Foundations of fractional calculus

Σχετικά έγγραφα
The k-α-exponential Function

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

On the k-bessel Functions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Example Sheet 3 Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

The Spiral of Theodorus, Numerical Analysis, and Special Functions

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

2 Composition. Invertible Mappings

Homework 8 Model Solution Section

C.S. 430 Assignment 6, Sample Solutions

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

The k-mittag-leffler Function

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The k-bessel Function of the First Kind

SPECIAL FUNCTIONS and POLYNOMIALS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Second Order Partial Differential Equations

The k-fractional Hilfer Derivative

4.6 Autoregressive Moving Average Model ARMA(1,1)

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Additional Results for the Pareto/NBD Model

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CRASH COURSE IN PRECALCULUS

An Inventory of Continuous Distributions

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

( y) Partial Differential Equations

ST5224: Advanced Statistical Theory II

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

Math221: HW# 1 solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 26: Circular domains

Matrices and Determinants

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The ε-pseudospectrum of a Matrix

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

A summation formula ramified with hypergeometric function and involving recurrence relation

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Statistical Inference I Locally most powerful tests

Section 8.3 Trigonometric Equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Finite Field Problems: Solutions

Reminders: linear functions

ADVANCED STRUCTURAL MECHANICS

From the finite to the transfinite: Λµ-terms and streams

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

The Simply Typed Lambda Calculus

Homomorphism in Intuitionistic Fuzzy Automata

Srednicki Chapter 55

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

derivation of the Laplacian from rectangular to spherical coordinates

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Commutative Monoids in Intuitionistic Fuzzy Sets

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Generalized fractional calculus of the multiindex Bessel function

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Homework 3 Solutions

Solution Series 9. i=1 x i and i=1 x i.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

The Pohozaev identity for the fractional Laplacian

Other Test Constructions: Likelihood Ratio & Bayes Tests

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Mellin transforms and asymptotics: Harmonic sums

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

THE Mittag-Leffler (M-L) function, titled as Queen -

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Differentiation exercise show differential equation

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Review Exercises for Chapter 7

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

LTI Systems (1A) Young Won Lim 3/21/15

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

On Generating Relations of Some Triple. Hypergeometric Functions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Second Order RLC Filters

Trigonometric Formula Sheet

Math 6 SL Probability Distributions Practice Test Mark Scheme

Notes on the Open Economy

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

D Alembert s Solution to the Wave Equation

If we restrict the domain of y = sin x to [ π 2, π 2

TMA4115 Matematikk 3

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Uniform Convergence of Fourier Series Michael Taylor

Transcript:

Foundations of fractional calculus Sanja Konjik Department of Mathematics and Informatics, University of Novi Sad, Serbia Winter School on Non-Standard Forms of Teaching Mathematics and Physics: Experimental and Modeling Approach Novi Sad, February 6-8, 205 Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 / 22

Calculus Modern calculus was founded in the 7th century by Isaac Newton and Gottfried Leibniz. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 2 / 22

Calculus Modern calculus was founded in the 7th century by Isaac Newton and Gottfried Leibniz. derivatives f f (x 0 + x) f (x 0 ) (x 0 ) = lim x 0 x integrals F (x) = f (x) dx F (x) = f (x) y b f(x)dx a a b x Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 2 / 22

Fractional Calculus was born in 695 What if the order will be n = ½? n d f n dt G.F.A. de L Hôpital (66 704) It will lead to a paradox, from which one day useful consequences will be drawn. G.W. Leibniz (646 76) Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 3 / 22

Leonhard Euler (707-783) in 738 gave a meaning to the derivative d α (x n ) dx α, for α / N Joseph Liouville (809-882) in his papers in 832-837 gave a solid foundation to the fractional calculus, which has undergone only slight changes since then. Georg Friedrich Bernhard Riemann (826-866) in a paper from 847 which was published 29 years later (and ten years after his death) proposed a definition for fractional integration in the form that is still in use today. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 4 / 22

Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 5 / 22

Special functions Special functions, such as the gamma function, the beta function or the Mittag-Leffler function, have an important role in fractional calculus. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 6 / 22

Special functions Special functions, such as the gamma function, the beta function or the Mittag-Leffler function, have an important role in fractional calculus. The gamma function: with properties Γ(z) := 0 Γ(z + ) = z Γ(z), e t t z dt (Re z > 0) Γ(n + ) = n! (n N). Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 6 / 22

Special functions Special functions, such as the gamma function, the beta function or the Mittag-Leffler function, have an important role in fractional calculus. The gamma function: with properties The beta function: Γ(z) := 0 Γ(z + ) = z Γ(z), B(z, ω) = with properties 0 e t t z dt (Re z > 0) Γ(n + ) = n! (n N). t z ( t) ω dt (Re z, Re ω > 0) B(z, ω) = Γ(z)Γ(ω) Γ(z + ω). Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 6 / 22

The Mittag-Leffler function: E α,β (z) = k=0 z k Γ(α k + β) (Re α, Re β > 0) with special cases: E 0, (z) = z E, (z) = e z E 2, (z) = cosh( z) Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 7 / 22

The Riemann-Liouville fractional calculus Let u L ([a, b]) and α > 0. The left Riemann-Liouville fractional integral of order α: ai α t u(t) = Γ(α) t a (t θ) α u(θ) dθ. The right Riemann-Liouville fractional integral of order α: ti α b u(t) = Γ(α) b t (θ t) α u(θ) dθ. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 8 / 22

Properties: If α = n N then ai n t u(t) = (n )! t a (t θ) n u(θ) dθ = i.e., a I n t u is just an n-fold integral of u. Semigroup property: tn tn t a a... a u(θ) dθ... dθ n, ai α t ai β t u = a I α+β t u and ti α b ti β b u = ti α+β b u (α, β > 0) Consequences: ait α and a It β commute, i.e., a It α ait β = a It β ait α ; ait α (t a) µ Γ(µ + ) = Γ(µ + + α) (t a)µ+α. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 9 / 22

Let u AC([a, b]) and 0 α <. The left Riemann-Liouville fractional derivative of order α: ad α t u(t) = d dt a I α t u(t) = d Γ( α) dt t a u(θ) (t θ) α dθ. The right Riemann-Liouville fractional derivative of orderα: ( tdb α u(t) = d ) ti α dt b u(t) = If α = 0 then a Dt 0 u(t) = t Db 0 u(t) = u(t). ( d ) b Γ( α) dt t u(θ) (θ t) α dθ. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 0 / 22

Euler formula: ad α t (t a) µ = Γ( µ) Γ( µ α) (t a) µ+α Derivation: ad α t (t a) µ = = = = = = = d t (θ a) µ Γ( α) dt a (t θ) α dθ d t a z µ Γ( α) dt 0 (t a z) α dz d t a z µ Γ( α) dt 0 (t a) α ( t a z dz )α d (t a) µ ξ µ Γ( α) dt 0 (t a) α (t a)dξ ( ξ) α d (t a) µ α ξ µ ( ξ) α dξ Γ( α) dt 0 µ α (t a) µ α B( µ, α) Γ( α) Γ( µ) (t a) µ α Γ( µ α) Conclusions: µ = α: a Dt α (t a) α = 0 µ = 0: a Dt α c 0, for any constant c R. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 / 22

Definition of R-L fractional derivatives can be extended for any α : write α = [α] + {α}, where [α] denotes the integer part and {α}, 0 {α} <, the fractional part of α. Let u AC n ([a, b]) and n α < n. The left Riemann-Liouville fractional derivative of order α: ( d ) [α] ( adt α u(t) = ad {α} d ) [α]+ t u(t) = ai {α} t u(t) dt dt or ad α t u(t) = d ) n t Γ(n α)( dt a u(θ) dθ (t θ) α n+ The right Riemann-Liouville fractional derivative of order α: ( tdb α u(t) = d ) [α] ( td {α} dt b u(t) = d ) [α]+ ti {α} dt b u(t) or tdb α u(t) = ( d ) n b u(θ) dθ Γ(n α) dt t (θ t) α n+ Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 2 / 22

Properties: ad α t ai α t u = u ai α t ad α t u u, but n ait α adt α u(t) = u(t) k=0 (t a) α k Γ(α k) d n k dt t=a ( ai n α t ) u(t) Contrary to fractional integration, Riemann-Liouville fractional derivatives do not obey either the semigroup property or the commutative law: E.g. u(t) = t /2, a = 0, α = /2 and β = 3/2. ( ) 3 0Dt α u = Γ = π, 0Dt β u = 0 2 2 0D α t ( ) ( ) 0Dt β u = 0, 0Dt β 0Dt α u = 4 t 3 2, 0Dt α+β u = 4 t 3 2 0 D α t ( 0 D β t u) 0 D α+β t u and 0D α t ( 0 D β t u) 0 D β t ( 0 D α t u) Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 3 / 22

Left Riemann-Liouville fractional operators via convolutions Set H(t) tα f α (t) := Γ(α), α > 0 ( d ) Nfα+N (t), α 0, N N : N + α > 0 N + α 0 dt (H is the Heaviside function) α N: f (t) = H(t), f 2 (t) = t +, f 3 (t) = t2 + 2,... f n(t) = tn + (n )!, α N 0 : f 0 (t) = δ(t), f (t) = δ (t),... f n (t) = δ (n) (t). The convolution operator f α is the left Riemann-Liouville operator of differentiation for α < 0 integration for α 0 Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 4 / 22

Heaviside function: 0, t < 0 H(t) = 2, t = 0 t > 0 Dirac delta distribution generalized function that vanishes everywhere except at the origin, with integral over R Convolution f u(t) = + f (t θ)u(θ) dθ Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 5 / 22

information see e.g. [ 7]. Analytical expressions of some fractional derivatives 4AnalyticalExpressionsofSomeFractionalDerivatives k f(x),x>a (x a) β, R(β) > e λx, λ 0 (x ± p) λ, a± p>0 (x a) β (x ± p) λ, R(β) > a ± p>0 (x a) β (p x) λ, p>x>a R(β) > (x a) β e λx, R(β) > sin(λ(x a)) RL D α a+ f(x) k(x a) α Γ ( α) (53) Γ (β+) Γ (β+ α) (x a)β α (54) e λa (x a) α E, α (λ(x a)) = e λa (55) E x a ( α, ( λ) ) (a±p) λ Γ ( α) (x a) α 2F, λ, α; a x a±p (56) Γ (β+) Γ (β+ α) (a ± p)λ (x a) β α ) (57) 2F (β +, λ; β α; a x a±p Γ (β+) Γ (β+ α) (p a)λ (x a) β α ) 2F (β +, λ; β α; x a p a (58) Γ (β+)e λa Γ (β+ α) (x a)β α F (β +, β + α; λ(x a)) (59) (x a) α 2iΓ ( α).[ F (, α,iλ(x a)) F (, α, iλ(x a))] (60) Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 6 / 22

Caputo fractional derivatives Let u AC n ([a, b]) and n α < n. The left Caputo fractional derivative of order α: c ad α t u(t) = t Γ(n α) a u (n) (θ) dθ (t θ) α n+ The right Caputo fractional derivative of order α: c t Db α u = b ( u) (n) (θ) dθ Γ(n α) t (θ t) α n+ Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 7 / 22

Properties: In general, R-L and Caputo fractional derivatives do not coincide: but and ( d adt α u = dt ) [α] ai {α} t ( u a I {α} d ) [α]u t = c dt a Dt α u, n adt α u = c adt α (t a) k α u + Γ(k α + ) u(k) (a + ), k=0 n tdb α u = c t Db α u + (b t) k α Γ(k α + ) u(k) (b ). k=0 If u (k) (a + ) = 0 (k = 0,,..., n ) then a D α t u = c ad α t u; If u (k) (b ) = 0 (k = 0,,..., n ) then t D α b u = c t D α b u. c adt α k = c t Db α k = 0, k R. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 8 / 22

Fractional identities Linearity: adt α (µu + νv) = µ adt α u + ν adt α v The Leibnitz rule does not hold in general: i=0 ad α t (u v) u ad α t v + a D α t u v For analytic functions u and v: ( ) α adt α (u v) = ( a Dt α i u) v (i), i For a real analytic function u: adt α u = i=0 ( α i Fractional integration by parts: b a f (t) a D α t g dt = ) (t a) i α Γ(i + α) u(i) (t) b a ( ) α = ( )i αγ(i α) i Γ( α)γ(i + ) g(t) t D α b f dt Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 9 / 22

Laplace and Fourier transform Fourier transform: Fu(ω) = û(ω) = Laplace transform: + e iωx u(x) dx (ω R) Properties: Lu(s) = ũ(s) = + 0 e st u(t) dt (Re s > 0) F[D n u](ω) = (iω) n Fu(ω); F[D α u](ω) = (iω) α Fu(ω); n L[D n u](s) = s n Lu(s) s n k D k u(a) k=0 n L[D α u](s) = s α Lu(s) s n k D k I n α u(a) k=0 Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 20 / 22

L {f(t)} (s) f(t) k!s α β (s α a) k+ t αk+β d k Eα,β(±at α ) s α λ e λt n!s α d(±at α ) k (92) α (93) (s α λ) t ( αn n λ) n+ Eα (λt α ) (94) ( n! ) n (s α λ) n+ λ e λz α (95) s α β s α a t β E α,β (±at α ) (96) s α s α a E α (±at α ) (97) s α a t α E α,α (±at α ) (98) s β s a t β E,β (±at) =E t (β, ±a) (99) s β s s s 2 t β E,β (0) = E t (β, 0) = tβ Γ (β) (00) πt (0) t π (02) s n s,(n =, 2, ) 2 n t n 2 s (s a) 3 2 πt e at ( + 2at) (04) ( s a s b 2 πt e bt e at) (05) 3 s+a s s a 2 s s+a 2 πt 2a s(s a2 ) 2 s(s+a2 ) a t a t π e a2 3 5 (2n ) (03) π πt ae a2t erfc ( a t ) (06) πt + ae a2t erf ( a t ) (07) π e a2 t a t e τ 2 dτ (08) 0 a ea2t erf ( a t ) (09) e τ 2 dτ (0) 0 b 2 a 2 e [ a2 t b a erf ( a t )] (s a 2 )( s+b) be b2t erfc ( b t ) () Sanja Konjik (Uni Novi Sad) Foundations of fractional ( calculus ) Novi Sad, Feb 6-8, 205 2 / 22 a 2 t

References Samko, S.G., Kilbas, A.A., Marichev, O.I. Fractional Integrals and Derivatives - Theory and Applications. Gordon and Breach Science Publishers, Amsterdam, 993. Gorenflo, R., Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. In Mainardi F. Carpinteri, A., editor, Fractals and Fractional Calculus in Continuum Mechanics,, volume 378 of CISM Courses and Lectures, pages 223 276. Springer-Verlag, Wien and New York, 997. Podlubny, I. Fractional Differential Equations, volume 98 of Mathematics in Science and Engineering. Academic Press, San Diego, 999. 43:255203(2pp), 200. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J. Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam, 2006. Miller, K.S., Ross, B. An Introduction to the Fractional Integrals and Derivatives - Theory and Applications. John Willey & Sons, Inc., New York, 993. Oldham, K.B., Spanier, J. The Fractional Calculus. Academic Press, New York, 974. Atanacković, T. M., Pilipović, S., Stanković, B., Zorica, D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Fractional Calculus with Applications in Mechanics: Wave Propagation, Impact and Variational Principles. Wiley-ISTE, London, 204. Sanja Konjik (Uni Novi Sad) Foundations of fractional calculus Novi Sad, Feb 6-8, 205 22 / 22