Dielectric Wave Guide

Σχετικά έγγραφα
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Multi-dimensional Central Limit Theorem

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Multi-dimensional Central Limit Theorem

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Drude Model for dielectric constant of metals.

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Solution Set #2

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

1 Complete Set of Grassmann States

Second Order RLC Filters

Note: Please use the actual date you accessed this material in your citation.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

[1] P Q. Fig. 3.1

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Math221: HW# 1 solutions

Homework 8 Model Solution Section

α & β spatial orbitals in

Class 03 Systems modelling

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

Example Sheet 3 Solutions

CRASH COURSE IN PRECALCULUS

CYLINDRICAL & SPHERICAL COORDINATES

1 String with massive end-points

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Matrices and Determinants

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Finite Field Problems: Solutions

2 Composition. Invertible Mappings

Second Order Partial Differential Equations

6.4 Superposition of Linear Plane Progressive Waves

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 7.6 Double and Half Angle Formulas

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Trigonometric Formula Sheet

Inverse trigonometric functions & General Solution of Trigonometric Equations

If we restrict the domain of y = sin x to [ π 2, π 2

Every set of first-order formulas is equivalent to an independent set

Monochromatic Radiation is Always 100% Polarized

The Simply Typed Lambda Calculus

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lifting Entry (continued)

PARTIAL NOTES for 6.1 Trigonometric Identities

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Numerical Analysis FMN011

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Aperture Radiation: Huygen s Equation

Derivation of Tranformation Parameter Computation for a 2D/3D Coordinates System from Laser Scanner Coordinates to Camera Coordinates

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Graded Refractive-Index

What happens when two or more waves overlap in a certain region of space at the same time?

C.S. 430 Assignment 6, Sample Solutions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Sampling Basics (1B) Young Won Lim 9/21/13

ST5224: Advanced Statistical Theory II

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Lecture 2. Soundness and completeness of propositional logic

Mean-Variance Analysis

Phasor Diagram of an RC Circuit V R

Chapter 7 Transformations of Stress and Strain

Capacitors - Capacitance, Charge and Potential Difference

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

derivation of the Laplacian from rectangular to spherical coordinates

Section 9.2 Polar Equations and Graphs

6.003: Signals and Systems. Modulation

( y) Partial Differential Equations

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

On a four-dimensional hyperbolic manifold with finite volume

Partial Differential Equations in Biology The boundary element method. March 26, 2013

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fractional Colorings and Zykov Products of graphs

Trigonometry 1.TRIGONOMETRIC RATIOS

Forced Pendulum Numerical approach

EE101: Resonance in RLC circuits

Example 1: THE ELECTRIC DIPOLE

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Part 4 RAYLEIGH AND LAMB WAVES

Approximation of distance between locations on earth given by latitude and longitude

8.324 Relativistic Quantum Field Theory II

Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.

EE512: Error Control Coding

5. Choice under Uncertainty

Quadratic Expressions

Transcript:

Electrmagnetc Fels Delectrc Wave Gue A electrc wavegue s a structure whch eplts ttal reflectn at electrc nterfaces t gue electrmagnetc raatn. The smplest case s the symmetrc electrc slab wave gue clang y cre 1 clang Fr guance ne must have > 1 Amangawa, 006 Dgtal Maestr Seres 10

Electrmagnetc Fels Smlarly t the parallel plate wavegue, we assume prpagatn alng the rectn an unfrm cntns alng the yrectn. Gue waves are launche wth angle f ncence larger than the crtcal angle, s that ttal (nternal) reflectn takes place. Waves launche at smaller angles suffer partal refractn nt the clang an eventually the pwer n the cre regn wll sappear fr suffcently lng wave gues. θ > θ c θ < θ c Amangawa, 006 Dgtal Maestr Seres 11

Electrmagnetc Fels We cnser agan TE an TM mes. Only certan angles f ncence are allwe, but here the reflectn ceffcent fr ttal reflectn s a cmple quantty, ntrucng a phase shft n the reflecte fel, whch epens n the angle f ncence. In the case f metal plates, nstea, there s always a phase shft f 180 fr the tangental electrc fel. In rer fr the angle t be accepte, the wave nees t establsh a selfcnsstent cnstructve nterference pattern fr any pnt nse the cre, as ncate n the fgure belw A θ θ Amangawa, 006 Dgtal Maestr Seres 1

Electrmagnetc Fels Cnser a pnt A n the cre f the wave gue an a wave frnt mvng frm t reachng pnt B. The phase shft fr the phase planes mvng frm A t B s π ϕ1 = β1 ABcsθ = AB csθ λ / B r1 A θ θ AB csθ θ C λ s the wavelength n vacuum at the gven frequency f peratn. Amangawa, 006 Dgtal Maestr Seres 13

Electrmagnetc Fels The wave frnt reflecte at pnt B eperences a phase jump equal t the phase f the cmple reflectn ceffcent. Assumng a TE wave, r perpencular plaratn, ϕ = Γ ( E) = B = csθ j sn θ 1 1 1 csθ j sn θ 1 1 1 csθ j sn θ ( ) θ + j θ 1/ 1 csθ j sn θ + + = cs sn / / / / 1 = tan 1 sn θ 1/ csθ Amangawa, 006 Dgtal Maestr Seres 14

Electrmagnetc Fels Then, the reflecte wave eperences a phase shft when mvng frm B t C π ϕ3 = β1 BCcsθ = BCcsθ λ / r1 B BC csθ A θ θ θ C Amangawa, 006 Dgtal Maestr Seres 15

Electrmagnetc Fels The wave frnt reflecte at pnt C eperences agan a phase jump equal t the phase f the cmple reflectn ceffcent. Fr a symmetrc wavegue ϕ = ϕ 1 1csθ + j sn θ 1 ϕ 4 = Γ ( E) C = 1 1csθ j sn θ 1 = 4 tan sn θ 1 1 csθ Amangawa, 006 Dgtal Maestr Seres 16

Electrmagnetc Fels The reflecte wave eperences a phase shft mvng frm C back t A π ϕ5 = β1 CAcsθ = CAcsθ λ / r1 B CA csθ A θ θ C Amangawa, 006 Dgtal Maestr Seres 17

Electrmagnetc Fels Fr cnstructve nterference (selfcnsstency), the sum f all the phase shft cmpnents must be equal t a multple f π π ( AB + BC + CA) csθ + ϕ + ϕ4 = mπ, λ/ r1 m = 0, 1, wth ( AB BC CA) + + = λ π / r1 csθ mπ = tan sn θ 1 1 csθ m = 0, 1, Amangawa, 006 Dgtal Maestr Seres 18

Electrmagnetc Fels Takng the tangent f all terms we btan the characterstc equatn fr the TE mes. π tan cs =, m = 0, 1, λ sn θ r1 mπ θ 1 csθ In terms f even an slutns, we can rewrte tan π = r1 csθ = λ = f ( csθ ) sn θ Even mes 1 g(csθ ) m = 0,, csθ O mes csθ 1 m = 1, 3, g(csθ ) sn θ 1 Amangawa, 006 Dgtal Maestr Seres 19

Electrmagnetc Fels The characterstc equatn fr TM mes s btane by usng the reflectn ceffcent fr parallel plaratn n the ervatn π tan cs =, m = 0, 1, λ θ r, n terms f even an slutns tan sn θ r1 mπ θ 1 ( / 1) cs π sn θ Even mes 1 = g(csθ ) m = 0,, r1 ( / 1) csθ O mes ( / ) cs 1 m = 1, 3, c g(csθ ) csθ = λ 1 θ = f ( sθ ) sn θ 1 Amangawa, 006 Dgtal Maestr Seres 0

Electrmagnetc Fels tan ( θ ) ( f ) cs Eample f graphcal slutn f the characterstc equatn fr the mes n a symmetrc slab electrc wave gue m = 0 θ = g π ( θ ) cs m = m = 1 m = 3 m = 4 θ m = 5 m = = θ g c 6 1 cs csθ ( θ ) Amangawa, 006 Dgtal Maestr Seres 1

Electrmagnetc Fels The cut-ff frequences fr the mes are btane by bservng that at cut-ff the angle f ncence s mnmum (crtcal angle). At the crtcal angle, the characterstc equatn s TE ) TM ) sn θ c π tan r1 mπ cs 1 θc = = 0 λc csθc sn θ c π tan r1 mπ csθ 1 c = = 0 λc ( / 1 ) csθ c fr bth TE an TM mes snce 1 1 π r1 mπ csθ c = λ c θ = sn c Amangawa, 006 Dgtal Maestr Seres

Electrmagnetc Fels The cut-ff wavelengths (reference t free space as usual n ptcal wave gues) an the crrespnng cut-ff frequences fr the gue mes are λ θ θ m m r1 1 r = = r1 r m m r1 1 cs r c = c = 1 sn c r1 f c mc = = λ c r1 r, m = 0, 1, The funamental mes are the TE 0 an the TM 0 wth er cut-ff frequency. TE an TM mes wth the same ne frm egenerate pars wth entcal cut-ff frequences. Amangawa, 006 Dgtal Maestr Seres 3

Electrmagnetc Fels Fel epressns Even TE mes α ( /) cs 1 / E e e cs( 1 ) Ey = E β e α ( ) ( /) cs 1 / + E β e e 0 1 O TE mes α ( /) sn 1 / E e e sn ( 1 ) Ey = E β e α ( ) ( /) sn 1 / + E β e e 0 1 Amangawa, 006 Dgtal Maestr Seres 4

Electrmagnetc Fels Even TM mes α ( /) cs 1 / H e e cs ( 1 ) Hy = H β e α ( ) ( /) cs 1 / + H β e e 0 1 O TM mes α ( /) sn 1 / H e e sn ( 1 ) Hy = H β e α ( ) ( /) sn 1 / + H β e e jβ jβ 0 1 Amangawa, 006 Dgtal Maestr Seres 5

Electrmagnetc Fels In meum 1 ( β ) 1 = β1 + β = ω µ r1 In meum ( β ) = α + β = ω µ r We have β = β snθ 1 β = β csθ 1 1 Fr each me the angle f ncence s btane frm the slutn f the characterstc equatn. Amangawa, 006 Dgtal Maestr Seres 6

Electrmagnetc Fels Eamples f prfles fr the transverse electrc fel f TE mes. TM mes have smlar prfles fr the magnetc fel. f just abve cut-ff f >> f c attenuatn TE 0 attenuatn attenuatn TE 1 attenuatn Amangawa, 006 Dgtal Maestr Seres 7

Electrmagnetc Fels f just abve cut-ff f >> f c attenuatn TE attenuatn attenuatn TE 3 attenuatn Amangawa, 006 Dgtal Maestr Seres 8

Electrmagnetc Fels Electrc Fel f TE me n electrc wave gue splls ver nt the clang where t ecays epnentally Electrc Fel f TE mes n parallel plate wave gue ges t er at the metal bunares Amangawa, 006 Dgtal Maestr Seres 9

Electrmagnetc Fels Magnetc fel cmpnents fr TE mes are btane frm Faraay s law E =jω µ H ˆ ˆ ˆ Ey = jωµ H y et E E = jωµ H y = 0 y E = 0 Ey E = 0 Ey =jωµ H Amangawa, 006 Dgtal Maestr Seres 30

Electrmagnetc Fels Fr eample, the transverse magnetc fel cmpnent s prprtnal t the (transverse) electrc fel. In the gue cre: E = jωµ H y ( ) Even) Ecs β1 e =jω µ H ( ) O) Esn β1 e βe ( ) cs β1 e (Even) β ωµ H = Ey = ωµ βe ( ) sn β1 e (O) ω µ Amangawa, 006 Dgtal Maestr Seres 31

Electrmagnetc Fels Electrc fel cmpnents fr TM mes are btane frm Ampere s law H = jω E ˆ ˆ ˆ H E y y = jω et H H = 0 = jω E y H =0 H y H =0 H y= jωe y Net, s a summary f all the fel cmpnents parallel t the plane f ncence. Amangawa, 006 Dgtal Maestr Seres 3

Electrmagnetc Fels Even TE mes β ωµ 1 ( β ω µ ) cs ( β ) 1 1 ( /) E cs / e e H = E e β ωµ ( + /) E cs / e e α α 0 1 jα ωµ 1 ( β ω µ ) sn ( β ) 1 1 1 ( /) E cs / e e H = j E e jα ωµ ( + /) E cs / e e α α 0 1 Amangawa, 006 Dgtal Maestr Seres 33

Electrmagnetc Fels O TE mes β ωµ 1 ( β ω µ ) sn ( β ) 1 1 ( /) E sn / e e H = E e β ωµ ( + /) E sn / e e α α 0 1 jα ωµ 1 ( β ω µ ) cs ( β ) 1 1 1 ( /) E sn / e e H = j E e jα ωµ ( + /) E sn / e e α α 0 1 Amangawa, 006 Dgtal Maestr Seres 34

Electrmagnetc Fels Even TM mes E β ω 1 ( β ω ) H cs ( β ) 1 1 β ω 1 ( /) H cs / e e ( + /) H cs / e e α = α e 0 1 E jα ω 1 ( β ω ) sn ( β ) 1 1 1 1 ( /) H cs / e e = j H e jα ω ( + /) H cs / e e α α 0 1 Amangawa, 006 Dgtal Maestr Seres 35

Electrmagnetc Fels O TM mes β ω 1 ( β ω ) sn ( β ) 1 1 1 ( /) H sn / e e E = H e β ω ( + /) H sn / e e α α 0 1 jα ω 1 ( β ω ) cs ( β ) 1 1 1 1 ( /) H sn / e e E = j H e jα ω ( + /) H sn / e e α α 0 1 Amangawa, 006 Dgtal Maestr Seres 36

Cnser a wave enterng the en f the wave gue frm ar. r Electrmagnetc Fels θ r1 θ t θ r A classcal prblem f ptcal wavegues s t etermne the mamum angle f entrance θ that satsfes the cntn f ttal nternal reflectn (guance). Amangawa, 006 Dgtal Maestr Seres 37

Electrmagnetc Fels r θ = θ c θ m The crtcal angle at the cre/clang r1 r nterface s reache when the angle n ar s the mamum angle permttng guance. θ > θ m r r1 r θ < θ c When the angle n ar ecees the mamum value necessary fr guance, transmssn (leakage) nt the clang takes place. Amangawa, 006 Dgtal Maestr Seres 38

Electrmagnetc Fels At the arcre nterface snθ t = 1 sn θ rar snθ = r1 r1 θ + θ = 90 csθ = snθ t t θ t θ At the crtcal angle snθ = snθ = c r r1 sn = 1 cs = 1 sn = 1 = θ r tm θtm θc r1 snθ = = m r1 r 1 m = sn r1 r θ numercal aperture sn θ r1 m Amangawa, 006 Dgtal Maestr Seres 39