- 1 - ΠΡΟΛΟΓΟΣ. Στο Κεφάλαιο 3 γίνεται αναφορά στα χαρακτηριστικά και τη λειτουργία της προπέλας που θεωρείται το σημαντικότερο στοιχείο ενός σκάφους.



Σχετικά έγγραφα
ΑΣΚΗΣΗ 4 η ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΗΧΑΝΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

«Μελέτη και κατασκευή συστήματος ελέγχου ηλεκτροκίνητου μικρού πλωτού μέσου μεταφοράς» Καθηγητής Δρ.-Μηχ. Αθανάσιος Ν. Σαφάκας

ΑΣΚΗΣΗ 4 η ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΓΧΡΟΝΟΥ ΤΡΙΦΑΣΙΚΟΥ ΚΙΝΗΤΗΡΑ

10 - ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ

ΠΑΡΟΥΣΙΑΣΗ ΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ

ΤΡΙΦΑΣΙΚΟΙ ΚΙΝΗΤΗΡΕΣ Ε.Ρ ΣΥΓΧΡΟΝΟΙ ΚΙΝΗΤΗΡΕΣ ΗΛΕΚΤΡΙΚΗ ΠΡΟΩΣΗ

ΜΕΤΑΤΡΟΠΕΙΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

ΟΝΟΜ/ΩΝΥΜΟ:ΣΤΕΦΑΝΟΣ ΓΚΟΥΝΤΟΥΣΟΥΔΗΣ Α.Μ:6750 ΕΡΓΑΣΙΑ ΕΞΑΜΗΝΟΥ:ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ (ΕΡΓΑΣΤΗΡΙΟ)

ΑΣΚΗΣΗ 1 η ΜΕΛΕΤΗ ΛΕΙΤΟΥΡΓΙΑΣ ΤΡΙΦΑΣΙΚΗΣ ΣΥΓΧΡΟΝΗΣ ΓΕΝΝΗΤΡΙΑΣ (ΕΝΑΛΛΑΚΤΗΡΑ) ΓΙΑ ΤΟΝ ΠΡΟΣΔΙΟΡΙΣΜΟ ΤΟΥ ΙΣΟΔΥΝΑΜΟΥ ΚΥΚΛΩΜΑΤΟΣ

Σύγχρονες Τεχνικές Ελέγχου Ηλεκτρικών Μηχανών Επαγωγής

ΑΣΚΗΣΕΙΣ ΗΛΕΚΤΡΙΚΩΝ ΜΗΧΑΝΩΝ ΙΙ

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Ηλεκτρικές Μηχανές ΙΙ

ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΝΙΟΥ 2007

ΑΣΚΗΣΗ 8 η ΚΙΝΗΤΗΡΑΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΛΕΙΤΟΥΡΓΙΑΣ

Γεννήτρια συνεχούς ρεύματος ξένης διέγερσης

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΣΚΗΣΗ 5 η ΓΕΝΝΗΤΡΙΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΕΣ ΚΑΜΠΥΛΕΣ

ΓΚΙΟΚΑΣ ΠΑΝΑΓΙΩΤΗΣ. ΘΕΜΑ: Περιγράψτε τον τρόπο λειτουργίας μιας ηλεκτρικής γεννήτριας Σ.Ρ. με διέγερση σειράς.

Οι μηχανές ΕΡ είναι γεννήτριες που μετατρέπουν τη μηχανική ισχύ σε ηλεκτρική και κινητήρες που μετατρέπουν την ηλεκτρική σε μηχανική

Ηλεκτρικές Μηχανές ΙΙ

3η Εργαστηριακή Άσκηση: Εύρεση χαρακτηριστικής και συντελεστή απόδοσης κινητήρα συνεχούς ρεύµατος

3η Εργαστηριακή Άσκηση: Εύρεση χαρακτηριστικής και συντελεστή απόδοσης κινητήρα συνεχούς ρεύµατος

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Χάρης Δημουλιάς Επίκουρος Καθηγητής, ΤΗΜΜΥ, ΑΠΘ

Κινητήρας παράλληλης διέγερσης

ΑΣΚΗΣΗ 5 η ΑΣΥΓΧΡΟΝΟΣ ΤΡΙΦΑΣΙΚΟΣ ΚΙΝΗΤΗΡΑΣ. 1. Η μελέτη της δομής και της αρχής λειτουργίας ενός ασύγχρονου τριφασικού κινητήρα.

5. ΜΟΝΟΦΑΣΙΚΟΙ ΚΑΙ ΑΛΛΟΙ ΚΙΝΗΤΗΡΕΣ

6 Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας

ΣΥΜΠΙΕΣΤΕΣ ΗΛΕΚΤΡΙΚΟ ΣΥΣΤΗΜΑ

ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ

ΑΣΚΗΣΗ 8 ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΕΛΕΓΧΟΣ ΤΡΙΦΑΣΙΚΟΥ ΕΠΑΓΩΓΙΚΟΥ ΚΙΝΗΤΗΡΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: 2 η

Παραδοτέο Π6.1 Έκθεση με προτάσεις για την αξιοποίηση των αποτελεσμάτων του έργου

ΟΝΟΜ/ΝΥΜΟ: ΜΠΑΛΑΜΠΑΝΗ ΓΕΩΡΓΙΑ ΑΜ:6105 ΜΑΘΗΜΑ: ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΡΓΑΣΙΑ ΤΙΤΛΟΣ: ΤΡΟΠΟΣ ΛΕΙΤΟΥΡΓΙΑΣ ΜΙΑΣ ΣΥΓΧΡΟΝΗΣ ΓΕΝΗΤΡΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ

Γεννήτρια συνεχούς ρεύματος παράλληλης. διέγερσης

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

website:

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΓΕΝΝΗΤΡΙΕΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ

Τμήμα Ηλεκτρολόγων Μηχανικών ΜΟΝΟΦΑΣΙΚΟΙ ΚΙΝΗΤΗΡΕΣ

ΑΣΚΗΣΗ 7 η ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΡΟΠΗΣ ΣΤΡΟΦΩΝ ΑΣΥΓΧΡΟΝΟΥ ΤΡΙΦΑΣΙΚΟΥ ΚΙΝΗΤΗΡΑ ΒΡΑΧΥΚΥΚΛΩΜΕΝΟΥ ΔΡΟΜΕΑ

Τμήμα Ηλεκτρολόγων Μηχανικών ΕΛΕΓΧΟΣ ΤΑΧΥΤΗΤΑΣ ΣΤΟΥΣ ΕΠΑΓΩΓΙΚΟΥΣ ΚΙΝΗΤΗΡΕΣ

ΑΣΚΗΣΗ 10 η ΚΙΝΗΤΗΡΑΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΔΙΕΓΕΡΣΗΣ ΣΕΙΡΑΣ ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΛΕΙΤΟΥΡΓΙΑΣ

Μέθοδοι Ελέγχου Ηλεκτρικών Κινητήρων Σ.Ρ.

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014

ΑΣΚΗΣΗ 2 η ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΑΥΤΟΝΟΜΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΓΧΡΟΝΗΣ ΤΡΙΦΑΣΙΚΗΣ ΓΕΝΝΗΤΡΙΑΣ ΜΕ ΦΟΡΤΙΟ

Μαγνητικά Πεδία σε Σύγχρονες Μηχανές. 3.1 Μαγνητικά πεδία σε μηχανές με ομοιόμορφο διάκενο.

ΤΕΙ ΚΑΒΑΛΑΣ Εισαγωγή Αντικείμενο πτυχιακής εργασίας.σελ Περιεχόμενα εγχειριδίου Αναφοράς Προγραμμάτων.. σελ. 3

ΑΣΚΗΣΗ 6 η ΑΣΥΓΧΡΟΝΟΣ ΤΡΙΦΑΣΙΚΟΣ ΚΙΝΗΤΗΡΑΣ ΒΡΑΧΥΚΥΚΛΩΜΕΝΟΥ ΔΡΟΜΕΑ

Αρχή λειτουργίας στοιχειώδους γεννήτριας εναλλασσόμενου ρεύματος

ΕΥΕΛΙΚΤΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ΗΜΥ 499

Τμήμα Ηλεκτρολόγων Μηχανικών ΑΥΤΟΝΟΜΗ ΛΕΙΤΟΥΡΓΙΑ ΣΥΓΧΡΟΝΗΣ ΓΕΝΗΤΡΙΑΣ

Ηλεκτρικές Μηχανές ΙΙ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

ΕΠΑΓΩΓΙΚΗ ΤΡΙΦΑΣΙΚΗ ΓΕΝΝΗΤΡΙΑ

Μηχανές εναλλασσομένου ρεύματος

Ηλεκτρονικά Ισχύος II

ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ. 3 η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. ρ. Λάμπρος Μπισδούνης.

ΑΣΚΗΣΗ 11 η ΚΙΝΗΤΗΡΑΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΣΥΝΘΕΤΗΣ ΔΙΕΓΕΡΣΗΣ ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΛΕΙΤΟΥΡΓΙΑΣ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

Ηλεκτρικές Μηχανές ΙΙ

Ηλεκτρικές Μηχανές ΙI. Ενότητα 5: Γεννήτριες εκτύπων πόλων και διεγέρσεις Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Κινητήρες μιας νέας εποχής

Άσκηση 4 Αρχή λειτουργίας Μηχανών DC

Τεχνολογίες Ελέγχου στα Αιολικά Συστήματα

2. ΓΕΝΝΗΤΡΙΕΣ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ

Ηλεκτρικές Μηχανές Ι. Ενότητα 7: Εισαγωγή στις Μηχανές Συνεχούς Ρεύματος Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

ΗΛΕΚΤΡΟΝΙΚΑ ΙΣΧΥΟΣ ΗΜΥ 444

ΑΣΚΗΣΗ 3 η ΠΑΡΑΛΛΗΛΗ ΛΕΙΤΟΥΡΓΙΑ ΣΥΓΧΡΟΝΗΣ ΤΡΙΦΑΣΙΚΗΣ ΓΕΝΝΗΤΡΙΑΣ ΜΕ ΤΡΙΦΑΣΙΚΟ ΣΥΣΤΗΜΑ ΙΣΧΥΟΣ

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

Εξεταστική περίοδος χειμερινού εξαμήνου

Αφεντουλίδου Όλγα ΑΜ:6904. Ηλεκτρικές Μηχανές. Μέθοδοι εκκίνησης τριφασικού επαγωγικού κινητήρα

Γεννήτριες ΣΡ Κινητήρες ΣΡ

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

ΑΡΧΕΣ ΛΕΙΤΟΥΡΓΙΑΣ ΗΛΕΚΤΡΙΚΩΝ ΜΗΧΑΝΩΝ ΕΝΑΛΛΑΣΣΟΜΕΝΟΥ ΡΕΥΜΑΤΟΣ

Περιεχόμενα. Πρόλογος...13

Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών

ΜΟΝΟΦΑΣΙΚΟΣ ΑΣΥΓΧΡΟΝΟΣ (ΕΠΑΓΩΓΙΚΟΣ) ΚΙΝΗΤΗΡΑΣ ΜΕΘΟΔΟΙ ΕΚΚΙΝΗΣΗΣ

ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ. 3 η ενότητα ΡΥΘΜΙΣΗ ΣΗΜΑΤΩΝ ΚΑΙ ΠΡΟΣΑΡΜΟΓΗ ΜΕ ΤΕΧΝΙΚΕΣ ΠΑΘΗΤΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. ρ. Λάμπρος Μπισδούνης.

Ηλεκτρικές Μηχανές ΙΙ

Απαντήσεις Θεμάτων Τελικής Αξιολόγησης (Εξετάσεις Ιουνίου) στο Μάθημα «Ηλεκτροτεχνία Ηλεκτρικές Μηχανές» ΕΕ 2013/2014, Ημερομηνία: 24/06/2014

ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΤΡΟΠΟΣ ΛΕΙΤΟΥΡΓΕΙΑΣ ΜΙΑΣ ΣΥΓΧΡΟΝΗΣ ΓΕΝΝΗΤΡΙΑΣ

ΗΛΕΚΤΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Α. ΑΣΚΗΣΕΙΣ ΕΛΕΓΧΟΥ ΤΑΧΥΤΗΤΑΣ D.C. ΚΙΝΗΤΗΡΑ

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο

ΙΤ=ΙS RT RS. Uεπ. Άσκηση 5 Ηλεκτρικοί κινητήρες DC

Προηγμένος έλεγχος ηλεκτρικών μηχανών

Ηλεκτρικές Μηχανές ΙΙ

ΤΡΙΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΤΡΙΦΑΣΙΚΑ ΣΥΣΤΗΜΑΤΑ

Περιεχόμενα. Πρόλογος...13

ΗΛΕΚΤΡΙΚΕΣ ΜΗΧΑΝΕΣ ΕΠΑΛ ΚΑΒΑΛΙΕΡΟΣ ΔΗΜΗΤΡΙΟΣ ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ ΠΕ 17

Ηλεκτρικές Μηχανές ΙI. Ενότητα 10: Ροπή κινητήρα Τσιαμήτρος Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε

Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών

Ηλεκτρικές Μηχανές ΙΙ Εργαστήριο

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ 1ο Για τις ερωτήσεις να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Γεννήτριες ΣΡ Κινητήρες ΣΡ

Τμήμα Ηλεκτρολόγων Μηχανικών ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΚΑΤΆ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΣΓ

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Transcript:

- 1 - ΠΡΟΛΟΓΟΣ Το ηλεκτροκίνητο σκάφος που προέκυψε ήταν αποτέλεσμα της άριστης συνεργασίας από την αρχή μέχρι το τέλος, σε όλα τα επίπεδα και φάσεις του σχεδιασμού και της κατασκευής, με τον φίλο και συνάδελφο Νίκο Μπαϊραχτάρη, τον οποίο και ευχαριστώ για την άψογη συνεργασία του. Στο σημείο αυτό θα ήθελα να ευχαριστήσω τον Διευθυντή του Εργαστηρίου Ηλεκτρομηχανικής Μετατροπής Ενέργειας, Καθηγητή κ. Αθανάσιο Σαφάκα για την ανάθεση του θέματος και την επίβλεψη της διπλωματικής εργασίας. Ευχαριστώ τον Αναπληρωτή Καθηγητή κ. Εμμανουήλ Τατάκη για τις ιδέες του και την πολύτιμη βοήθειά του, στο σχεδιασμό του ηλεκτρονικού μετατροπέα ισχύος, χωρίς τη βοήθεια του οποίου θα αντιμετωπίζαμε αρκετά προβλήματα. Επίσης ευχαριστώ τον Λέκτορα κ. Ε. Μητρονίκα για τις σημαντικές συμβουλές του στα θέματα παλμοδότησης και τον διδακτορικό φοιτητή Σάββα Τσοτουλίδη για τη στήριξή του και τη βοήθεια που μας προσέφερε. Ακόμα ευχαριστώ τους διδακτορικούς φοιτητές του εργαστηρίου Ηλεκτρομηχανικής Μετατροπής Ενέργειας που με την εμπειρία τους βοήθησαν αρκετά στην αντιμετώπιση προβλημάτων στην κατασκευή του μετατροπέα. Εκτός Εργαστηρίου, ευχαριστώ τον Καθηγητή Ναυπηγό του ΤΕΙ Αθήνας της Σχολή Τεχνολογικών Εφαρμογών του Τμήματος Ναυπηγικής κ. Σ. Περισσάκη για τη σημαντική βοηθειά του σε θέματα ισχύος και πλευστότητας του σκάφους. Τέλος ευχαριστώ τον Ελισαίο Μπαϊραχτάρη για τη δωρεάν προσφορά του σκάφους. Η παρούσα εργασία είχε ως στόχο τον σχεδιασμό και την κατασκευή του ηλεκτροκινητηρίου συστήματος ενός ηλεκτρικού σκάφους. Πιο αναλυτικά: Στο Κεφάλαιο 1 εξετάζονται, οι εξελίξεις της ηλεκτρικής πρόωσης πλοίων στη σημερινή εποχή και γίνεται ανασκόπηση ορισμένων θεμάτων σχεδιασμού του πλήρους εξηλεκτρισμένου πλοίου. Στο Κεφάλαιο 2 εξετάζεται ο περιορισμός της ταχύτητας σε σκάφη εκτοπίσματος και αναφέρονται κάποια γενικά θέματα ισχύος για ένα σκάφος. Στο Κεφάλαιο 3 γίνεται αναφορά στα χαρακτηριστικά και τη λειτουργία της προπέλας που θεωρείται το σημαντικότερο στοιχείο ενός σκάφους. Στο Κεφάλαιο 4 αναφέρονται τα ναυπηγικά χαρακτηριστικά του σκάφους της εφαρμογής και ο τρόπος που έγινε η επιλογή του κινητήρα. Στο Κεφάλαιο 5 γίνεται σύντομη ανάλυση της λειτουργίας των μηχανών συνεχούς ρεύματος και δίνονται τα χαρακτηριστικά του κινητήρα της εφαρμογής.

- 2 - Στο Κεφάλαιο 6 γίνεται ανάλυση της λειτουργίας των μετατροπέων υποβιβασμού συνεχούς τάσης σε συνεχή και παρουσιάζονται τα αποτελέσματα της εξομοίωση του μετατροπέα της εφαρμογής. Στο Κεφάλαιο 7 γίνεται αναφορά στον τρόπο κατασκευής του μετατροπέα υποβιβασμού Σ.Τ. σε Σ.Τ. με διαδοχική αγωγή Ν=4 παράλληλων κλάδων και στα στοιχεία που χρησιμοποιήθηκαν. Στο Κεφάλαιο 8 παρουσιάζονται τα πειραματικά αποτελέσματα του μετατροπέα, ύστερα από μια σειρά μετρήσεων σε ωμικό φορτίο και στον κινητήρα της εφαρμογής. Στο Κεφάλαιο 9 δίνεται κάποιο φωτογραφικό υλικό από την καθέλκυση του ηλεκτροκίνητου σκάφους και προτείνονται κάποιες βελτιώσεις που μπορούν να γίνουν στο σκάφος για να έχει καλύτερες επιδόσεις. Στο Κεφάλαιο 10 παρουσιάζεται η σχετική βιβλιογραφία.

- 3 - ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Ηλεκτρική πρόωση πλοίων και σύγχρονες εξελίξεις στην τεχνολογία της...- 7 1.1 Γενικά περί ηλεκτρικής πρόωσης πλευστών μεταφορικών μέσων...- 7 1.2. Δομή ηλεκτρικού δικτύου πλοίου...- 9 1.2.1 Γενικά χαρακτηριστικά...- 9 1.2.2 Σχεδιαστικά χαρακτηριστικά...- 11 1.2.3 Σχετική Ορολογία...- 13 1.3 Ηλεκτρικοί Κινητήρες Πρόωσης...- 14 1.3.1 Κινητήρες αξονικής ροής...- 16 1.3.2 Πολυβάθμιοι κινητήρες εγκάρσιας ροής (transverse flux motors)...- 16 1.3.3 Πολυβάθμιοι κινητήρες αξονικής ροής (axial flux motors)...- 17 1.4 Ηλεκτρονικοί μετατροπείς συχνότητας...- 18 1.5 Τεχνικές Ελέγχου Κινητήρων Πρόωσης ΕΡ...- 23 1.6 Συνεργασία έλικα και κινητήρα πρόωσης...- 26 1.6.1 Έλικα Σταθερού Βήματος...- 27 1.6.2 Έλικα Ρυθμιζομένου Βήματος...- 28 1.6.3 Το Αζιμουθιακό Προωστήριο Σύστημα (POD)...- 28 1.7 Πλεονεκτήματα Μειονεκτήματα ηλεκτροπρόωσης...- 30 1.8. Συμπεράσματα...- 31 ΚΕΦΑΛΑΙΟ 2 Περιορισμός ταχύτητας σε σκάφη εκτοπίσματος και γενικά θέματα ισχύος...- 33 2.1 Περιορισμός ταχύτητας...- 33 2.2 Ισχύς & αντίσταση τριβής...- 36 ΚΕΦΑΛΑΙΟ 3 Ανάλυση χαρακτηριστικών έλικας ενός σκάφους...- 41 3.1 Εισαγωγή...- 41 3.2 Η διάμετρος...- 44 3.3 Το βήμα...- 45 3.4 Η φορά της προπέλας...- 48 3.5 Ο αριθμός των πτερυγίων...- 48 3.6 Η ανεπτυγμένη επιφάνεια...- 49 3.7 Η κατασκευή της προπέλας...- 50 3.8 Η επιλογή...- 50 ΚΕΦΑΛΑΙΟ 4 Ναυπηγικά χαρακτηριστικά σκάφους της εφαρμογής και επιλογή κινητήρα...- 53 4.1 Υπολογισμός απαιτούμενης ισχύος...- 53 4.2 Επιλογή ηλεκτρικού κινητήρα...- 58 4.3 Γεωμετρία σκάφους...- 60 4.4 Αξονικό σύστημα...- 61 4.5 Επιλογή έλικας...- 63

- 4 - ΚΕΦΑΛΑΙΟ 5 Ανάλυση λειτουργίας μηχανών συνεχούς ρεύματος και χαρακτηριστικά κινητήρα της εφαρμογής...- 65 5.1 Αρχή λειτουργίας μηχανής συνεχούς ρεύματος...- 65 5.1.1 Λειτουργία σαν κινητήρας...- 67 5.2 Χαρακτηριστική καμπύλη ταχύτητας ροπής...- 69 5.2.1 Μηχανές ξένης ή παραλλήλου διέγερσεως...- 71 5.3 Ρύθμιση στροφών μηχανών Σ.Ρ...- 72 5.3.1 Ρύθμιση της τάσης U T...- 72 5.4 Εκκίνηση κινητήρων συνεχούς ρεύματος...- 73 5.5 Μηχανή συνεχούς ρεύματος μονίμου μαγνήτη...- 73 5.51 Χαρακτηριστικά κινητήρα εφαρμογής...- 75 5.5.2 Κυματομορφή ρεύματος κινητήρα...- 77 5.5.3 Πειραματικές μετρήσεις...- 79 ΚΕΦΑΛΑΙΟ 6 Ανάλυση λειτουργίας μετατροπέων υποβιβασμού συνεχούς τάσης σε συνεχή και εξομοίωση μετατροπέα της εφαρμογής...- 81 6.1 Ημιαγωγικά στοιχεία ισχύος...- 81 6.1.1 Εισαγωγή...- 81 6.1.2 Χαρακτηριστικά και εφαρμογές...- 81 6.1.3 Βέλτιστη επιλογή στοιχείου...- 84 6.2 Ανάλυση μετατροπέα υποβιβασμού συνεχούς τάσης σε συνεχή ( τύπου Buck )...- 85 6.3 Μετατροπέας υποβιβασμού συνεχούς τάσης σε συνεχή με διαδοχική αγωγή ( Ιnterleaved Buck Converter )...- 93 6.3.1 Πλεονεκτήματα - Μειονεκτήματα μετατροπέα διαδοχικής αγωγής...- 95 6.3.2 Εφαρμογές μετατροπέα διαδοχικής αγωγής...- 96 6.4 Μετατροπέας υποβιβασμού Σ.Τ. σε Σ.Τ. διαδοχικής αγωγής 4 κλάδων για την οδήγηση κινητήρα Σ.Ρ μονίμου μαγνήτη και εφαρμογή σε ηλεκτροκίνητο σκάφος...- 97 6.4.1 Υπολογισμός στοιχείων του μετατροπέα...- 99 6.5 Εξομοίωση Μετατροπέα υποβιβασμού Σ.Τ. σε Σ.Τ. διαδοχικής αγωγής 4 κλάδων και τελική επιλογή στοιχείων...- 104 6.5.1 Τελική επιλογή στοιχείων...- 104 6.5.2 Αποτελέσματα εξομοίωσης ( Ωμικό φορτίο )...- 106 ΚΕΦΑΛΑΙΟ 7 Κατασκευή μετατροπέα υποβιβασμού Σ.Τ. σε Σ.Τ. με διαδοχική αγωγή Ν=4 παράλληλων κλάδων...- 121 7.1 Επιλογή στοιχείων...- 121 7.1.1 Επιλογή Τρανζίστορ IGBT...- 121 7.1.2 Επιλογή Διόδου Ισχύος...- 122 7.1.3 Κατασκευή πηνίων εξομάλυνσης και πηνίου εισόδου...- 123 7.1.4 Επιλογή πυκνωτών εισόδου και εξόδου...- 129 7.1.5 Επιλογή ψυκτικού μέσου...- 130 7.2 Τεχνική παλμοδότησης...- 132 7.2.1 Μικροελεγκτής...- 132 7.2.2 Ενισχυτής παλμών...- 134 7.2.3 Κύκλωμα οδήγησης παλμών στο IGBT...- 136 7.2.4 Τροφοδοτικά...- 138

- 5-7.3 Τελική μορφή μετατροπέα υποβιβασμού Σ.Τ. σε Σ.Τ. με διαδοχική αγωγή Ν=4 παράλληλων κλάδων...- 143 7.4 Συσσωρευτές...- 147 7.4.1Φόρτιση συσσωρευτών...- 153 7.5 Όργανα μέτρησης, μεταγωγικός διακόπτης και ασφάλειες για το ηλεκτροκίνητο σκάφος...- 155 ΚΕΦΑΛΑΙΟ 8 Πειραματικές μετρήσεις μετατροπέα υποβιβασμού Σ.Τ σε Σ.Τ με διαδοχική αγωγή Ν=4 παράλληλων κλάδων...- 159 8.1 Ωμικό φορτίο...- 159 8.2 Μετρήσεις στον κινητήρα Σ.Ρ. μονίμου μαγνήτη...- 169 8.3 Συμπεράσματα...- 172 ΚΕΦΑΛΑΙΟ 9 Καθέλκυση ηλεκτρικού σκάφους...- 173 9.1 Φωτογραφίες από την καθέλκυση...- 173 9.2 Παρατηρήσεις...- 179 9.3 Βελτιώσεις...- 180 ΚΕΦΑΛΑΙΟ 10 Βιβλιογραφία...- 183 ΠΑΡΑΡΤΗΜΑΤΑ ΠΑΡΑΡΤΗΜΑ Α Χαρακτηριστικά κατασκευαστών των στοιχείων...- 185 Α) IGBT...- 185 Β) Δίοδο Ισχύος...- 190 Γ) Πυκνωτές εισόδου...- 194 Δ) Πυκνωτής εξόδου...- 200 Ε) Ενισχυτής παλμών...- 201 ΣΤ) Οπτοζεύκτη...- 207 Ζ) Driver....- 214 ΠΑΡΑΡΤΗΜΑ Β Πρόγραμμα παραγωγής παλμών στον μικροελεγκή dspic30f2020...- 225

- 6 -

- 7 - ΚΕΦΑΛΑΙΟ 1 Ηλεκτρική πρόωση πλοίων και σύγχρονες εξελίξεις στην τεχνολογία της [1],[2],[3],[4],[5] 1.1 Γενικά περί ηλεκτρικής πρόωσης πλευστών μεταφορικών μέσων Ως ηλεκτροπρόωση ορίζεται το είδος εκείνο της πρόωσης, στο οποίο οι άξονες του πλοίου κινούνται απ ευθείας (ή και σπανιότερα μέσω μειωτήρων) από ηλεκτρικούς κινητήρες και όχι από άλλες μηχανές όπως ντήζελ, αεριοστρόβιλους και ατμοστρόβιλους. Φυσικά, οι κινητήρες ντήζελ, αεριοστρόβιλοι και ατμοστρόβιλοι εξακολουθούν να υπάρχουν στις εγκαταστάσεις ηλεκτροπρόωσης, αλλά αντί να κινούν απ ευθείας το αξονικό σύστημα με την έλικα, κινούν ηλεκτρικές γεννήτριες, που με τη σειρά τους τροφοδοτούν τους ηλεκτρικούς κινητήρες προώσεως, οπότε και αναφέρονται στη βιβλιογραφία ως prime movers ( κινητήριες μηχανές ). Το προωστήριο σύστημα συμπληρώνεται από κάποια διάταξη ελέγχου για τον χειρισμό της, δηλαδή την κράτηση-εκκίνηση, την αυξομείωση στροφών και την αλλαγή φοράς περιστροφής των ηλεκτρικών κινητήρων [1]. Η ηλεκτρική πρόωση έχει αρχίσει να εφαρμόζεται πριν από περίπου 55 χρόνια. Επί μεγάλο διάστημα, τα κινητήρια συστήματα ήταν του τύπου Σ.Ρ./Σ.Ρ. (συχνά συστήματα Ward-Leonard) δηλαδή παραγωγή συνεχούς τάσεως και κίνηση με συνεχές ρεύμα. Το εναλλασσόμενο ρεύμα αρχίζει να χρησιμοποιείται στα πλοία στις αρχές της δεκαετίας του 1950, αλλά τα συστήματα ηλεκτρικής πρόωσης εξακολουθούν να στηρίζονται σε κινητήρες Σ.Ρ.. Kατά την τελευταία εικοσαετία, η ανάπτυξη διατάξεων και τεχνικών ελέγχου κινητήρων Ε.Ρ (ηλεκτρονικά ισχύος), που να ικανοποιούν τις απαιτήσεις της πρόωσης από πλευράς τόσο ευελιξίας όσο και οικονομίας καυσίμου, έδωσε τη δυνατότητα για ευρύτερη διάδοση της ηλεκτρικής πρόωσης σε εμπορικά πλοία. Σχήμα1.1.Συγκριτικές ανάγκες περιορισμού διαστάσεων (ή βάρους) συναρτήσει της ηλεκτρικής Ισχύος για διαφόρους τύπους πλοίων (εμπορικών και πολεμικών) [2].

- 8 - Ενώ παλαιότερα η ηλεκτρική πρόωση έβρισκε μόνον πολύ εξειδικευμένες εφαρμογές (παγοθραυστικά, ερευνητικά σκάφη, σκάφη πόντισης καλωδίων), κατά τη δεκαετία του '90 παρουσιάζει μια έντονα αυξανόμενη διάδοση σε πλοία όπως μεγάλα επιβατηγά, οχηματαγωγά, κρουαζιερόπλοια, δεξαμενόπλοια, κ.λπ., (Σχήμα 1.1) Γενικά, η ηλεκτρική πρόωση μπορεί να αποδειχθεί η καταλληλότερη λύση στις ακόλουθες κατηγορίες εφαρμογών: α. Σκάφη με υψηλές απαιτήσεις ελικτικών ικανοτήτων. β. Σκάφη με μεγάλη ισχύ βοηθητικών μηχανημάτων. γ. Σκάφη με μεγάλα φορτία ενδιαίτησης και έντονη διακύμανση της ισχύος πρόωσης. δ. Σκάφη εξοπλισμένα με πολλές ταχύστροφες μη αναστρέψιμες μηχανές. ε. Υποβρύχια και βαθυσκάφη. Ειδικά, όσον αφορά στα πολεμικά πλοία, η ηλεκτροπρόωση αποτελεί την βασική επιλογή για την κίνηση των Υποβρυχίων. Η χρήση της σε πολεμικά πλοία επιφάνειας, που μέχρι σήμερα ήταν σχετικά περιορισμένη, προσελκύει ξανά το έντονο ενδιαφέρον των ναυτικών χωρών που κατασκευάζουν πολεμικά πλοία και εξετάζεται πλέον σαν υποψήφιο σύστημα για την προωστήρια εγκατάσταση της επόμενης γενιάς και των μεγάλων πολεμικών πλοίων. Οι αυξημένες απαιτήσεις και οι αυστηρότερες - σε σχέση με τα εμπορικά πλοία -προδιαγραφές του πολεμικού ναυτικού διαφόρων χωρών, (τόσο από απόψεως περιορισμού χώρου αλλά και απαιτήσεων του προωστηρίου συστήματος), προϋποθέτουν περισσότερη ανάπτυξη και τελειοποίηση υποσυστημάτων για να πραγματοποιηθούν τα εν δυνάμει πλεονεκτήματα της ηλεκτροπρόωσης. Οι κύριες αιτίες της αναζωπύρωσης του ενδιαφέροντος του πολεμικού ναυτικού για τη χρήση της ηλεκτροπρόωσης είναι : α. Η αύξηση του αριθμού των καταναλωτών ηλεκτρικής ενέργειας στα πλοία και η τάση για την ηλεκτροποίηση των πλοίων (με αποκορύφωση το Πλήρως Εξηλεκτρισμένο Πλοίο- All Electric Ship-AES), δηλαδή η τάση όλες οι λειτουργίες, κύριες και βοηθητικές, να γίνονται πλέον από ηλεκτρικά συστήματα και μηχανήματα (αντικαθιστώντας π.χ. υδραυλικά, μηχανικά ή συστήματα ατμού κ.λ.π.), β. Η ανάγκη για περισσότερο αθόρυβη λειτουργία των πλοίων, γ. Η αναζήτηση προωστήριων συστημάτων με χαμηλότερο κόστος λειτουργίας και μειωμένες απαιτήσεις προσωπικού. δ. Η ωρίμανση τεχνολογιών που απαιτούνται για να αξιοποιηθούν τα πλεονεκτήματα της ηλεκτροπρόωσης. Τέτοιες τεχνολογίες είναι κυρίως των ηλεκτρικών κινητήρων και των ηλεκτρονικών ισχύος για τον έλεγχό τους. Επίσης πρέπει να τονιστεί, ότι η επιλογή συστήματος ηλεκτροπρόωσης για ένα πλοίο προσφέρει περισσότερη ελευθερία στη σχεδίαση και στην επιλογή των υποσυστημάτων και

- 9 - της διάταξης όλης της προωστήριας και ηλεκτρικής εγκατάστασης. Σε κάθε περίπτωση αξίζει να σημειωθεί, ότι οι ηλεκτρικοί κινητήρες είναι η μόνη λύση για τη βοηθητική πρόωση (δηλ. το σύστημα των πλευρικών προωστήριων μηχανισμών που επαυξάνουν την ελικτική ικανότητα των σκαφών ιδίως εντός των λιμένων) με αξιοποίηση κυρίως επαγωγικών κινητήρων μεγάλης ισχύος (0.5-2.5 MW). 1.2. Δομή ηλεκτρικού δικτύου πλοίου 1.2.1 Γενικά χαρακτηριστικά Το γενικευμένο ηλεκτρολογικό διάγραμμα ενός ηλεκτρικού δικτύου πλοίου με ηλεκτρική πρόωση απεικονίζεται στο σχήμα 1.2 Το σύστημα ηλεκτροπαραγωγής μπορεί να είναι ενιαίο καλύπτοντας όλες τις ηλεκτρικές ενεργειακές ανάγκες ή μπορεί να αποτελείται από δύο επιμέρους υπο-συστήματα, αυτό της ηλεκτροπρόωσης κι εκείνο των λοιπών ηλεκτρικών φορτίων. Σε πλοία με συμβατική πρόωση, ειδική υποπερίπτωση αποτελούν τα συστήματα παραγωγής ηλεκτρικής ενέργειας που περιλαμβάνουν και γεννήτριες που συνδέονται μηχανικά με τον άξονα της κύριας μηχανής προώσεως, (εξηρτημένες δηλαδή γεννήτριες που στρέφονται από την κύρια ντηζελο-μηχανή πρόωσης του πλοίου). Οι γεννήτριες αυτές μπορεί να συνδέονται με το υπόλοιπο ηλεκτρικό δίκτυο με σύνδεσμο ΣΡ (DC link) ή να τροφοδοτούν αυτόνομα μόνο μεγάλα φορτία όπως οι κινητήρες βοηθητικής πρόωσης ( Bow thrusters). Ενίοτε, σε έκτακτες περιπτώσεις (π.χ. μεγάλης έκτασης ζημία στην κύρια μηχανή) μπορούν να λειτουργήσουν και αντίστροφα, δηλ. ως ηλεκτρικοί κινητήρες πρόωσης (τροφοδοτούμενες από τις άλλες ηλεκτρογεννήτριες) περιορισμένης ισχύος και να οδηγήσουν το σκάφος σε ασφαλή προορισμό.

- 10 - a. Κινητήρια μηχανή (ντηζελοκινητήρας ή αεριοστρόβιλος) b. Σύγχρονη γεννήτρια c. Μετασχηματιστής ισχύος d. Μετατροπέας συχνότητας e. Προωστήριος κινητήρας f. Έλικα g. Λοιπά φορτία (αντλίες, συμπιεστές, φωτισμός, εργάτες κλπ) Σχήμα 1.2. Γενικό διάγραμμα συστήματος παροχής ηλεκτρικής ενέργειας πλοίου [1]. Σημαντικά διαφορετικό είναι το ηλεκτρικό σύστημα της νέας γενιάς υποβρυχίων, στα οποία η ηλεκτρική ενέργεια παράγεται από κυψέλες καυσίμου (fuel cells) (και αποθηκεύεται σε συστοιχίες συσσωρευτών Σ.Ρ) για να τροφοδοτήσει καταναλώσεις Σ.Ρ αλλά και Ε.Ρ μέσω μετατροπέων Σ.Ρ/Ε.Ρ. Ηλεκτρογεννήτριες Ε.Ρ που κινούνται με κινητήρες ντήζελ υφίστανται μεν, αλλά δεν αποτελούν την κύρια πηγή παραγωγής ηλεκτρικής ενέργειας. Σε κάθε περίπτωση, όμως, οι κινητήρες πρόωσης είναι Ε.Ρ. a. Κυψέλη καυσίμου (fuel cell) b. Συστοιχία μπαταριών c. Μετατροπέας ΣΡ/ΣΡ d. Μετατροπέας ΣΡ/ΕΡ e. Προωστήριος κινητήρας f. Έλικα g. Φορτία ΣΡ i. Φορτία ΕΡ Σχήμα 1.3. Γενικό διάγραμμα συστήματος ηλεκτρικής ενέργειας πλοίου με κυψέλες καυσίμου [1].

- 11-1.2.2 Σχεδιαστικά χαρακτηριστικά Όπως αναφέρθηκε οι επιλογές για το σχεδιασμό των σύγχρονων συστημάτων ηλεκτροπρόωσης είναι πολλές και κάθε μία μπορεί να προσαρμοστεί στις ανάγκες και τον ρόλο του συγκεκριμένου πλοίου. Ο σχεδιασμός ενός σύγχρονου συστήματος ηλεκτροπρόωσης μπορεί να αναλυθεί στην επιλογή λύσεων σε επιμέρους ζητήματα, που είναι : 1. Το είδος των κινητήριων μηχανών. Ντήζελ, Αεριοστρόβιλοι (ειδικά για πιο αθόρυβη λειτουργία), Ατμοστρόβιλοι (ειδικά για πυρηνοκίνητα σκάφη), Συσσωρευτές ή/και Ηλεκτροχημικές Κυψέλες Καυσίμου (Fuel-Cells) (για τα υποβρύχια). 2. Τα χαρακτηριστικά του ηλεκτρικού δικτύου, όπως το είδος (DC, AC) και η τιμή της τάσης παραγωγής και διανομής της ηλεκτρικής ισχύος (που υπαγορεύεται κυρίως από τις απαιτήσεις ισχύος προώσεως και τη διαθεσιμότητα παρελκόμενου ηλεκτρολογικού εξοπλισμού (καλώδια, μονωτικά, διακόπτες πίνακες κ.λ.π.)). 3. Ο αριθμός και το είδος των γεννητριών. 4. Η παράλληλη ή μη λειτουργία των γεννητριών. 5. Το ποσοστό αυτοματισμού στη λειτουργία, φόρτωση, παραλληλισμό και κράτηση των γεννητριών. 6. Ο αριθμός και το είδος των κινητήρων προώσεως. Τα λειτουργικά χαρακτηριστικά που εξετάζονται είναι η μέγιστη ισχύς, ο όγκος και το βάρος ανά μονάδα ισχύος, ο μέσος χρόνος μεταξύ επισκευών και βλαβών και η αποδοτικότητα (βαθμός αποδόσεως). 7. Το είδος ελέγχου-χειρισμού των κινητήρων προώσεως. 8. Το είδος των στατών μετατροπέων. 9. Η σχεδίαση της διάταξης του ηλεκτρικού δικτύου και συγκεκριμένα : α. Θα υπάρχει διάκριση ανάμεσα στα ηλεκτρικά φορτία του πλοίου, άρα και στα ηλεκτρικά δίκτυα, σε φορτία προώσεως και στα λοιπά ; Το ζήτημα έχει να κάνει και με το βαθμό εξηλεκτρισμού του πλοίου καθώς η σχέση του ηλεκτρικού δικτύου προώσεως με το ηλεκτρικό δίκτυο χρήσεως μπορεί να είναι μία από τις παρακάτω : α.1. να είναι τελείως ανεξάρτητα, δηλαδή το καθένα να εξυπηρετείται από δικές του γεννήτριες και να μη συνδέονται μεταξύ τους ή αν υπάρχει δυνατότητα σύνδεσης, αυτή να είναι μόνο για κατάσταση ανάγκης. α.2. να είναι διακριτά, αλλά να υπάρχει σύνδεση μεταξύ τους οπότε το ένα από τα δύο να μπορεί να τροφοδοτείται και από το άλλο. α.3. να είναι ενοποιημένα σε ένα κοινό ηλεκτρικό δίκτυο, οπότε οδηγούμαστε στο «πλήρως εξηλεκτρισμένο πλοίο» (AES), οπότε και είναι δυνατή η βελτιστοποίηση της εκμετάλλευσης των πλεονεκτημάτων της ηλεκτροπρόωσης.

- 12 - β. Στην περίπτωση που τα δύο δίκτυα συνδέονται, η επιλογή του τρόπου σύνδεσης (απευθείας μέσω πινάκων, μέσω αντιστροφέων (inverters) ή άλλου μετατροπέα ηλεκτρονικών ισχύος (converter), μέσω ζεύγους κινητήρα-γεννήτριας, μέσω μετασχηματιστών κ.λ.π.). γ. Από ποιο δίκτυο τροφοδοτούνται τα βοηθητικά συστήματα προώσεως (π.χ. τα συστήματα ελέγχου-χειρισμού, ψύξης, λίπανσης ). δ. Ο τρόπος με τον οποίο διασφαλίζεται η ποιότητα ισχύος του ηλεκτρικού δικτύου όσον αφορά την τάση και την συχνότητα, (θόρυβος-αρμονική παραμόρφωση) και ειδικά του δικτύου χρήσεως, όταν αυτό συνδέεται με το δίκτυο προώσεως. Σαν κύρια πηγή δημιουργίας αρμονικών αναφέρονται τα ηλεκτρονικά ισχύος των ηλεκτροκινητήρων. Η ποιότητα των ηλεκτρικών δικτύων (συχνότητα, αρμονικές τάσεως, ταχείες διαταραχές τάσεως κ.λ.π.) καθορίζεται από τις διάφορες προδιαγραφές και νηογνώμονες. Οι προδιαγραφές αυτές αφορούν μόνο το δίκτυο χρήσης του πλοίου, δηλαδή φορτία που δεν σχετίζονται με την πρόωση. Στις περιπτώσεις ανεξαρτήτου δικτύου προώσεως δεν υπάρχουν προς το παρόν ιδιαίτερες απαιτήσεις ποιότητας για τα φορτία της πρόωσης. Αν όμως το ηλεκτρικό δίκτυο είναι ενοποιημένο πρέπει ή και το δίκτυο της προώσεως να ικανοποιεί τις ίδιες απαιτήσεις ποιότητας, ή να λαμβάνεται μέριμνα, ώστε τυχόν διαταραχές στο δίκτυο προώσεως να μην διαδίδονται στο δίκτυο χρήσεως. Για δίκτυα Συνεχούς Ρεύματος δεν υπάρχουν ακόμη εν γένει ιδιαίτερες απαιτήσεις ποιότητας. ε. Η διάταξη τέλος του ηλεκτρικού δικτύου πρέπει να μεγιστοποιεί την βιωσιμότητα του πλοίου. 10. Ελάχιστες απαιτήσεις σε καταστάσεις ανάγκης - Αντιμετώπιση. Για παράδειγμα μπορεί να απαιτείται εκκίνηση κινητήρα προώσεως με μια μόνο γεννήτρια σε λειτουργική κατάσταση, η δυνατότητα τροφοδότησης του ενός δικτύου από το άλλο, η δυνατότητα ενός μόνο κινητήρα να μπορεί να κινήσει το πλοίο με μια ελάχιστη ταχύτητα, ή να απαιτείται η γεννήτρια ή οι γεννήτριες να μπορούν να τροφοδοτούν τα φορτία ανάγκης και ταυτόχρονα να κινήσουν το πλοίο με μια μικρή ταχύτητα (3-5 knots). 11. Ο τρόπος έδρασης των μηχανημάτων, καθώς και ο (φυσικός) διαχωρισμός τους, όπως για παράδειγμα των πινάκων ηλεκτρικού δικτύου προώσεως και χρήσεως, των κινητήρων προώσεως και των ηλεκτρονικών διατάξεων οδήγησής τους. Ως γενικοί κανόνες-απαιτήσεις αναφέρονται : α. αν υπάρχει αρκετός χώρος πρέπει οι πίνακες προώσεως και χρήσεως να διαχωρίζονται φυσικά. β. οι κινητήρες και οι αντίστοιχοι αντιστροφείς (inverters) πρέπει να τοποθετούνται σε διαφορετικούς υδατοστεγανούς τομείς. γ. οι μετατροπείς (converters) πρέπει να τοποθετούνται κοντά στους κινητήρες για να μειώνεται το μήκος των καλωδίων. δ. τοποθέτηση των κινητήρων (που φυσικά υπαγορεύεται από την διάταξη των αξόνων) όσο πιο πρύμα γίνεται.

- 13-12. Όπως αναφέρθηκε ήδη σημαντικό πλεονέκτημα της ηλεκτροπρόωσης είναι η ευχέρεια που παρέχει στο σχεδιαστή σχετικά με τη διάταξη των υποσυστημάτων της. Έτσι είναι δυνατό οι γεννήτριες να τοποθετηθούν σε οποιαδήποτε απόσταση από τους κινητήρες, σχεδόν οπουδήποτε στο πλοίο, αρκεί να μην παραβιάζονται κλασσικοί κανόνες που σχετίζονται με την ευστάθεια του πλοίου, την ισοκατανομή των φορτίων στο πλοίο, την ακουστική υπογραφή και την ευκολία επισκευής. 1.2.3 Σχετική Ορολογία Δεδομένης της ραγδαίως αναπτυσσόμενης έρευνας επί των ηλεκτροπροωστηρίων συστημάτων, είναι αναγκαίο να διευκρινισθούν οι παρακάτω βασικοί όροι που χρησιμοποιούνται συχνά στη βιβλιογραφία : α. Πλήρης Ηλεκτροπρόωση (Full Electric Propulsion - F.E.P.) : Η εγκατάσταση προώσεως κατά την οποία το πλοίο κινείται αποκλειστικώς από ηλεκτρικούς κινητήρες. Τα ζεύγη κινητηρίων μηχανών-γεννητριών που τροφοδοτούν τους κινητήρες προώσεως, υπάρχουν αποκλειστικώς για το σκοπό αυτό (δεν τροφοδοτούν άλλα φορτία). Η ηλ. ισχύς για όλους τους άλλους καταναλωτές του πλοίου παράγεται από άλλες γεννήτριες. β. Ολοκληρωμένη Πλήρης Ηλεκτροπρόωση (Integrated Full Electric Propulsion - I.F.E.P.) : Η εγκατάσταση ηλεκτροπρόωσης στην οποία τα ίδια ζεύγη κινητηρίων μηχανών - γεννητριών, τροφοδοτούν τόσο τους ηλεκτρικούς κινητήρες προώσεως, όσο και τα υπόλοιπα ηλεκτρικά φορτία του πλοίου. γ. Πλήρως Εξηλεκτρισμένο πλοίο ( All Electric Ship -A.E.S. ) : Το πλοίο που διαθέτει ολοκληρωμένη πλήρη ηλεκτροπρόωση και που επιπλέον σε ευρεία έκταση επιτελεί τις λειτουργίες του μέσω ηλεκτρικών μηχανημάτων και συστημάτων. δ. Ηλεκτρικό δίκτυο προώσεως (Propulsion Network) : Το τμήμα εκείνο (ανεξάρτητο ή ενσωματωμένο ) του ηλεκτρικού δικτύου πλοίου που τροφοδοτεί τα ηλεκτρικά φορτία που σχετίζονται με την πρόωση. ε. Ηλεκτρικό δίκτυο χρήσεως (Ship Service System) : Το υπόλοιπο, πλην δικτύου προώσεως, ηλεκτρικό δίκτυο του πλοίου.

- 14-1.3 Ηλεκτρικοί Κινητήρες Πρόωσης Η πλειονότητα των κινητήρων είναι σύγχρονοι, οι οποίοι έχουν βαθμό απόδοσης 96-98%, υψηλότερο κατά 3-4% από τον βαθμό απόδοσης κινητήρων επαγωγής. Η ονομαστική τάση λειτουργίας στις εγκαταστάσεις μέσης και μεγάλης ισχύος είναι 3,3-6,6 kv. Στους σύγχρονους κινητήρες έρχεται να προστεθεί μία νέα κατηγορία αυτή των σύγχρονων κινητήρων με μόνιμους μαγνήτες των οποίων η απόδοση σύμφωνα με τους κατασκευαστές τους υπερβαίνει το 98%!! Σε αυτές τις σύγχρονες μηχανές, το τύλιγμα διεγέρσεως του δρομέα (που διαρρέεται από συνεχές ρεύμα) έχει αντικατασταθεί από μόνιμους μαγνήτες. Το αποτέλεσμα είναι το ίδιο καθώς και στις δύο περιπτώσεις παράγεται ένα ηλεκτρομαγνητικό πεδίο σταθερής τιμής που στρέφεται στο χώρο με την ταχύτητα του δρομέα. Το προφανές πλεονέκτημα των μηχανών αυτών είναι ότι δεν έχουν ανάγκη παροχής σε ΣΡ, ενώ με τον τρόπο αυτό αυξάνεται και η συνολική απόδοση καθώς μεταξύ των άλλων μειώνονται και οι συνολικές απώλειες Joule στα τυλίγματα. Η ιδέα της χρήσης μονίμων μαγνητών είναι παλιά αλλά η τεχνολογική πρόοδος τα τελευταία χρόνια είναι που κατέστησε δυνατή την κατασκευή κραμάτων μονίμων μαγνητών (κράματα σαμαρίου-κοβαλτίου, Sm- Co και νεοβιδίου-σιδήρου-βορείου, NdFeB) που έχουν τη δυνατότητα να διατηρούν σταθερή τη μαγνήτισή τους για αρκετά υψηλές θερμοκρασίες, όπως είναι αυτές που αναπτύσσονται στο εσωτερικό μίας στρεφόμενης μηχανής, ( Σχήματα. 1.4 και1.5 ). Οι κινητήρες αυτοί με κατάλληλη επιλογή τυλίγματος στάτη και πόλων δρομέα μπορούν να παράγουν ημιτονοειδές ηλεκτρομαγνητικό πεδίο συναγωνίζοντας έτσι μία συμβατική σύγχρονη μηχανή στα χαμηλά επίπεδα απότομων αιχμών ροπής (torque ripples) και μηχανικών δονήσεων (vibrations). Τα τελευταία χρόνια ερευνάται η χρησιμοποίηση ηλεκτρικών κινητήρων με υπεραγώγιμα υλικά ως κινητήρες πρόωσης, κυρίως στην Αμερική. Οι κινητήρες αυτοί, λόγω του ότι το υπεραγώγιμο υλικό παρουσιάζει μηδενική ηλεκτρική αντίσταση σε πολύ χαμηλές θερμοκρασίες, έχουν πολύ μεγάλη ισχύ ανά μονάδα όγκου σε σύγκριση με τους συμβατικούς κινητήρες. Θεωρούνται έτσι ιδανικοί για την πρόωση πολεμικών πλοίων όπου ο χώρος είναι περιορισμένος σε συνδυασμό με τις αυξημένες ανάγκες ισχύος. Η εταιρεία American Syperconductor Inc. χρηματοδοτείται από το Αμερικανικό Πολεμικό Ναυτικό για να κατασκευάσει έναν κινητήρα πρόωσης ονομαστικής ισχύος 25MW.

- 15 - Σχήμα 1.4. Εξέλιξη τεχνολογίας μονίμων μαγνητών τα τελευταία 30 χρόνια [2]. Σχήμα 1.5. Επιδόσεις μονίμων μαγνητών ως προς τη θερμοκρασία μαγνήτισης [2].

- 16 - Σχήμα 1.6. Διατάξεις σύγχρονων κινητήρων με μόνιμους μαγνήτες [1]. α) οι μόνιμοι μαγνήτες στην εξωτερική επιφάνεια του δρομέα β) οι μόνιμοι μαγνήτες στο εσωτερικό του δρομέα γ) οι μόνιμοι μαγνήτες στο εσωτερικό του δρομέα με διεύθυνση ροής εγκάρσια στον άξονα. 1.3.1 Κινητήρες αξονικής ροής Πρόκειται για κινητήρες στους οποίους η ωφέλιμη μαγνητική ροή είναι κατά την ακτινική διεύθυνση δηλαδή όπως στις συνήθεις συμβατικές ηλεκτρικές μηχανές. Αντιπροσωπευτικές περιπτώσεις τέτοιων κινητήρων είναι ο κινητήρας PERMASYN της εταιρείας SIEMENS, με μόνιμους μαγνήτες Sm-Co που βρίσκει εφαρμογές πρόωσης μεταξύ άλλων σε υποβρύχια του ΠΝ. Ένας άλλος τύπος ηλεκτρικού κινητήρα πρόωσης είναι ο Εξελιγμένος Επαγωγικός Κινητήρας (Advanced Induction Motor-AIM) της ALSTOM, [3] ο οποίος έχει επιλεγεί για την πρόωση της φρεγάτας (Type 45) του Βρετανικού Πολεμικού Ναυτικού. Προσφέρει υψηλή πυκνότητα ισχύος και ροπής σε σύγκριση με έναν συμβατικό επαγωγικό κινητήρα ίδιας ονομαστικής ισχύος. Η διαφορά με τον κοινό 3-φασικό επαγωγικό κινητήρα είναι ότι προσφέρει την δυνατότητα λειτουργίας με 5, 10 ή 15 φάσεις με τη βοήθεια εξελιγμένων ηλεκτρονικών ισχύος για να αυξηθεί η ισχύς του κινητήρα. 1.3.2 Πολυβάθμιοι κινητήρες εγκάρσιας ροής (transverse flux motors) Οι κινητήρες αυτοί έχουν μόνιμους μαγνήτες στο δρομέα, προσανατολισμένους μάλιστα κατά τέτοιο τρόπο ώστε η μαγνητική ροή να ρέει μέσα στο διάκενο σε διεύθυνση εν μέρει κατά την αξονική διεύθυνση και κυρίως κάθετη- εγκάρσια προς τον άξονα της μηχανής, ( Σχήμα1.7 ).

- 17 - Σχήμα 1.7. Κινητήρας εγκάρσιας ροής [2]. 1.3.3 Πολυβάθμιοι κινητήρες αξονικής ροής (axial flux motors) Οι κινητήρες αυτοί έχουν μόνιμους μαγνήτες στον δρομέα, προσανατολισμένους κατά τρόπο ώστε η μαγνητική ροή να ρέει σε διεύθυνση παράλληλη προς τον άξονα της μηχανής (αξονική) Σχήμα 1.8. Μηχανή αξονικής ροής [1].

- 18 - Σχήμα 1.9. Κάθετη τομή κινητήρα αξονικής ροής με 4 σπονδύλους Σχήμα 1.10. Διάταξη στάτη αποτελούμενου από 4 επιμέρους σπονδύλους κινητήρα αξονικής ροής Σχήμα 1.11. Διάταξη μετατροπέα συχνότητας κινητήρα αξονικής ροής [1]. 1.4 Ηλεκτρονικοί μετατροπείς συχνότητας Στις εγκαταστάσεις Ε.Ρ., στις οποίες η συχνότητα του παραγομένου ρεύματος είvαι σταθερή, η συνεχής ρύθμιση της ταχύτητας περιστροφής του ηλεκτροκινητήρα πρόωσης (και επομένως της έλικας) είναι δυνατή εάν αυτός τροφοδοτηθεί όχι απ' ευθείας από το δίκτυο αλλά από διάταξη μετατροπής της συχνότητας. Η διάδοση της ηλεκτρικής πρόωσης κατά τα τελευταία έτη ίσως δεν θα ήταν δυνατή χωρίς τους μετατροπείς αυτούς. Η θεμελιώδης διάταξη μετατροπής είναι η γέφυρα 6-παλμών (ανορθωτής αλλά και κυρίως αντιστροφέας). Ωστόσο για μείωση των αρμονικών παραμορφώσεων κατασκευάζονται πιο σύνθετες διατάξεις. Έτσι ένας αντιστροφέας 12 παλμών αποτελείται από δύο αντιστροφείς 6 παλμών, των οποίων οι αντίστοιχες φάσεις έχουν γωνιακή διαφορά 30ο. Σε σύγχρονες ναυπηγήσεις αξιοποιούνται προς το παρόν έως και γέφυρες 24 παλμών.

- 19 - Ακολουθεί μία συνοπτική περιγραφή ευρέως χρησιμοποιούμενων μετατροπέων ηλεκτρονικών ισχύος: Ζεύγη ανορθωτών αντιστροφέων spwm Στις διατάξεις αυτές, αρχικά γίνεται ανόρθωση από ΕΡ σε ΣΡ και στη συνέχεια αντιστροφή από ΣΡ σε ΕΡ. Στον σύνδεσμο ΣΡ (DC-link) μεταξύ των δύο μετατροπέων παρεμβάλλεται κάποιο στοιχείο που διατηρεί σταθερή την τάση ή το ρεύμα που παρέχει ο μετατροπέας, όπως εξηγείται στη συνέχεια βλ. και Πίνακα 1.1: α) πηγές ρεύματος (CSI Current Source Inverters) με SPWM: στο DC-link παρεμβάλλεται πηνίο που διατηρεί το ρεύμα τροφοδοσίας σταθερό με αποτέλεσμα ο μετατροπέας εμφανίζεται να λειτουργεί ως πηγή (σταθερού) ρεύματος. β) πηγές τάσεως (VSI Voltage Source Inverters) με SPWM: στο σύνδεσμο ΣΡ παρεμβάλλεται πυκνωτής που διατηρεί την τάση τροφοδοσίας σταθερή με αποτέλεσμα ο μετατροπέας να εμφανίζεται ότι λειτουργεί ως πηγή (σταθερής) τάσεως. γ) συγχρομετατροπείς (synchro-converters) ή LCI (Load Commutated Inverters, LCI): πρόκειται για ειδική περίπτωση μετατροπέα πηγής ρεύματος (CSI) στην οποία όμως οι διακόπτες ισχύος σβήνουν μόνον με τη βοήθεια του φορτίου τους. Το χαρακτηριστικό αυτό αποτελεί το κύριο πλεονέκτημά τους καθώς δεν απαιτούνται επιπλέον βοηθητικά κυκλώματα σβέσεως. Βρίσκουν εφαρμογή σε προωστήρια συστήματα με σύγχρονους κινητήρες μεγάλης ισχύος. Κυκλομετατροπείς (cycloconverters): με τις διατάξεις αυτές επιτυγχάνεται απευθείας μετατροπή από μία μορφή ΕΡ συγκριμένου πλάτους και συχνότητας σε άλλη μορφή ΕΡ διαφορετικού πλάτους και συχνότητας. Στην περίπτωση των προωστήριων συστημάτων πλοίων, λαμβάνει χώρα υποβιβασμός συχνότητας (από 50/60 Hz σε 2-3 Ηz). Η απλή περίπτωση ενός τριφασικού κυκλομετατροπέα 6 παλμών (6-παλμικός) αποτελείται από 36 ελεγχόμενους διακόπτες ισχύος, 12 για κάθε φάση, ( Σχήματα. 1.12 και 1.13). Σε κάθε φάση αντιστοιχούν δύο γέφυρες διακοπτών (g και o) με 6 διακόπτες η κάθε μία, ( Σχήμα. 1.13). Η μία γέφυρα είναι υπεύθυνη για τη δημιουργία της κυματομορφής κατά τη θετική ημιπερίοδο και η άλλη κατά την αρνητική. Στις γέφυρες εισέρχονται όλες οι φάσεις εισόδου. Αντιπαράλληλα προς τους διακόπτες ισχύος, εν γένει, συνδέονται και δίοδοι ισχύος για να κυκλοφορούν αντίστροφης φοράς ρεύματα προστατεύοντας τους ελεγχόμενους διακόπτες (στο σχήμα 1.13 έχουν παραλειφθεί για λόγους απλότητας). Η τεχνική ελέγχου αγωγής των διακοπτών ισχύος μπορεί να ποικίλλει και σε αυτήν την περίπτωση, ωστόσο έχει επικρατήσει μία αντίστοιχη μέθοδος της ημιτονοειδούς διαμόρφωσης εύρους παλμών των αντιστροφέων SPWM. Στην περίπτωση αυτή, το επιθυμητό σήμα σε μία φάση εξόδου συγκρίνεται με τις τάσεις όλων των φάσεων εισόδου και στα σημεία που εξισώνονται (σημεία τομής των κυματομορφών), παράγονται σήματα αλλαγής κατάστασης των αντίστοιχων διακοπτών ισχύος.

- 20 - Σχήμα 1.12. Μονοφασικό κύκλωμα (δομικό στοιχείο) κυκλομετατροπέα [1]. Σχήμα 1.13. Τυπικός τριφασικός κυκλομετατροπέας 6 παλμών [1]. Με A, B, C συμβολίζονται οι τρεις φάσεις εισόδου ενώ με R, S, T οι τρεις φάσεις εξόδου. Οι φάσεις εξόδου μπορεί να συνδεθούν στο φορτίο σε συνδεσμολογία Υ ή Δ. Ένας κυκλομετατροπέας 12 παλμών αποτελείται από δύο κυκλομετατροπείς 6 παλμών των οποίων οι αντίστοιχες φάσεις έχουν γωνιακή διαφορά 30 ο. Η διαφορά αυτή επιτυγχάνεται με τη χρήση ενός μετασχηματιστή με δύο δευτερεύοντα τυλίγματα από τα οποία το ένα είναι

- 21 - σε συνδεσμολογία κατά Υ ενώ το άλλο κατά Δ. Οι έξοδοι του κυκλομετατροπέα 12 παλμών μπορεί να τροφοδοτούν είτε ένα απλό τριφασικό τύλιγμα κινητήρα, (Σχήμα 1.14), είτε το διπλό τριφασικό τύλιγμα ενός ειδικού τύπου κινητήρα (Σχήμα 1.15). Με τον τρόπο αυτό επιτυγχάνεται περαιτέρω μείωση των αρμονικών παραμορφώσεων. Σχήμα 1.14. Κυκλομετατροπέας 12 παλμών που τροφοδοτεί τριφασικό κινητήρα [1]. Σχήμα 1.15. Κυκλομετατροπέας 12 παλμών που τροφοδοτεί 2Χ3φ-κινητήρα [1]. (τα δύο τριφασικά τυλίγματα είναι σε γωνία μεταξύ τους π.χ. 30 ο )

- 22 - Οι κυκλομετατροπείς πλεονεκτούν στο ότι παράγουν κυματομορφές με πολύ μικρή παραμόρφωση αλλά είναι πολυδάπανες διατάξεις με πολλούς διακόπτες ισχύος ενώ κατά τη μεταγωγή των διακοπτών απαιτείται αυξημένη ακρίβεια συντονισμού από τα κυκλώματα ελέγχου. Μητροειδείς μετατροπείς (matrix converters): Πρόκειται για εναλλακτική αλλά πιο γενικευμένη διάταξη των κυκλομετατροπέων που ενδεχομένως να επικρατήσει καθώς δίνει τη δυνατότητα σε όλες τις φάσεις εξόδου να τροφοδοτηθούν απευθείας από όλες τις φάσεις εισόδου κατά τρόπο που καθορίζεται με ακρίβεια από το κύκλωμα ελέγχου. Η ουσιαστική διαφορά από τους κυκλομετατροπείς είναι στον αλγόριθμο ελέγχου εναύσεως / σβέσεως, που ακόμη βρίσκεται σε ερευνητικό στάδιο και επιτρέπει σε κάθε στιγμή την αντιστροφή ακολουθίας των φάσεων εξόδου σε σχέση με τις φάσεις εισόδου καθώς και την τροποποίηση των γωνιακών αποκλίσεων μεταξύ των τάσεων εισόδου και εξόδου με σκοπό τη ρύθμιση των συντελεστών ισχύος και στις δύο πλευρές. Προς το παρόν καμιά τέτοια διάταξη δεν έχει ενσωματωθεί σε προγράμματα ανάπτυξης για προωστήριες διατάξεις ηλεκτρικών κινητήρων λόγω τεχνολογικών αδυναμιών υλοποίησης, παρόλο που σε διεθνή συνέδρια έχουν προταθεί αξιόλογες μέθοδοι ελέγχου (π.χ. μέθοδος Venturini) με πολύ θετικές προοπτικές. Παρόμοια με τους κυκλομετατροπείς, οι μεταγωγές καταστάσεων (από αγωγή σε σβέση και το αντίστροφο) των ηλεκτρονικών διακοπτών ενέχουν τον κίνδυνο βραχυκυκλωμάτων μεταξύ των φάσεων. Σχήμα 1.16. Μητροειδής μετατροπέας [1].

- 23 - Πίνακας 1.1. Συγκεντρωτική παρουσίαση διατάξεων ηλεκτρονικών ισχύος για ηλεκτρική πρόωση [1]. 1.5 Τεχνικές Ελέγχου Κινητήρων Πρόωσης ΕΡ O έλεγχος της ταχύτητας και της ροπής ενός κινητήρα ΕΡ είναι αρκετά πιο σύνθετος από την περίπτωση των κινητήρων ΣΡ, όπου η ροπή, Μ, προκύπτει ως μία ποσότητα ανάλογη του γινομένου του ρεύματος τυλίγματος διεγέρσεως (πεδίου), I F και του ρεύματος τυλίγματος τυμπάνου, I A : Μ= k I F I A ( 1.1 ) όπου k σταθερά που εξαρτάται από τα κατασκευαστικά χαρακτηριστικά της μηχανής Στη συνέχεια ακολουθεί μία συνοπτική περιγραφή όλων των μεθόδων ελέγχου κινητήρων ΕΡ με έμφαση σε αυτές που εφαρμόζονται σε κινητήρες ηλεκτροπρόωσης.

- 24 - Βαθμωτός έλεγχος ανοικτού ή κλειστού βρόχου V/F (scalar control): -μη εφαρμόσιμος στην περίπτωση της πρόωσης -: απλά ως αναφορά δίνεται η επιθυμητή μηχανική ταχύτητα χωρίς να λαμβάνεται μέτρηση της πραγματικής ταχύτητας. Η τάση μεταβάλλεται αναλογικά προς την επιθυμητή ταχύτητα σε μία προσπάθεια να μην μεταβάλλεται η ροπή. Σε μία παραλλαγή αυτής της μεθόδου, λαμβάνεται μέτρηση της πραγματικής ταχύτητας που συγκρινόμενη με την επιθυμητή ταχύτητα παράγει ένα σήμα σφάλματος. Το σήμα αυτό οδηγείται σε έναν ελεγκτή ΡΙ και παράγεται κατάλληλο σήμα εναύσεως των διακοπτών ισχύων. Το ίδιο σήμα ρυθμίζει και την τάση σε μία προσπάθεια να μην μεταβάλλεται η ροπή στον άξονα. Έλεγχος με SPWM και CSI (μαζί με συγκριτές υστερήσεως): η στιγμιαία τιμή του ρεύματος εισόδου ελέγχεται συνεχώς ώστε να κυμαίνεται μεταξύ δύο οριακών τιμών κατωφλίου. Σε κάθε προσπάθεια του ρεύματος να υπερβεί τα όρια αυτά, παράγεται σήμα από τον ελεγκτή PWM που δίνει εντολή στους διακόπτες να άγουν κατά τέτοιο τρόπο ώστε να αναιρεθεί η εν λόγω προδιάθεση του ρεύματος. Διανυσματικός έλεγχος (vector control): όπως προαναφέρθηκε, ο έλεγχος γίνεται όπως στη μηχανή ΣΡ ξένης διεγέρσεως, όπου η ροπή, Μ, προκύπτει ως μία ποσότητα ανάλογη του γινομένου του ρεύματος τυλίγματος διεγέρσεως (πεδίου), I F και του ρεύματος τυλίγματος τυμπάνου, I A : Μ= k I F I A ( 1.1 ) Στην μηχανή ΣΡ όμως τα δύο ηλεκτρομαγνητικά πεδία είναι σταθερά στο χώρο και σε 90 ο μεταξύ τους. Αντιθέτως, στις μηχανές ΕΡ, τα πεδία αφενός στρέφονται και αφετέρου η μεταξύ τους γωνία μεταβάλλεται με τις μεταβολές στις φορτίσεις. Είναι όμως μαθηματικά δυνατόν, να αποσυζευχθούν τα ρεύματα στάτη και δρομέα σε ένα πλαίσιο αναφοράς που στρέφεται είτε με την ταχύτητα του δρομέα είτε με οποιαδήποτε άλλη ταχύτητα κατά τρόπον ώστε να θεωρηθούν ακίνητα. Κάθε ρεύμα φάσεως αναλύεται σε δύο επιμέρους διανυσματικές συνιστώσες, τη συνιστώσα ευθέως άξονα (direct axis, d) και τη συνιστώσα εγκαρσίου άξονα (quadrature axis, q). Oι συνιστώσες αυτές είναι κάθετες μεταξύ τους και διατηρούνται ακίνητες ως προς το στρεφόμενο πλαίσιο αναφοράς. Σημειώνεται ότι ενώ αυτός ο μαθηματικός μετασχηματισμός αποσύζευξης ήταν γνωστός εδώ και 50 χρόνια τουλάχιστον, η υλοποίησή του, όμως με ηλεκτρονικά κυκλώματα σε πραγματικό χρόνο περιστροφής των κινητήρων κατέστη δυνατή μόλις τα τελευταία 15 χρόνια. Η μεθοδολογία του μετασχηματισμού αποσύζευξης διαφέρει με τον τύπο της μηχανής (σύγχρονη ή ασύγχρονη) όπως εξηγείται και στη συνέχεια. Γενικά έχουν αναπτυχθεί διάφορες παραλλαγές, ανάλογα με την εκλογή του στρεφόμενου πλαισίου αναφοράς από τις οποίες η πλέον διαδεδομένη είναι η μέθοδος ελέγχου με προσανατολισμό στο διάνυσμα της πεπλεγμένης ροής του δρομέα ή έλεγχος πεδίου (field control), που αναλύεται στη συνέχεια. Έλεγχος πεδίου (field control) Ως πλαίσιο αναφοράς εκλέγεται αυτό που στρέφεται με το διάνυσμα της πεπλεγμένης ροής του δρομέα, ( Σχήμα 1.17).

- 25 - Σχήμα 1.17. Πλαίσια αναφοράς για διανυσματικό έλεγχο κινητήρων ΕΡ (ds,qs): πλαίσιο αναφοράς στάτη (ακίνητο) (dr,qr): πλαίσιο αναφοράς δρομέα (στρεφόμενο με την ταχύτητα του δρομέα) (dmr,qmr): πλαίσιο αναφοράς μαγνητικής ροής δρομέα (στρεφόμενο με την ταχύτητα μαγνητικής ροής του δρομέα). της Στην περίπτωση σύγχρονης μηχανής, τα πλαίσια (dr,qr) και (dmr,qmr)συμπίπτουν. Ο διανυσματικός έλεγχος πεδίου του κινητήρα διακρίνεται περαιτέρω σε άμεσο και έμμεσο έλεγχο. Σύμφωνα με τη μεθοδολογία του άμεσου ελέγχου η μαγνητική ροή προσδιορίζεται είτε με απευθείας μέτρηση της, είτε με χρήση μαθηματικού μοντέλου μαγνητικής ροής. Αντιθέτως, κατά τον έμμεσο έλεγχο, η μαγνητική ροή υπολογίζεται έμμεσα από μετρήσεις άλλων μεγεθών καθώς μετρώνται τα ρεύματα στο τύλιγμα του στάτη και η ταχύτητα περιστροφής του δρομέα. Η ροπή του κινητήρα επαγωγής προκύπτει να είναι το γινόμενο δύο συνιστωσών του ρεύματος του στάτη, όπως αυτό αναλύεται στο πλαίσιο αναφοράς (dmr,qmr) που στρέφεται με το διάνυσμα της μαγνητικής ροής του δρομέα: Μ = k is, dmr is qmr ( 1.2 ) Σημειώνεται ότι η μέτρηση του διανύσματος μαγνητικής ροής (κατά μέτρο και γωνία) και δη στον στρεφόμενο δρομέα είναι εξαιρετικά δύσκολο να γίνει (υπεισέρχεται μεγάλο ποσοστό θορύβου, ενώ πρέπει να παρακολουθούνται συνεχώς οι μεταβολές των τιμών R και L των τυλιγμάτων διότι με την περιστροφή μεταβάλλονται λόγω θερμοκρασιακών μεταβολών). Ως μειονέκτημα της μεθόδου σημειώνεται ο μεγάλος αριθμός αισθητήρων, μετατροπέων και μετρητικών που πέραν της πολυπλοκότητας που εισάγουν, αυξάνουν το κόστος αλλά και τον χρόνο απόκρισης των διατάξεων ελέγχου. Επιπλέον, με τη μέθοδο του διανυσματικελέγχου η ροπή ελέγχεται μόνον με έμμεσο τρόπο χωρίς να αποφεύγονται και κραδασμοί (torque ripples). Απευθείας έλεγχος ροπής (direct torque control DTC): πρόκειται για ουσιαστική εξέλιξη της μεθόδου του διανυσματικού ελέγχου πεδίου (vector field control). Έτσι, και σε αυτήν την περίπτωση οι τάσεις και τα ρεύματα του στάτη μετρώνται και μετασχηματίζονται σε στρεφόμενο πλαίσιο αναφοράς, όμως μετράται ή καλύτερα υπολογίζεται η μαγνητική ροή στον στάτη καθώς επίσης και η τιμή της ροπής στον άξονα του κινητήρα. Από τη σύγκριση των μεγεθών μαγνητικής ροής και ροπής με τις επιθυμητές τους τιμές παράγονται τα σήματα

- 26 - ελέγχου των μετατροπέων (για έναυση και σβέση των διακοπτών). Η διαδικασία σύγκρισης στηρίζεται σε μη γραμμικές συναρτήσεις και έχει το πλεονέκτημα ότι αξιοποιεί τη διακριτή στον χρόνο συμπεριφορά των διακοπτών ισχύος αυξάνοντας τελικά τη συνολική απόδοση. Η τεχνική αυτή έχει ήδη αρχίσει να εφαρμόζεται σε πλοία με ηλεκτρική πρόωση και πιο συγκεκριμένα με αζιμουθιακό προωστήριο σύστημα σε συνδυασμό με σύγχρονο κινητήρα μονίμων μαγνητών (Azipod, εταιρεία ΑΒΒ) και κυκλομετατροπείς. H μέθοδος πλεονεκτεί έναντι του διανυσματικού ελέγχου, καθώς ελέγχει απευθείας τη ροπή εξόδου του κινητήρα, έχει πολύ μικρότερες απαιτήσεις σε μετρήσεις και υπολογισμούς μεγεθών (π.χ. δεν είναι απαραίτητη η μέτρηση της ταχύτητας περιστροφής) ενώ η παραγόμενη ροπή είναι πλέον εφικτό να μην εμπεριέχει μεγάλες αιχμές (torque ripples). 1.6 Συνεργασία έλικα και κινητήρα πρόωσης Στα πλεονεκτήματα της ηλεκτρικής πρόωσης συγκαταλέγεται και η ουσιαστική μείωση του αξονικού συστήματος των πλοίων, ( Σχήμα. 1.18). Σχήμα 1.18. Συγκριτική παρουσίαση αξονικών συστημάτων πλοίων [1]. 1 = Συμβατική Πρόωση με Αξονικό Σύστημα 2 = IFEP-Σύστημα Πρόωσης 3 = IFEP-Pod Σύστημα Πρόωσης (με αζιμουθιακό προωστήρα)

- 27 - Τα συστήματα ηλεκτρικής πρόωσης έχουν το πλεονέκτημα συνεχούς μεταβολής των στροφών σχεδόν σε όλο το διάστημα 0-100%. Επιπλέον, το 100% της ροπής μπορεί συνήθως να χρησιμοποιηθεί σε όλο το πεδίο λειτουργίας. Για λόγους ασφαλείας, η έλικα κινείται από δύο (ή και περισσότερους) ηλεκτροκινητήρες ίσης ισχύος. Όσον αφορά την έλικα ως μηχανικό φορτίο, ακολουθεί τον λεγόμενο «νόμο της έλικας» δηλ. η μηχανική ροπή ανάλογη του τετραγώνου της μηχανικής ταχύτητας όπως περίπου και οι φυγοκεντρικές αντλίες και οι ανεμιστήρες, αλλά μπορεί η χαρακτηριστική αυτή να είναι σταθερή (έλικα σταθερού βήματος) ή να μεταβάλλεται με αλλαγή της κλίσης των πτερυγίων της (έλικα μεταβλητού βήματος). 1.6.1 Έλικα Σταθερού Βήματος Καθώς η υπερτάχυνση δέν είναι δυνατή, η έλικα σχεδιάζεται έτσι ώστε να απορροφά τη μέγιστη συνεχή ισχύ (σημείο MCR) σε κατάσταση δοκιμών, δηλ. πλήρες φορτίο, καθαρή γάστρα και ήρεμο καιρό. Προκειμένου να είναι δυνατή η λειτουργία με πλήρη ισχύ σε δυσμενείς συνθήκες, το σύστημα πρόωσης συνήθως υπολογίζεται για τιμή κατά 10-20% μεγαλύτερη της ονομαστικής, χωρίς αύξηση της ισχύος πέρα από τη μέγιστη συνεχή (MCR). Αυτό σημαίνει υπερδιαστασιολόγηση έλικας αξονικού συστήματος - μειωτήρα - κινητήρα - μετατροπέα κατά 10-20%. Το σχήμα 1.19 απεικονίζει τις καμπύλες απαιτουμένης ισχύος σε διάφορες καταστάσεις, καθώς και τα όρια του πεδίου λειτουργίας με έναν ή δύο ηλεκτροκινητήρες συνδεδεμένους στην ίδια έλικα. Σχήμα 1.19. Πεδίο λειτουργίας με έναν ή δύο ηλεκτροκινητήρες πρόωσης και έλικα σταθερού βήματος [1].

- 28-1.6.2 Έλικα Ρυθμιζομένου Βήματος Το σύστημα είναι συχνά (ή θα έπρεπε να είναι) εφοδιασμένο με διάταξη αυτόματης επιλογής του συνδυασμού βήματος - στροφών έλικας στο διάστημα 65-100% των στροφών, ώστε να εξασφαλίζεται η βέλτιστη λειτουργία και η καλύτερη δυνατή απόκριση κατά τους χειρισμούς. Όταν η έλικα είναι ρυθμιζομένου βήματος δεν απαιτείται περιθώριο ροπής, διότι η μέγιστη ισχύς μπορεί σχεδόν πάντοτε να απορροφηθεί με ρύθμιση του βήματος. Σχήμα 1.20. Πεδίο λειτουργίας με έναν ή δύο ηλεκτροκινητήρες πρόωσης και έλικα ρυθμιζομένου βήματος [1]. Το σχήμα 1.20 απεικονίζει την καμπύλη της έλικας που προκύπτει με διάταξη αυτόματης επιλογής του συνδυασμού βήματος - στροφών, καθώς και τα όρια του πεδίου λειτουργίας με έναν ή δύο ηλεκτροκινητήρες συνδεδεμένους στην ίδια έλικα. 1.6.3 Το Αζιμουθιακό Προωστήριο Σύστημα (POD) Την τελευταία δεκαετία και παράλληλα με την εισαγωγή της ηλεκτρικής πρόωσης εμφανίστηκε μία εναλλακτική λύση για το προωστήριο σύστημα που έχει πολλαπλά πλεονεκτήματα. Πιο συγκεκριμένα, το σύστημα ηλεκτρικού κινητήρα και έλικας είναι μία ενιαία μονάδα, εμβαπτισμένη στο νερό στο πρυμναίο μέρος του πλοίου, όπως στις εξωλέμβιες, ( Σχήματα 1.21 και 1.22). Το σύστημα μπορεί να φέρει μία ή δύο έλικες και έχει τη δυνατότητα να στρέφεται σχεδόν κατά 360 ο κατά την αζιμουθιακή διεύθυνση (από όπου προέρχεται και το όνομά του), δηλαδή στο οριζόντιο επίπεδο, αυξάνοντας σε μεγάλο βαθμό τις δυνατότητες ελιγμών του πλοίου, ενώ αφενός πρακτικά εκμηδενίζεται το αξονικό σύστημα και αφετέρου δεν υφίσταται μηχανισμός πηδαλίου.

- 29 - Σχήμα 1.21. Αζιμουθιακό προωστήριο σύστημα με μία έλικα (Azipod-εταιρία ΑΒΒ Marine) παρόμοιο είναι και το σύστημα Mermaid των εταιριών Kamewa Alstom [4]. Σχήμα 1.22. Αζιμουθιακό προωστήριο σύστημα με δύο έλικες (σύστημα SSP, εταιρίες Siemens-Schottel) [5]

- 30-1.7 Πλεονεκτήματα Μειονεκτήματα ηλεκτροπρόωσης [1]. Τα κυριότερα πλεονεκτήματα της ηλεκτρικής πρόωσης, στα οποία οφείλεται και η διάδοσή της στις εφαρμογές που προαναφέρθηκαν, είναι τα ακόλουθα: Συνεχής μεταβολή της ταχύτητας περιστροφής της έλικας και της ταχύτητας του πλοίου σε όλο το πεδίο 0-100 %. Γρήγορη απόκριση κατά τη διάρκεια χειρισμών και δυναμικής τοποθέτησης του σκάψους. Χαμηλή στάθμη θορύβου και κραδασμών. Οικονομία καυσίμου, καθώς είναι δυνατή η επιλογή των μηχανών που θα λειτουργούν έτσι, ώστε η κάθε μιά να λειτουργεί κοντά στο βέλτιστο σημείο. Ελευθερία στην τοποθέτηση των επιμέρους μηχανημάτων του ενεργειακού συστήματος, που προσφέρει ευελιξία στον σχεδιασμό του σκάφους και εξοικονόμηση ωφέλιμου χώρου. Πλήρης εκμετάλλευση της στρεπτικής ροπής σε όλο το πεδίο λειτουργίας. Ευκολία αυτοματισμού. Αυξημένη αξιοπιστία (πολλά συστήματα συνδεδεμένα παράλληλα) και, επομένως, αυξημένη ασφάλεια. Περιορισμός των εκπεμπομένων ρύπων διότι: α. Η κατανάλωση καυσίμου είναι μικρότερη, όπως αναφέρθηκε προηγουμένως, β. Ιδιαίτερα οι εκπομπές ΝΟ x είναι αισθητά χαμηλότερες όταν, π.χ., ένας μεσόστροφος κινητήρας Diesel λειτουργεί με σταθερές στροφές, όπως συμβαίνει στα νέα συστήματα ηλεκτρικής πρόωσης. Περιορισμός του κινδύνου ρύπανσης του περιβάλλοντος από ατυχήματα όπως αυτά των δεξαμενοπλοίων, χάρη στην ταχύτερη απόκριση του συστήματος κατά τους χειρισμούς και τη δυναμική τοποθέτηση του σκάφους. Μειονεκτήματα της ηλεκτρικής πρόωσης είναι τα εξής: - Υψηλό κόστος επένδυσης. Γι αυτό γίνεται η προσπάθεια να μειωθεί κατά το δυνατόν, αξιοποιώντας την υπάρχουσα τεχνολογία των ηπειρωτικών ηλεκτρικών δικτύων (Commercial Off The Shelf COTS), ωστόσο το υψηλό κόστος των κινητήρων και των διατάξεων ελέγχου τους δεν δείχνει να προσπεραστεί εύκολα. - Υψηλώτερες απώλειες στο σύστημα μετάδοσης της κίνησης, σε σύγκριση με το μηχανικό σύστημα. Π.χ., σε συμβατικό σύστημα κινητήρα Diesel - έλικα ρυθμιζομένου βήματος, οι απώλειες του συστήματος μετάδοσης είναι περίπου 4%: 2% στην έλικα και 2% στον

- 31 - μειωτήρα, όταν η έλικα λειτουργεί στον βέλτιστο συνδυασμό ταχύτητας / βήματος. Σε εγκατάσταση ντηζελο-ηλεκτρικής πρόωσης, το σύστημα μετάδοσης προκαλεί απώλειες 7-8%: 3% στις γεννήτριες, 2% στους μετασχηματιστές και μετατροπείς συχνότητας και 2-3% στους προωστήριους ηλεκτροκινητήρες. Επομένως, ο ολικός βαθμός απόδοσης είναι υψηλότερος στο σύστημα ηλεκτρικής πρόωσης μόνον όταν κάθε μηχανή λειτουργεί σε σταθερή ταχύτητα περιστροφής και επί μεγάλα χρονικά διαστήματα στη βέλτιστη περιοχή. - Ένα πρόβλημα που προκύπτει από την εκτεταμένη χρησιμοποίηση των διατάξεων ηλεκτρονικών ισχύος είναι ότι εμφανίζονται προβλήματα ποιότητας ηλεκτρικής ενέργειας, καθώς πέραν των χρήσιμων συχνοτήτων αναπτύσσεται και μεγάλο πλήθος αρμονικών συνιστωσών ρεύματος και τάσεως. Οι αρμονικές αυτές αφενός προσαυξάνουν τη συνολική κυκλοφορούσα άεργο ισχύ στο ηλεκτρικό δίκτυο αλλά επιπλέον δημιουργούν προβλήματα ηλεκτρομαγνητικής συμβατότητας. Έτσι ο ηλεκτρομαγνητικός θόρυβος που παράγεται επηρεάζει αρνητικά όλες τις ευαίσθητες ηλεκτρονικές διατάξεις πρωτίστως τα κυκλώματα ελέγχου των ίδιων των ηλεκτρονικών ισχύος ενώ σε περιπτώσεις στρατιωτικών εφαρμογών αυξάνει τα επίπεδα της ηλεκτρομαγνητικής υπογραφής των πλοίων. Τέλος, είναι δυνατόν οι αρμονικές παραμορφώσεις των ηλεκτρικών μεγεθών να διεγείρουν ιδιοσυχνότητες για ηλεκτρομηχανικών ταλαντώσεων, όπως είναι τα φαινόμενα σιδηροσυντονισμού στους δρομείς των σύγχρονων γεννητριών παραγωγής ηλεκτρικής ενέργειας. Η σειρά αυτή των προβλημάτων λόγω της εξηλέκτρισης των συστημάτων του πλοίου αντιμετωπίζεται με εξειδικευμένες αναλύσεις και μελέτες κυρίως κατά της φάση της σχεδίασης τους ηλεκτρολογικού συστήματος. Σε πολλές εφαρμογές, η συνισταμένη πλεονεκτημάτων - μειονεκτημάτων είναι θετική, οπότε η ηλεκτρική πρόωση είναι η ενδεδειγμένη λύση, οδηγώντας σε χαμηλότερο κόστος λειτουργίας (μειωμένο πλήρωμα, οικονομικότερη συντήρηση, γρηγορότερα ταξίδια, μη αναγκαιότητα ρυμούλκησης κοκ). 1.8. Συμπεράσματα Η ηλεκτροπρόωση αποτελεί μία αρκετά δελεαστική επιλογή για τα πλοία που συνεχώς κερδίζει έδαφος τα τελευταία χρόνια μεταξύ των άλλων λόγω και της γενικά εντατικής εξέλιξης όλων των ηλεκτρικών και ηλεκτρονικών συστημάτων και κυρίως στον τομέα των διατάξεων ελέγχου των ηλεκτρικών κινητήρων και των ηλεκτρονικών ισχύος. Η έρευνα κατά την τρέχουσα περίοδο επικεντρώνεται στη μείωση του αρχικού κόστους επένδυσης αλλά και στην αύξηση των επιδόσεων του συνολικού συνδυασμού των διατάξεων που αξιοποιούνται από συστήματα ηλεκτροπρόωσης.

- 32 -

- 33 - ΚΕΦΑΛΑΙΟ 2 Περιορισμός ταχύτητας σε σκάφη εκτοπίσματος και γενικά θέματα ισχύος [6],[7] 2.1 Περιορισμός ταχύτητας [6] Μπορεί ο άνθρωπος να έσπασε το φράγμα του ήχου, εκείνο όμως που δεν κατόρθωσε μέχρι σήμερα, είναι να σπάσει το φράγμα της θεωρητικής ταχύτητας της γάστρας ενός σκάφους εκτοπίσματος. Σκάφος εκτοπίσματος είναι το σκάφος που ταξιδεύει σε συμβατική πλεύση (δηλαδή δεν πλανάρει λόγω σχήματος γάστρας). Η λειτουργία του βασίζεται στην αρχή του Αρχιμήδη, δηλαδή το βάρος του, είναι ίσο με το βάρος του νερού που εκτοπίζει. Καθώς ένα σκάφος εκτοπίσματος κινείται μέσα στο νερό, η γάστρα του δημιουργεί κύματα, που ταξιδεύουν και αυτά μαζί του, με την ίδια σχεδόν ταχύτητα. Γενικά όσο πιο βαρύ είναι το σκάφος, τόσο πιο βαθύ είναι το κοίλωμα μεταξύ των κορυφών των κυμάτων, που δημιουργούνται από τη διέλευσή του. Όσο πιο γρήγορα «ταξιδεύει το κύμα, τόσο πιο μεγάλη είναι η περίοδός του ή, πιο αναλυτικά, η απόσταση μεταξύ των κορυφών δύο συνεχόμενων κυμάτων. Έτσι, καθώς η ταχύτητα του σκάφους μεγαλώνει, ο αριθμός των κυμάτων που δημιουργούνται μικραίνει, αφού η περίοδός τους μεγαλώνει. Κάποια στιγμή, με την αύξηση της ταχύτητας, το σκάφος θα ταξιδεύει στο κοίλωμα ενός κύματος, του οποίου η μια κορυφή βρίσκεται στην πλώρη και η άλλη στην πρύμη. Το κύμα αυτό κρατάει το σκάφος μας «αιχμάλωτο». Σχήμα 2.1. Κύματα που δημιουργεί το σκάφος όταν ταξιδεύει [6].

- 34 - Μετά από πολλές έρευνες, ο άνθρωπος κατόρθωσε να προσδιορίσει την ταχύτητα του κύματος, που είναι η ρίζα της απόστασης μεταξύ δύο κορυφών σε μέτρα, πολλαπλασιασμένη επί 2,43. Σύμφωνα με τα παραπάνω, ένα κύμα μήκους 8 μέτρων «ταξιδεύει» με ταχύτητα 6,87 κόμβους, ενώ ένα μεγαλύτερο, 12 μέτρων ας πούμε, «τρέχει» με 8,41 κόμβους σύμφωνα με τον τύπο: Ταχύτητα κύματος = 2,34 x ( μήκος κύματος ) 1/2 ( 2.1 ) Το κύμα δημιουργείται από τη γάστρα και την αντίσταση, που προβάλλει στο νερό. Όταν το σκάφος φτάσει το μέγιστο της ταχύτητάς του δημιουργείται ένα και μοναδικό κύμα. Άρα το σκάφος θα φτάσει μια ταχύτητα ίση με εκείνη του κύματος, που το ίδιο δημιουργεί. Είναι μια ταχύτητα, που εξ ορισμού δεν μπορεί να υπερβεί. Έτσι η ταχύτητα αυτή είναι και η μέγιστη θεωρητική ταχύτητα του σκάφους. Για να προσδιοριστεί αυτή η ταχύτητα αντικαθιστούμε στην εξίσωση ( 2.1 ) την ταχύτητα κύματος με την ταχύτητα σκάφους και το μήκος κύματος με το μήκος της ισάλου του σκάφους μας, δηλαδή: Ταχύτητα σκάφους = 2,34 x ( μήκος ισάλου ) 1/2 ή καλύτερα Vr = 2,34 x ( LWL ) 1/2 ( 2.2 ) Σχήμα 2.2 Στο 1/3 της θεωρητικής ταχύτητας θα υπάρχουν 3 κύματα κατά μήκος της ισαλογραμμής [6].

- 35 - O παραπάνω τρόπος είναι ενδεικτικός των δυνατοτήτων ενός σκάφους εκτοπίσματος και χρησιμοποιείται για τη μέτρηση της θεωρητικής ή σχετικής ταχύτητας, όταν συγκρίνουμε δύο σκάφη του ίδιου τύπου. Παρατηρούμε ότι όσο μεγαλύτερο είναι το δυνατότητες ταχύτητας έχει ένα σκάφος. μήκους του ισάλου τόσο περισσότερες Όλα όσα αναφέραμε αφορούν, βέβαια, τη συμβατική πλεύση και όχι το πλανάρισμα. Πολλές φορές ακόμα και σκάφη εκτοπίσματος πλανάρουν για λίγο, όταν για παράδειγμα βρίσκονται στην κορυφή ενός κύματος και αρχίζουν να κατεβαίνουν προς το κοίλωμα. Σχήμα 2.3. Καθώς το σκάφος επιταχύνεται και φτάνει στο 1/2 περίπου της θεωρητικής ταχύτητας, τα κύματα επιταχύνονται αντίστοιχα, το μήκος μεγαλώνει και ο αριθμός τους μειώνεται σε 2 [6]. Επίσης, τα σύγχρονα ελαφρά ιστιοφόρα με μεγάλη ιστιοφορία μπορούν να υπερβούν αρκετά τη θεωρητική ταχύτητα της γάστρας στα πρύμα με μπαλόνι. Αυτές όμως δεν θεωρούνται συμβατικές πλεύσεις σκάφους βαρέος εκτοπίσματος, όπως είναι ο ναυπηγικός όρος. Το ό,τι τα σκάφη αυτά «εκτοπίζουν» συνεχώς ένα βαρύ «τμήμα νερού» είναι και ο λόγος, που τους δόθηκε ο συγκεκριμένος όρος, σε αντίθεση με εκείνα μεσαίου και ελαφρού εκτοπίσματος, τα οποία επίσης λέγονται σκάφη ημιπλαναρίσματος και πλαναρίσματος αντίστοιχα. Τα πρακτικά οφέλη από τη γνώση της θεωρητικής ή σχετικής ταχύτητας ενός σκάφους είναι ότι ο ιδιοκτήτης ή κυβερνήτης ενός ιστιοφόρου μπορεί να προσδιορίσει με μεγάλη ακρίβεια την ταχύτητα, με την οποία ταξιδεύει το σκάφος του ανά πάσα στιγμή, χωρίς να κοιτάξει καν το δρομόμετρο. Επίσης αυτό είναι πολύ εύκολο να γίνει από έναν παρατηρητή εκτός σκάφους. Για παράδειγμα αν παρατηρηθούν 2 κύματα να σχηματίζονται από πλώρη μέχρι πρύμη, το