, Al 0 Cr χe( (100) 0 (200) (e 2Φc'ffοfi~k ;, Xz(»(e -5c'ffJ_ο przw/l, }_2Φ c; w~kezdχ3`, 2a cq L1 0 ffiß<<j. T cq/lwzlgp, Al0 Cr χe 2Φc'ff 0-5c'ff( (100) (ej /L, z( (200) (e-j [a, Jffi~ke Dχ3`, L1 0 ffizwp L1 2 ffi`;. Ψ,$J*, χ3`, Ni 80Al 13Cr 7 2k, ß<<J $ } fl± TG111 ρfiw»ffl A ρ#u± 0412 1961(2009)05 0630 05 MICROSCOPIC PHASE FIELD METHOD SIMULATION FOR THE IN SITU TRANSFORMATION OF L1 0 PHASE AND L1 2 PHASE STRUCTURE MIAO Shufang 1),CHENZheng 1,2), WANG Yongxin 1),XUCong 1),MARui 1), ZHANG Mingyi 1) 1) School of Materials Science and Engineering, Northwestern Polytechnical University, Xi an 710072 2) State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi an 710072 Correspondent: MIAO Shufang, Tel: (029)88474095, E-mail: msf1983@yahoo.cn Supported by National Natural Science Foundation of China (Nos.50671084 and 50875217) and China Postdoctoral Science Foundation (No.20070420218) Manuscript received 2008 09 25, in revised form 2009 02 16 ABSTRACT As a Ni 3 Al precipitation strengthening alloy, Ni Cr Al alloy is one of typical structural materials applied in high temperatures. Much work has been done concerning its structure transformation from fcc to L1 2 during the process of ordering and phase separation. However, the study so far we know on the phase transformation in very early precipitation stage, especially on the phase transformation of unstable pre precipitation phase, was not yet sufficient. Microscopic phase filed method is used for describing the temporal and spatial evolution of atomic site in lattice. This method is employed to study the pre precipitation during the structure transformation from fcc to L1 2 in Ni 80 Al 13 Cr 7 alloy in this paper. The relationship between the occupation probability changes in Al and Cr atoms on (100) and (200) planes respectively and structure evolution of Ni 3 (Al, Cr) will be inveatigated. The simulation results demonstrate that at in very early aging stage, the composition order parameters of Al and Cr atoms keep unchange on both (100) and (200) planes. However their long range order parameters are equal in these two planes and gradually increase with aging time until the first in situ transformation by congruent ordering at that time the L1 0 pre precipitation phase with low long range order is formed. By prolonging aging time, their long range order parameters continue increase once they attain to the respective certain values, the composition order parameters and the long range order parameters of Al and Cr atoms on (100) plane become increasing rapidly but those on (200) plane decreasing quickly, The second in situ transformation occurs and the L1 0 is gradually transformed into L1 2. KEY WORDS microscopic phase field method, in situ transformation, Ni 80 Al 13 Cr 7 alloy, pre precipitation phase * 'OgX hckm4 50671084 0 50875217 }Gff 7 hckm4 20070420218 d] W: ]I : 2008 09 25, W`ffl ]I : 2009 02 16 p7ti : +ΩΠ, @, 1983 <k, ffl

d 5 H *ΨΞ^ :L1 0 I/ L1 2 Ieffffi2_ffl[+#I) 09 631 3lK +JA H_ G6]fl&B%, )K *6Q, 3K**fl8Faa /hffl8mb]7m= =K, }Da /offigfl1<i3ψν3kfl_an, hffl8fl3khbrfl7mk»" ]l7ρ==k (» `ol7k *sk). lπ$ρq]byl7]ρ== Koy 7mKν$ ]-%gfl1_8 [1 3], ΞCK ]3Ha ) m6rfφlc$ρ]keh_8. μc $ρ i]flv 1, ρ==k]]3 a H_8]n t#ω# X &]"^ [4 6]. Ni Al Cr 3l} Uj[]=D3lffiB, ο]- %gfl~ Ni 3 Al [/k]=f/fi=, 5O:xffiff3l d<hkψfi*6q fcc X L1 2 ]a m^οmμ ]nt [7 10], R}x Ni Cr Al 3l;JK, ffik} xkql7ρ==ka gam!nt. )K ]ntq, ψ4a I]})ψΩl7KB* sk]d@f l3ψ <1i;Wfl, ]3ßP7m] K, }fiω-φ}eρ<;] Ua ±x [11]. }Eρ <;]a ±xλ~ψ/ψ4a 1fi4a, KQψ4 a }I)ψρ<;D@f l3ψ <1i;Wfl, ] 3ß7m]ρ<;; fi4a }Iψρ<;@^X3KQ, X] ß7m]ρ<;)Kο"4WX]..M. -%K+ } UWm_K+±, )Afl3l/k *6Q] r H_ r G6bßn i±)y p fifl, ΛAZ3l/k*6Qψf]nßZ@, y fl q_1f%_, )ntkgfl]ψ4a ±)Λ~νst K:±@. fi6&fi-%k+, "*1: Ni 80 Al 13 Cr 7 3lqV*6Q Al 1 Cr ψf) (100) 1 (200) )f] 34RΦΩm!nt Ni 3 (Al,Cr) Kgfl]q<*6. 1 νλfly χ fic»i]x]-%k+1[ffl Khachaturyan [12] BY, Poduri 1 Chen [13,14] qο 1. ο}~ψf3x o»4m]j!/+ μ, ~ψf!$πmψf34j! </Z@, Ω-ΦψfGw d<`ψfψc*6. / U<L», Zb0±S&Φ)}0±S, 9qψf34J!ν z r 9". xbfl3lb%, i p A ( r, t), p B ( r, t) 1 p C ( r, t) Ψ / A, B 1 C ψf) t qξ3x r 4M ]J!, ffl p A ( r, t)+p B ( r, t)+p C ( r, t)=1, ν~%μ»ifj 2 μp ±6. /-Φ].*6, avψpμ E,jN ξ( r, t) Ω1:ZMfi. Qi~ A 1 B ψf] 34J!/ 2 μp μ, ZX-% Langevin ±6 [14] : dp A( r,t) dt = 1 k BT [L AA ( r ) L AB ( r F ) ]+ξ( r, t) dp B( r,t) dt = 1 k BT p B(,t) [L BA ( r ) L BB ( r F ) ]+ξ( r, t) p B(,t) F + p A(,t) F + p A(,t) (1) xq, k B / Boltzmann,fi; L αβ ( r ) }νq4q S7, x α 1 β ψf)»i4m r 1 f]]>j! "],fi [13], α, β=a, B B C; F /ffib]ihffl 8, )G +n CfflCxWm [12] : F = 1 [V AB ( r r )p A ( r)p B ( )+ 2 r V BC ( r )p B ( r)p C ( )+V AC ( r )p A ( r)p C ( )]+ xq, k B T r [p A ( r)ln(p A ( r)) + p B ( r)ln(p B ( r))+ p C ( r)ln(p C ( r))] (2) V αβ ( r )=V αβ ( r ) ch + V αβ ( r ) el (3) V αβ ( r ) ch = W αα ( r )+W ββ ( r ) 2W αβ ( r ) (4) xq, V αβ ( r ) /ψfs Vqfi8, V αβ ( r ) ch /<ik:qfi8, V αβ ( r ) el /S_K:qfi8, W αβ ( r ) /ψfsk:qfi8. ψbflffibq 3 Uψf]$N~HΛ8]Aχ, & fi nfiψfsk:qfin. i V 1 αβ, V 2 αβ, V 3 αβ, V 4 αβ Ψ }f 1, 2, 3, 4 nfiψfsk:qfi8, L»EQ ` ]ψfqfi8&fi6g [13, 15] Q]fix. οx-%s_k:qfi, Π+ψfΨχ]νkß " ]S_K:qfi E el / [16] E el = 1 2 r Fourier >8/ E el = 1 2N V αβ ( r r ) ch + V αβ ( r ) el (5) k V ( k) el p( k) 2 (6) xq, N /»iifi; ffl F 8)i k=0 A4LΛ _, S1ff- f^]e-»z)s1*6qva>ffii; V ( k) el /S_8'r,fi, } V ( r) el ] Fourier >, ).ρn C»z/ V αβ ( k) el M( n) =M el n 2 x n2 y ε2 0 (7) xq, n = k/k, /V ±SQ k ±Q]Q4tμ; n x 1 n y Ψ / n o x 1 y X]Ψμ; ε 0 =da c /(a 0 dc), /ffl 3Ψ ΠM]o»D5Bfi (KQ, a c /^O]o», fi, a 0 /Dffi]o»,fi, c /^O]ψfΨfi).»=S O1o»nC] 8(fi/ 4(C 11 +2C 12 ) 2 M el = C 11 (C 11 + C 12 +2C 44 ) ζ (8) xq, ζ = C 11 C 12 2C 44, }»zb%/s_νqλ _],fi; C i,j }Dffi]S_,fi, L»qufi6G [17] Q]fiH.

632 j Λ f Φ d 45 z Zx (4) 1 (5) N`x (2), Y8ZZX]x (2) N `x (1) ßm^ Fourier >, Y8)}0G)f&Φ8 &fi Euler ±6Sh, ZXfl$qΞ]ψf34J!, F Z=qV*6-%kE]q<(O. /οnt7mk]3]].en8fl, Π`Λ6 L1 2 gfll»] dk7].6d(fi. /Q?c-Φ L1 2 gfl dk]3*6qkgfl]a *6, Π`).6d (fiω»=)fim])7ψf dψχ]rφ. 2U.6 d(fi]»jx]x K, RK fl$, K»Jx/ η(i, j) = p(i, j) C(i, j) C(i, j)cos[(i + j)π] (9) x dk7].6d(fi, η(i, j)»z)2 μ dk 7 (i, j) A] dr, p(i, j) /) dk7^oψf) K?4]34J!, C(i, j) / dk7]g?r. x )7.6d(fi, η(i, j)»z dk72fim)7 (i, j) A] dr, p(i, j) /)fim)7^oψf)k?4] 34J!, C(i, j) /^Oψf)fim])7]G?r. οx).6d(fi]l»±, Jv) dk]2 ^B 2 fffλffψf]i=f, uλ~dfiλψffi)7] dr. )fi6q F, )7m]==K]3COD=F] dky L1 0 gfl]fi=, RK dr5b, xcg1v ΩY, fi6qzk1/b dr] L1 0 ρ==k. 2 ΩΠΦ ff ( 1 }x Ni 80 Al 13 Cr 7 3l) 873 K Cm^qV* 61:ZX]ψfq<(. (O&fi 128 128»i, q S!. Δt / 0.001, 1:*6νP]ZMfi/ 200!, ψ f34j!~?r»z, οxνh]?rfl$, 4d»i O» Ni ψf,?d»io» Cr ψf, Ξd»iO» Al ψf. /ο8ßq?cef=ρ==k]]3*6, 0M ο(o]xflr. ffl( 1 ΛV, ) t=1200!q, ;v9d] Ni 80 Al 7 - Cr 13 3lffiB]v"Uο l Eψ4a, }v=f _( 1a QνVz] dk, RCqK dr=5b. ο x dk]}0&φ(, Λ~Bv9Uρ==Ky L1 0 gfl, I]3ο Ub dr] L1 0 gflρ==k. μ cqs!fi]0m, 9Uρ==K]fi5[X0y, 9H [X0M, J9χ#ο>μffiB (( 1b), $q dk] drw[x0m. 0MqS!fi, Fψfq<(Λ~~ = (( 1b, c), )ρ==kq'e lgflwfl, I l ο}eψ4a, L1 0 gflρ==k[xq L1 2 gfla, M") t=3000!n, ffibq}v=f <ilμ fl] L1 2 gfl, _( 1c QνVz. μcqs!fi]0 M, <ilμfl] L1 2 dk[xq<ilμfla<, mt]3οmμ]<ilμfl] L1 2 νz. dk, _( 1d μ 1 Ni 80 Al 13 Cr 7 2k( 873 K pu)5 jdffip;' Fig.1 Temporal evolution of the microstructure of Ni 80 Al 13 Cr 7 alloy at 873 K aging for t=1200 step (a), t=2000 step (b), t=3000 step (c) and t=4000 step (d)

d 5 H *ΨΞ^ :L1 0 I/ L1 2 Ieffffi2_ffl[+#I) 09 633 C)ZF].EN±)m!Ψ=3lqV*6Q Kgfl]a. ( 2 / Ni 80 Al 13 Cr 7 3l)qV*6Q Ni 3 (Al, Cr) K73Ψd(fiH.6d(firQΨχμq S] <. ffl(λv, ) t=1200!co, 3Ψd(fiß 1 l <,.6d(fi.=FοMfi, Ccux `3Ψ d<cu. ffl( 1 ΛA, Cq lf Eψ4a, ffl9d] fcc gfla / L1 0 gfl, ]3οb dr ] L1 0 gflρ==k. )CC8, μcqs!fi]0m, 3Ψd(fi=FM]ρn,.6d(fi[X0M, P0 M]!5. M") t=3000!q, dkqya]. 6d(fi panm H, 3Ψd(fi=);v3Ψf Cρn, ß1JXG6H, 9ffi/ d<] r ψf Gw] r, ßP)ψ l7ρ==k]4m lο3ψ ]ρn1i;]wfl, Ccux Kgfl]f}Eψ4 a. 0MqS!fi, 3Ψd(fiMe0M, [X]3< ilμfl] L1 2 gfl dk,.6d(fiw[xfflqyq ffiψ1, m8)>μ dk 7JXG6. ( 3 / Ni 80 Al 13 Cr 7 3lqV*6 Ni 3 (Al, Cr) K Q Al ψf) (100) 1 (200) )f]3ψd(fi1.6 d(fiμqs] <. ffl(λv, M") t=1200!co, Ni 3 (Al,Cr) KQ Al ψf) (100) 1 (200) )f]3ψd (fi/;v3ψ,.6d(fi/ 0(Iψfß1)o)f] I=F), CqB%A ;v]9dbß. )CC8, M" ) t=2500!co, 3Ψd(fi±7fl, μ)7].6 d(fiμqs0m[x0m (Iψf)o)f=F]IA ff]fs, ßP#Ω#/E), I"*`3Ψ d< lk gfl]f Eψ4a, ffl( 1a c ΛA)Ccu]3b dr] L1 0 gflρ==k. U (100) 1 (200) )7]. 6d(fiM"$q0MX 0.8 8, (200) )f].6d( fi}vk b (ψf]iaff]fs[xa<), (100) )f].6d( fi.me0m lf} Eψ4a, m T μ)7]d(fijx G6H, ]37m] L1 2 dk. ( 4 / Ni 80 Al 13 Cr 7 3lqV*6 Ni 3 (Al, Cr) K Q Cr ψf) (100) 1 (200) )f]3ψd(fi1.6d (fiμqs] <. ν( 3 Kfl, Crψf3ΨH dr ] <T ν Al ψfdfi K, R} <]Ωr/ET Al ψf (fi6q8=ntο Ni 80 AL1 0 Cr 10 3l, Z X$u]g(), ffi/)7m] L1 2 gfl] Ni 3 (Al, Cr) KQ β 4M vffl Al ψf3x,cr ψfj}q/ Uχ Oψf. ( 5 z ο Ni 80 Al 13 Cr 7 3lqV*6Kgfl]q Fig.2 μ 2 fi#prψffp Ni 80 Al 13 Cr 7 2k( 873 K pu)5p Ni 3 (Al,Cr) J6c'ff qpφffi Radial distribution of the composition order parameter (a) and long range order parameter (b) in Ni 3 (Al,Cr) phase of Ni 80 Al 13 Cr 7 alloy at 873 K aging for different time steps (t) μ 3 Ni 80 Al 13 Cr 7 2k( 873 K pu)5p Ni 3 (Al,Cr) J6 Al χe( (100) 0 (200) (e c'ff ; Fig.3 Temporal evolution of the composition order parameter (a) and long range order parameter (b) of Al in (100) and (200) of Ni 3 (Al, Cr) phase of Ni 80 Al 13 Cr 7 alloy with time steps at 873 K aging

634 j Λ f Φ d 45 z <*6. Dffl fcc 9dK (( 5a) "*`3Ψ d< lf Eψ4a, a /l7] L1 0 gflρ==k (( μ 4 Ni 80 Al 13 Cr 7 2k( 873 K pu)5p Ni 3 (Al,Cr) J6 Cr χe( (100) 0 (200) (e c'ff pr ; Fig.4 Temporal evolution of the composition order parameter (a) and long range order parameter (b) of Cr in (100) and (200) of Ni 3 (Al, Cr) phase of Ni 80 Al 13 Cr 7 alloy with time step at 873 K aging μ 5 fcc ffip L1 2 ffi`; y ' Fig.5 Structure evolution scheme from fcc to L1 2 (a) 3D lattice of the fcc disorder phase (b) 3D lattice of the L1 0 structure order phase (c) 3D lattice of the L1 2 structure order phase (d f) the projection of the fcc disorder, L1 0 and L1 2 structure order phase on [010], respectively 5b), Y8'pm!8ff, lf}eψ4a, a / 7m] L1 2 gfl (( 5c). ( 5d f Ψ /~f 3 μgfl ) [010] ±Qf]}0&Φ(. 3 Ωffi (1) ) Ni 3 (Al, Cr) Kffl fcc gflq L1 2 gfla< ]*6Q, l 2 Eψ4a. (2) )qv]m;cu, (100) 1 (200) )f] d rk`ßμqs[x0m, R3Ψfl, ß~`3Ψ d <]]x lf Eψ4a, ]3 drb] L1 0 g flρ==k. U dr0mx mhq, Al1 Cr ψf] 3Ψd(fi1.6d(fi) (100) )f k 0M, ) (200) )f. k b, lf}eψ4a, L1 0 g fl[xq L1 2 gfla<. (3) )>μqv*6q, Crψf]d(fivTT Al ψf] <Ωr, ffi/y 7m L1 2 gfl] Ni 3 (Al, Cr) KQ β 4M vffl Al ψf3x, CrψfJ}q/ UχOψf. xfiρfi [1] Chen L Q, Khachaturyan A G. Phys Rev, 1991; 44B: 4681 [2] Reinhard L, Turchi P E A. Phys Rev Lett, 1994; 72: 120 [3] ShiZL,LiuJY,GuMY,ZhangD,WuRJ.Acta Metall Sin, 1999; 35: 430 (or, ffi, χ.fi, 4 s, :[d. kξhψ, 1999; 35: 430) [4] ShiHT, NiJ. Phys Rev, 2002; 65B: 115422 [5] NiJ,GuBL.JChemPhys, 2000; 113: 10272 [6] NiJ,GuBL,AshinoT,IwataS.Phys Rev Lett, 1997; 79: 3922 [7] Pareige C, Soisson F, Martin G, Blavette D. Acta Mater, 1999; 47: 1889 [8] Saito Y, Harada H. Mater Sci Eng, 1997; A223: 1 [9] Menand A, Cadel E, Pareige C, Blavette D. Ultramicroscoy, 1999; 78: 63 [10] Lu Y L, Chen Z, Li Y S, Wang Y X. Acta Metall Sin, 2007; 43: 291 (χrffl, 0 t, ffiωm, )ΩW. kξhψ, 2007; 43: 291) [11] Ling B, Zhong P, Zhong B W, Gu B Z. Acta Metall Sin, 1995; 31: 209 (fl μ, S F, Sν5, ffi Y. kξhψ, 1995; 31: 209) [12] Khachaturyan A G. Theory of Structural Transformations in Solids. New York: Wiley, 1983: 129 [13] Poduri R, Chen L Q. Acta Mater, 1998; 46: 1719 [14] Chen L Q. Scr Metall Mater, 1993; 29: 683 [15] Caudron R, Barrachin M, Finel Y. Phsica, 1992; 180B: 822 [16] Li Y C, Chen Z, Lu Y L, Wang Y X. Acta Metall Sin, 2006; 42: 239 (ffiωm, 0 t, χrffl, )ΩW. kξhψ, 2006; 42: 239 [17] Prikhodko S V, Carnes J D, Isaak D G, Ardell A J. Scr Mater, 1998; 38: 67