Probability theory STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (2016) Basic probability theory. One-dimensional random variables

Σχετικά έγγραφα
Oscillatory integrals

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

FORMULAS FOR STATISTICS 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Solution Series 9. i=1 x i and i=1 x i.

ST5224: Advanced Statistical Theory II

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistical Inference I Locally most powerful tests

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Fractional Colorings and Zykov Products of graphs

Solutions_3. 1 Exercise Exercise January 26, 2017

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Other Test Constructions: Likelihood Ratio & Bayes Tests

Problem Set 3: Solutions

Biostatistics for Health Sciences Review Sheet

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Inverse trigonometric functions & General Solution of Trigonometric Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

An Inventory of Continuous Distributions

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

2 Composition. Invertible Mappings

Second Order Partial Differential Equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

EE512: Error Control Coding

Probability and Random Processes (Part II)

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Stationary Stochastic Processes Table of Formulas, 2017

Solutions to Exercise Sheet 5

6.3 Forecasting ARMA processes

Uniform Convergence of Fourier Series Michael Taylor

Stationary Stochastic Processes Table of Formulas, 2016

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

Homework 8 Model Solution Section

Quadratic Expressions

Congruence Classes of Invertible Matrices of Order 3 over F 2

6. MAXIMUM LIKELIHOOD ESTIMATION

Exercises to Statistics of Material Fatigue No. 5

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

SPECIAL FUNCTIONS and POLYNOMIALS

Areas and Lengths in Polar Coordinates

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

The tables gives expressions for VaR p (X) and ES p (X) when X is an absolutely continuous random variable specified by the stated pdf and cdf.

Homomorphism of Intuitionistic Fuzzy Groups

F19MC2 Solutions 9 Complex Analysis

Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

Exercise 2: The form of the generalized likelihood ratio

Theorem 8 Let φ be the most powerful size α test of H

12. Radon-Nikodym Theorem

Homomorphism in Intuitionistic Fuzzy Automata

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Errata for Introduction to Statistical Signal Processing by R.M. Gray and L.D. Davisson

5.4 The Poisson Distribution.

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

INTEGRAL INEQUALITY REGARDING r-convex AND

Gaussian related distributions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SOME PROPERTIES OF FUZZY REAL NUMBERS

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Solution to Review Problems for Midterm III

Approximation of distance between locations on earth given by latitude and longitude

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Limit theorems under sublinear expectations and probabilities

Elements of Information Theory

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 5: Numerical Integration

Μηχανική Μάθηση Hypothesis Testing

STAT200C: Hypothesis Testing

C.S. 430 Assignment 6, Sample Solutions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Every set of first-order formulas is equivalent to an independent set

Chapter 3: Ordinal Numbers

Tridiagonal matrices. Gérard MEURANT. October, 2008

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Transcript:

Lund University Centre for Mthemticl Sciences Mthemticl Sttistics STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (06) Probbility theory Bsic probbility theory Let S be smple spce, nd let P be probbility on S. Then, for ll events A, B, A, A,..., A n S, () Kolmogorov s xioms (.) 0 P(A) (.) P(S) = (.3) P(A B) = P(A) + P(B), if A nd B re disjoint. () P(A B) = P(A) + P(B) P(A B) (3) A nd B re independent P(A B) = P(A) P(B). (4) Conditionl probbility: P(B A) = (5) Lw of totl probbility: P(B) = P(A B). P(A) P(B A i ) P(A i ), whenever A,..., A n re pirwise disjoint nd stisfy (6) Byes theorem: P(A i B) = P(B A i) P(A i ) P(B) whenever A,..., A n re pirwise disjoint nd stisfy One-dimensionl rndom vribles = n A i = S. P(B A i ) P(A i ) n j= P(B A j) P(A j ), n A k = S. (7) Distribution function for the rndom vrible X : F X (x) = P(X x). (8) Probbility-mss function for the discrete rndom vrible X : p X (x) = P(X = x). k= (9) Density function for the continuous rndom vrible X : f X (x) = df X (x) dx differentible. for ll x where F X is (0) If X is discrete, then P( < X b) = F X (b) F X () = p X (x) x ],b] If there is no element x in ], b] such tht p X (x) 0, then F X (b) F X () = 0.

ii TABLE OF FORMULÆ, FMS065, 06 () If X is continuous, then P( < X b) = F X (b) F X () = Two-dimensionl rndom vribles b f X (x) dx () oint distribution function for the two rndom vribles X nd Y : F X,Y (x, y) = P(X x Y y) (3) oint probbility-mss function for the two discrete rndom vribles X nd Y : p X,Y (x, y) = P(X = x Y = y) (4) oint density function for the two continuous rndom vribles X nd Y : f X,Y (x, y) = F X,Y (x, y) x y for ll (x, y) where the derivtive exists. (5) If X nd Y both re discrete: P ( (X, Y ) A ) = (x,y) A p X,Y (x, y) If there is no pir (x, y) in A such tht p X (x) 0, then P ( (X, Y ) A ) = 0. (6) If X nd Y both re continuous: P ( (X, Y ) A ) = f X,Y (x, y) d(x, y) Conditionl distributions (x,y) A (7) Conditionl distribution function: F X Y (x y) = P(X x Y = y). (8) Conditionl probbility-mss function for the discrete rndom vrible X : p X Y (x y) = P(X = x Y = y) p X,Y (x, y), p Y (y) 0 If Y is lso discrete, then p X Y (x y) = p Y (y) 0, p Y (y) = 0. (9) Conditionl density function for the continuous rndom vrible X : f X Y (x y) = F X Y (x y) x f X,Y (x, y), f Y (y) 0 If Y is lso continuous, then f X Y (x y) = f Y (y) 0, f Y (y) = 0.

TABLE OF FORMULÆ, FMS065, 06 iii (0) Byes theorem: p X Y (x y) p Y (y), p X (x) 0, (0.) X discrete nd Y discrete: p Y X (y x) = p X (x) 0, p X (x) = 0. (0.) Y continuous: replce p Y X (y x) by f Y X (y x) nd p Y (y) by f Y (y). (0.3) X continuous: replce p X Y (x y) by f X Y (x y) nd p X (x) by f X (x). () Mrginl probbility-mss function for the discrete rndom vrible X : (.) Y is discrete: p X (x) = y p X Y (x y) p Y (y) = y p X,Y (x, y) (.) Y is continuous: p X (x) = p X Y (x y) f Y (y) dy () Mrginl density function for the continuous rndom vrible X : (.) Y is discrete: f X (x) = f X Y (x y) p Y (y) (.) Y is continuous: f X (x) = y; p Y (y) 0 f X Y (x y) f Y (y) dy = (3) If X nd Y re independent, (3.) then F X,Y (x, y) = F X (x) F Y (y), (3.) then p X,Y (x, y) = p X (x) p Y (y) if X nd Y re discrete, (3.3) then f X,Y (x, y) = f X (x) f Y (y) if X nd Y re continuous, (3.4) then F X Y (x y) = F X (x), (3.5) then p X Y (x y) = p X (x) if X is discrete, (3.6) then f X Y (x y) = f X (x) if X is continuous. Lw of totl probbility gin Lw of totl probbility: Let A be n event. f X,Y (x, y) dy (4) If X is discrete rndom vrible, then P(A) = x P(A X = x) p X (x). (5) If X is continuous rndom vrible, then P(A) = Expecttion, vrince, nd the like P(A X = x) f X (x) dx. (6) Let g be rel-vlued function x g(x). Then the expecttion of g(x ) is given by (6.) E ( g(x ) ) = g(x) p X (x), if X is discrete, (6.) E ( g(x ) ) = p X (x) 0 g(x) f X (x) dx, if X is continuous.

iv TABLE OF FORMULÆ, FMS065, 06 (7) Let g be rel-vlued function (x, y) g(x, y). Then the expecttion of g(x, Y ) is given by (7.) E ( g(x, Y ) ) = x,y g(x, y) p X,Y (x, y), if X nd Y re discrete, (7.) E ( g(x, Y ) ) = g(x, y) f X,Y (x, y) d(x, y), ( (X ) ) (8) Vrince: V(X ) = E E(X ) = E(X ) ( E(X ) ). (9) Stndrd devition: D(X ) = V(X ). (30) Coefficient of vrition: R(X ) = D(X )/E(X ). if X nd Y re continuous. (3) Covrince: C(X ; Y ) = E( (X E(X ) )( Y E(Y ) ) ) = E(XY ) E(X ) E(Y ). (3) C(X, X ) = V(X ). (33) Coefficient of correltion: r(x, Y ) = C(X, Y ) D(X ) D(Y ). (34) Expecttion is liner, i.e. E(X + by + c) = E(X ) + be(y ) + c. (35) V(X ± by ± c) = V(X ) + b V(Y ) ± b C(X, Y ) (36) Covrince is biliner, i.e. C(X ± by, cz) = cc(x, Z) ± bcc(y, Z). (37) For independent rndom vribles X, Y : E(XY ) = E(X ) E(Y ). (38) Guss pproximtions: Let g be rel-vlued function (x, x,..., x n ) g(x, x,..., x n ). Then E(g(X,..., X n )) g(e(x ),..., E(X n )). V(g(X,..., X n )) ci V(X i ) + c i c j C(X i, X j ), i n j n i<j where c i = g x i (E(X ),..., E(X n )) = g x i (E(X ),..., E(X n )). Norml (Gussin) distribution (39) Univrite norml (Gussin) distribution (s > 0): X N(m, s ) X m s N(0, ) (40) Bivrite norml (Gussin) distribution: Let m, m, s, s, nd r be rel numbers (s > 0, s > 0, < r < ). If (X, Y ) N(m, m, s, s, r), then (40.) f X,Y (x, y) = ps s r e (x m ) s + (y m ) s r x m s y m s «,

TABLE OF FORMULÆ, FMS065, 06 v (40.) X N(m, s ), Y N(m, s ), C(X, Y ) = rs s, r(x, Y ) = r, ( ( ) ) (40.3) f X Y (x y) = ps r e s x m ( r +r s ) s (y m ), i.e. N ( m + r s s (y m ), s ( r ) ) (40.4) X + by N(m + bm, s + b s + b r s s ) for ll rel numbers nd b. Limit theorems (4) Lw of Lrge Numbers (LLN): Let X, X,... be independent nd identiclly distributed rndom vribles with existing expecttion E(X i ) = m. Then Y n = X +... + X n n E(X i ), when n. (4) Centrl Limit Theorem: Let X, X,..., X n be independent nd identiclly distributed rndom vribles with existing expecttion E(X i ) nd existing stndrd devition D(X i ) = s <. Then Y n = X +... + X n AsN(n m, n s ), when n. (43) We hve pproximtely (43.) Bin(n, p) Po(np) if p 0. nd n 0. (43.) Bin(n, p) N(np, np( p)) if np( p) 0. (43.3) Po(m) N(m, m) if m 5. Sums of rndom vribles (44) Let X N(m, s ),..., X n N(m n, s n ) be n independent, normlly distributed rndom vribles. For ny set c,..., c n of n rel numbers, we hve ( c i X i N c i m i, c i si ). (45) If X nd X re independent, then (45.) X Bin(n, p), X Bin(n, p) X + X Bin(n + n, p) (45.) X Po(m ), X Po(m ) X + X Po(m + m ). (45.3) X Gmm(, b), X Gmm(, b) X + X Gmm( +, b). (45.4) X q (f ), X q (f ) X + X q (f + f )

vi TABLE OF FORMULÆ, FMS065, 06 Sttistics Point estimtion Let x,...,x n be observtions of n independent, identiclly distributed rndom vribles with expecttion m nd stndrd devition s. Then unbised estimtions of m nd s re given by (46) m = n x i = x (47) (s ) = n (x i m), m known. (48) (s ) = s = n Confidence intervls (x i x), m unknown. (49) Let j be some prmeter, nd let (r.v.) be n estimtor of j such tht is (pproximtely) normlly distributed with expecttion j. Let j be the estimte of j, i.e. let j be the observtion of. Then I j = [j l ( g)/ d( ); j + l ( g)/ d( )] I j = [j l g d( ); ] I j = [; j + l g d( )] (two-sided), (one-sided, bounded below), (one-sided, bounded bove) re confidence intervls for j with pproximtive confidence level g (g is typiclly lrge, g = 0.95, g = 0.99,... ). Here, d( ) is the stndrd error of the estimtor. d( ) = Hypothesis testing D( ) if D( ) is known nd independent of j, ( D( ) ) if D( ) is unknown or dependent on j. (50) Let j be prmeter. We wnt to test the simple hypothesis H 0 : j = j 0 on the significnce level ( is typiclly smll, = 0.05, = 0.0,... ). Then the test will be Reject H0 j 0 I j Do not reject H 0 j 0 I j where I j is confidence intervl of j with (pproximtive) confidence level. If H : j j 0, then choose I j to be two-sided. If H : j > j 0, then choose I j to be one-sided nd bounded below. If H : j < j 0, then choose I j to be one-sided nd bounded bove.

TABLE OF FORMULÆ, FMS065, 06 vii (5) The q test. Let H 0 be hypothesis bout the expressed by probbilities p,..., p r. We hve n observtions. Clculte r (x i np i ) Q =. np i Reject H 0 if Q > q (r ). Byesin updting (5) Let be the prmeter modelled s rndom vrible. Let X be the observed rndom vrible with observed vlue x. (5.) is discrete, X is discrete: p post (j) = c P(X = x = j) pprior (j), where c = P(X = x) = j P(X = x = j) p prior (j). (5.) is continuous, X is discrete: f post prior (j) = c P(X = x = j) f (j), where c = P(X = x) = P(X = x = j) f prior (j) dj. (5.3) If X is continuous: replce P(X = x = j) by f X (x j) nd P(X = x) by f X (x). (53) Prticulrly, Prior distribution of Conditionl distribution of X, given = j Posterior distribution of (x is the observtion of X ) (53.) Gmm(, b) Po(j t) Gmm( + x, b + t) (53.) Bet(, b) Bin(n, j) Bet( + x, b + n x) (54) If the event A nd the rndom vrible X re independent on condition tht is known, then we hve the lw of totl probbility: (54.) P post (A) = (j), if is discrete, (54.) P post (A) = p post (j) 0 P(A = j) p post P(A = j) f post (j) dj, if is continuous. (55) If we hve observed the occurrence of n event B (insted of hving observed the rndom vrible X ), then: (55.) p post (j) = P(B = j) pprior(j), if is discrete, (55.) f post prior (j) = P(B = j) f (j), if is continuous. If the event A nd the event B re independent on condition tht is known, then (54.) nd (54.) still re vlid.

viii TABLE OF FORMULÆ, FMS065, 06 Miscellneous The Poisson process Let N (t) be the number of events tking plce in the time intervl ]0, t]. If N (t) is Poisson process with constnt intensity l, then (56) N (t) Po(lt). (57) Time lgs between consecutive events re independent nd exponentilly distributed with expecttion /l. (58) The number of events occurring in time intervl I nd the number of events occurring in nother time intervl I re independent if I nd I re disjoint. Filure rte Let T be positive, continuous rndom vrible with density function f T nd distribution function F T. (59) l(t) = f T (t) F T (t), t 0 nd F T (t). (60) P(T > t) = exp ( t ) l(s) ds, t 0. 0 (6) P(t < T t + D T > t) l(t) D, if D is smll (D > 0). Quntiles Quntiles is the sme s frctiles. Let be rel number such tht 0 < <. Let X be continuous rndom vrible with distribution function F X. (6) The -quntile (denoted x ) is defined to be ny number such tht P(X > x ) = or, equivlently, F X (x ) =. (63) x /4 = x 0.5 is clled the upper (distribution) qurtile. x / = x 0.5 is clled the (distribution) medin. x 3/4 = x 0.75 is clled the lower (distribution) qurtile. x 0.0, x 0.0,..., x 0.98, x 0.99 re clled the (distribution) percentiles. (64) Quntiles l bsed on the stndrd-norml distribution re denoted l : If X N(0; ), then P(X > l ) = F(l ) = l = F ( ), where F (...) is the inverse function of F. (So, F (...) hs nothing to do with (64.) l = l (for ll such tht 0 < < ) (64.) l for some vlues of re found in (99) F(...).)

TABLE OF FORMULÆ, FMS065, 06 ix Cornell s relibility index Let h(r,..., R k, S,..., S n ) be the filure function of k rndom strength vribles R,..., R k nd n rndom lod vribles S,..., S n. Let E ( h(r,..., R k, S,..., S n ) ) > 0. (65) Cornell s sfety index b C is defined s b C = E( h(r,..., R k, S,..., S n ) ) D ( h(r,..., R k, S,..., S n ) ). (66) If h(r,..., R k, S,..., S n ) is normlly distributed, then the probbility P f of filure is P f = P ( h(r,..., R k, S,..., S n ) 0 ) = F(b C ). (67) An upper bound for the probbility P f of filure is P f = P ( h(r,..., R k, S,..., S n ) 0 ) Log-norml distribution + b C (68) Let X be log-normlly distributed rndom vrible, i.e. ln X N(m, s ) or ln( X ) x / N(0, s ). Then the coefficient of vrition is given by D(X ) E(X ) = e s (69) Let X nd X be two independent rndom vribles. Then ln X N(m, s ), ln X N(m, s ) ln(x k X k ) N(k m +k m, k s +k s ) Mximum nd minimum Let X,..., X n be n independent, identiclly distributed rndom vribles with distribution function F X (x). If we define then X mx = mx(x,..., X n ) nd X min = min(x,..., X n ), (70) F Xmx (z) = ( F X (z) ) n, (7) F Xmin (z) = ( F X (z) ) n. Some functions (7) The gmm function is defined (for p > 0) by (7.) G(p) = 0 x p e x dx, p > 0 Some properties of the gmm function: (7.) G(p) = (p )!, p ; ; 3;...} (7.3) G( ) = p (7.4) G(p + ) = p G(p); p > 0

x TABLE OF FORMULÆ, FMS065, 06 (73) The incomplete gmm function is defined (for p > 0, x 0) by (73.) G(p, x) = x x p e x dx, x 0, p > 0 A property of the incomplete gmm function: (73.) G(p, 0) = G(p), p > 0 (74) The incomplete bet function is defined (for > 0, b > 0, 0 x ) by (74.) B(x,, b) = x 0 A property of the incomplete bet function: x ( x) b dx, 0 x, > 0, b > 0 (74.) B(,, b) = G() G(b) G( + b), > 0, b > 0 Tble of distributions Distribution (75) Hypergeometric distribution (76) Binomil Bin(n, p) (77) Poisson Po(m) ( N )( N ) x n x ( p(x) = N+N ), x Z [n min(n,n), min(n,n )] n 0, otherwise ( ) n p x ( p) n x, x = 0,,..., n p(x) = x 0, otherwise m mx e, x = 0,,... p(x) = x! 0, otherwise Prmeter restrictions N =,,... N =,,... n = =,..., N +N n =,,... 0 < p < Expecttion n N Vrince N + N N +N n N +N n N N (N +N ) np np( p) m > 0 m m (78) Geometric Ge(p) p(x) = p( p) x, x = 0,,... 0, otherwise 0 < p < p p p p (79) First success distribution (80) Uniform U(, b) p(x) = p( p) x, x =,,... 0, otherwise f (x) = b, < x < b 0, otherwise 0, x x b, < x < b, x b 0 < p < < b p + b p p ( b)

TABLE OF FORMULÆ, FMS065, 06 xi Distribution (8) Bet Bet(, b) Γ( + b) f (x) = Γ() Γ(b) x ( x) b, 0 < x < 0, otherwise 0, x 0 Γ( + b) B(x,, b), 0 < x < Γ() Γ(b), x Prmeter restrictions > 0, b > 0 Expecttion Vrince + b b ( + b) ( + b + ) (8) Norml (Gussin) distribution, N(m, σ ) f (x) = (x m) e s πσ ( ) σ > 0 m σ x m Φ σ (83) Log-norml distribution, ln X N(m, σ ) 0, x 0 Φ( ln x m ), x > 0 σ σ > 0 e m+s / e m+s e m+s (84) Log-norml 0, ( x 0 distribution, Φ ln X x / N(0, σ ) σ ln x ), x > 0 x / (85) Gmm Gmm(, b) 0, x 0 f (x) = b Γ() x e b x, x 0 0, x 0 Γ(, b x), x > 0 Γ() x / > 0, σ > 0 x / e s / x / (e s e s ) > 0, b > 0 b b (86) Exponentil Exp() 0, x 0 e x/, x > 0 > 0 (87) Gumbel (type I extreme vlue) distribution e e (x b)/ > 0 b + γ π 6 (88) Fréchet (type II extreme vlue) distribution 0, x b e x b c, x > b (89) Type III e x b c, x < b extreme vlue, x b distribution > 0, c > 0 > 0, c > 0 b + Γ( /c) [ Γ( c ) ( Γ( c ) ) ] b Γ( + /c) [ Γ( + c ) ( Γ( + c ) ) ] ) Φ(x) is tbulted in (98). ) Here, x / denotes the distribution medin of the rndom vrible X. ) γ is Euler s constnt. γ = lim n ( ( n k= k ) ln n) = 0.577 5 664... ) Expecttion exists if nd only if c >. Vrince exists if nd only if c >. ) If X is type III extreme vlue distributed rndom vrible, then X (i.e. the negtive of X ) is Weibull distributed. Therefore the type III extreme vlue distribution now nd then is clled the extreme vlue distribution of Weibull type.

xii TABLE OF FORMULÆ, FMS065, 06 Distribution Prmeter restrictions Expecttion Vrince (90) Weibull distribution 0, x b e x b c, x > b > 0, c > 0 b + Γ( + /c) [ Γ( + c ) ( Γ( + c ) ) ] (9) Ryleigh distribution (9) Chi-squre χ (n), Gmm( n, ) 0, x b e x b, x > b 0, x 0 f (x) = / Γ( n ) (x/)(n/) e x/, x > 0 0, x 0 Γ( n, x ) Γ( n ), x > 0 > 0 b + π ( π 4 ) n =,,... n n (93) Student s t-distribution, t(n) (94) Fisher s F-distribution, F(n, n ) (95) Preto (c > 0) f (x) = n Γ( n+ ) π Γ( n ) ( + x n )(n+)/ B( n n+x, n, ) B(, n, ), x < 0 B( n n+x, n, ) B(, n, ) ; x 0 [x 0] = 0 f (x) = [x > 0] = n+n Γ( ) = Γ( n n ) Γ( ) n n/ n n/ x n (n + n x) (n+n)/ 0; x 0 B( n n, n +n x, n ) B(, n, n ), x > 0 0, x 0 ( c x )/c, 0 < x < c, x c n =,,... 0 n =,,... n =,,... > 0, c > 0 n n c + n n n (n + n ) n (n ) (n 4) (c + )(c + ) (96) Preto distribution, (c < 0) 0, x 0 ( + c x ) / c, x > 0 > 0, c < 0 c + (c + )(c + ) (97) Preto distribution, (c = 0) 0, x 0 e x/, x > 0 > 0 ) Vrince exists if nd only if n 3. ) Expecttion exists if nd only if n 3. Vrince exists if nd only if n 5. ) Expecttion exists if nd only if c >. Vrince exists if nd only if c >. ) This is n exponentil Exp().

TABLE OF FORMULÆ, FMS065, 06 xiii Tble of the stndrd-norml distribution function (98) If X N(0; ), then P(X x) = F(x), where F( ) is non-elementry function given by x p e u du. This tble gives the function vlues F(x) for x = 0.00, 0.0,..., 3.99. For negtive vlues of x, use tht F( x) = F(x). 0.00 0.0 0.0 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.50 0.560 0.500 0.539 0.579 0.539 0.5359 0. 0.5398 0.5438 0.5478 0.557 0.5557 0.5596 0.5636 0.5675 0.574 0.5753 0. 0.5793 0.583 0.587 0.590 0.5948 0.5987 0.606 0.6064 0.603 0.64 0.3 0.679 0.67 0.655 0.693 0.633 0.6368 0.6406 0.6443 0.6480 0.657 0.4 0.6554 0.659 0.668 0.6664 0.6700 0.6736 0.677 0.6808 0.6844 0.6879 0.5 0.695 0.6950 0.6985 0.709 0.7054 0.7088 0.73 0.757 0.790 0.74 0.6 0.757 0.79 0.734 0.7357 0.7389 0.74 0.7454 0.7486 0.757 0.7549 0.7 0.7580 0.76 0.764 0.7673 0.7704 0.7734 0.7764 0.7794 0.783 0.785 0.8 0.788 0.790 0.7939 0.7967 0.7995 0.803 0.805 0.8078 0.806 0.833 0.9 0.859 0.886 0.8 0.838 0.864 0.889 0.835 0.8340 0.8365 0.8389.0 0.843 0.8438 0.846 0.8485 0.8508 0.853 0.8554 0.8577 0.8599 0.86. 0.8643 0.8665 0.8686 0.8708 0.879 0.8749 0.8770 0.8790 0.880 0.8830. 0.8849 0.8869 0.8888 0.8907 0.895 0.8944 0.896 0.8980 0.8997 0.905.3 0.903 0.9049 0.9066 0.908 0.9099 0.95 0.93 0.947 0.96 0.977.4 0.99 0.907 0.9 0.936 0.95 0.965 0.979 0.99 0.9306 0.939.5 0.933 0.9345 0.9357 0.9370 0.938 0.9394 0.9406 0.948 0.949 0.944.6 0.945 0.9463 0.9474 0.9484 0.9495 0.9505 0.955 0.955 0.9535 0.9545.7 0.9554 0.9564 0.9573 0.958 0.959 0.9599 0.9608 0.966 0.965 0.9633.8 0.964 0.9649 0.9656 0.9664 0.967 0.9678 0.9686 0.9693 0.9699 0.9706.9 0.973 0.979 0.976 0.973 0.9738 0.9744 0.9750 0.9756 0.976 0.9767.0 0.977 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.98 0.987. 0.98 0.986 0.9830 0.9834 0.9838 0.984 0.9846 0.9850 0.9854 0.9857. 0.986 0.9864 0.9868 0.987 0.9875 0.9878 0.988 0.9884 0.9887 0.9890.3 0.9893 0.9896 0.9898 0.990 0.9904 0.9906 0.9909 0.99 0.993 0.996.4 0.998 0.990 0.99 0.995 0.997 0.999 0.993 0.993 0.9934 0.9936.5 0.9938 0.9940 0.994 0.9943 0.9945 0.9946 0.9948 0.9949 0.995 0.995.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.996 0.996 0.9963 0.9964.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.997 0.997 0.9973 0.9974.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.998.9 0.998 0.998 0.998 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 3.0 0.99865 0.99869 0.99874 0.99878 0.9988 0.99886 0.99889 0.99893 0.99896 0.99900 3. 0.99903 0.99906 0.9990 0.9993 0.9996 0.9998 0.999 0.9994 0.9996 0.9999 3. 0.9993 0.99934 0.99936 0.99938 0.99940 0.9994 0.99944 0.99946 0.99948 0.99950 3.3 0.9995 0.99953 0.99955 0.99957 0.99958 0.99960 0.9996 0.9996 0.99964 0.99965 3.4 0.99966 0.99968 0.99969 0.99970 0.9997 0.9997 0.99973 0.99974 0.99975 0.99976 3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.9998 0.9998 0.9998 0.99983 0.99983 3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989 3.7 0.99989 0.99990 0.99990 0.99990 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995 3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997 Tble of some quntiles of the stndrd norml distribution (99) l = F ( ), l = l α 0. 0.05 0.05 0.0 0.005 λ.8.645.960.36.576

xiv TABLE OF FORMULÆ, FMS065, 06 Tble of quntiles of Student s t-distribution (00) If X t(n), then the -quntile t (n) is defined by P ( X > t (n) ) =, 0 < < This tble gives the -quntile t (n) for = 0., 0.05, 0.05, 0.0, 0.005, 0.00, 0.0005 nd for n =,,..., 9, 30, 40, 60, 0. For vlues of 0.9, use tht t (n) = t (n), 0 < < n 0. 0.05 0.05 0.0 0.005 0.00 0.0005 3.078 6.34.7 3.8 63.66 38.3 636.6.886.90 4.303 6.965 9.95.33 3.60 3.638.353 3.8 4.54 5.84 0..9 4.533.3.776 3.747 4.604 7.73 8.60 5.476.05.57 3.365 4.03 5.893 6.869 6.440.943.447 3.43 3.707 5.08 5.959 7.45.895.365.998 3.499 4.785 5.408 8.397.860.306.896 3.355 4.50 5.04 9.383.833.6.8 3.50 4.97 4.78 0.37.8.8.764 3.69 4.44 4.587.363.796.0.78 3.06 4.05 4.437.356.78.79.68 3.055 3.930 4.38 3.350.77.60.650 3.0 3.85 4. 4.345.76.45.64.977 3.787 4.40 5.34.753.3.60.947 3.733 4.073 6.337.746.0.583.9 3.686 4.05 7.333.740.0.567.898 3.646 3.965 8.330.734.0.55.878 3.60 3.9 9.38.79.093.539.86 3.579 3.883 0.35.75.086.58.845 3.55 3.850.33.7.080.58.83 3.57 3.89.3.77.074.508.89 3.505 3.79 3.39.74.069.500.807 3.485 3.768 4.38.7.064.49.797 3.467 3.745 5.36.708.060.485.787 3.450 3.75 6.35.706.056.479.779 3.435 3.707 7.34.703.05.473.77 3.4 3.690 8.33.70.048.467.763 3.408 3.674 9.3.699.045.46.756 3.396 3.659 30.30.697.04.457.750 3.385 3.646 40.303.684.0.43.704 3.307 3.55 60.96.67.000.390.660 3.3 3.460 0.89.658.980.358.67 3.60 3.373.8.645.960.36.576 3.090 3.9

TABLE OF FORMULÆ, FMS065, 06 xv Tble of quntiles of the q distribution (0) If X q (n), then the -quntile q (n) is defined by P ( X > q (n) ) =, 0 < < This tble gives the -quntile q (n) for = 0.9995, 0.999, 0.99, 0.975, 0.95, 0.05, 0.05, 0.0, 0.005, 0.00, 0.0005 nd for n =,,..., 9, 30, 40, 50,..., 90, 00. n α 0.9995 0.999 0.995 0.99 0.975 0.95 0.05 0.05 0.0 0.005 0.00 0.0005 0.00 0.004 3.8 5.0 6.6 7.9 0.8. 0.00 0.00 0.00 0.00 0.05 0.0 6.0 7.4 9. 0.6 3.8 5. 3 0.05 0.04 0.07 0. 0. 0.35 7.8 9.3.3.8 6.3 7.7 4 0.064 0.09 0. 0.30 0.48 0.7 9.5. 3.3 4.9 8.5 0.0 5 0.6 0. 0.4 0.55 0.83.4..8 5. 6.7 0.5. 6 0.30 0.38 0.68 0.87.4.64.6 4.4 6.8 8.5.5 4. 7 0.48 0.60 0.99.4.69.7 4. 6.0 8.5 0.3 4.3 6.0 8 0.7 0.86.34.65.8.73 5.5 7.5 0..0 6. 7.9 9 0.97.5.73.09.70 3.33 6.9 9.0.7 3.6 7.9 9.7 0.6.48.6.56 3.5 3.94 8.3 0.5 3. 5. 9.6 3.4.59.83.60 3.05 3.8 4.57 9.7.9 4.7 6.8 3.3 33..93. 3.07 3.57 4.40 5.3.0 3.3 6. 8.3 3.9 34.8 3.3.6 3.57 4. 5.0 5.89.4 4.7 7.7 9.8 34.5 36.5 4.70 3.04 4.07 4.66 5.63 6.57 3.7 6. 9. 3.3 36. 38. 5 3. 3.48 4.60 5.3 6.6 7.6 5.0 7.5 30.6 3.8 37.7 39.7 6 3.53 3.94 5.4 5.8 6.9 7.96 6.3 8.8 3.0 34.3 39.3 4.3 7 3.98 4.4 5.70 6.4 7.56 8.67 7.6 30. 33.4 35.7 40.8 4.9 8 4.44 4.90 6.6 7.0 8.3 9.39 8.9 3.5 34.8 37. 4.3 44.4 9 4.9 5.4 6.84 7.63 8.9 0. 30. 3.9 36. 38.6 43.8 46.0 0 5.40 5.9 7.43 8.6 9.59 0.9 3.4 34. 37.6 40.0 45.3 47.5 5.90 6.45 8.03 8.90 0.3.6 3.7 35.5 38.9 4.4 46.8 49.0 6.40 6.98 8.64 9.54.0.3 33.9 36.8 40.3 4.8 48.3 50.5 3 6.9 7.53 9.6 0..7 3. 35. 38. 4.6 44. 49.7 5.0 4 7.45 8.08 9.89 0.9.4 3.8 36.4 39.4 43.0 45.6 5. 53.5 5 7.99 8.65 0.5.5 3. 4.6 37.7 40.6 44.3 46.9 5.6 54.9 6 8.54 9... 3.8 5.4 38.9 4.9 45.6 48.3 54. 56.4 7 9.09 9.80.8.9 4.6 6. 40. 43. 47.0 49.6 55.5 57.9 8 9.66 0.4.5 3.6 5.3 6.9 4.3 44.5 48.3 5.0 56.9 59.3 9 0..0 3. 4.3 6.0 7.7 4.6 45.7 49.6 5.3 58.3 60.7 30 0.8.6 3.8 5.0 6.8 8.5 43.8 47.0 50.9 53.7 59.7 6. 40 6.9 7.9 0.7. 4.4 6.5 55.8 59.3 63.7 66.8 73.4 76. 50 3.5 4.7 8.0 9.7 3.4 34.8 67.5 7.4 76. 79.5 86.7 89.6 60 30.3 3.7 35.5 37.5 40.5 43. 79. 83.3 88.4 9.0 99.6 0.7 70 37.5 39.0 43.3 45.4 48.8 5.7 90.5 95.0 00.4 04..3 5.6 80 44.8 46.5 5. 53.5 57. 60.4 0.9 06.6.3 6.3 4.8 8.3 90 5.3 54. 59. 6.8 65.6 69. 3. 8. 4. 8.3 37. 40.8 00 59.9 6.9 67.3 70. 74. 77.9 4.3 9.6 35.8 40. 49.4 53. This is version 05-0-9.