arxiv: v1 [hep-th] 6 Sep 2017

Σχετικά έγγραφα
α & β spatial orbitals in

2 Lagrangian and Green functions in d dimensions

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

8.324 Relativistic Quantum Field Theory II

Constant Elasticity of Substitution in Applied General Equilibrium

1 Complete Set of Grassmann States

Multi-dimensional Central Limit Theorem

8.323 Relativistic Quantum Field Theory I

Multi-dimensional Central Limit Theorem

Quantum ElectroDynamics II

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

LECTURE 4 : ARMA PROCESSES

Finite Field Problems: Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

derivation of the Laplacian from rectangular to spherical coordinates

A Class of Orthohomological Triangles

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Journal of Theoretics Vol.4-5

Higher spin gauge field cubic interactions.

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

EE512: Error Control Coding

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

CE 530 Molecular Simulation

Derivation for Input of Factor Graph Representation

C.S. 430 Assignment 6, Sample Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

On Curvature Tensors in Absolute Parallelism Geometry

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

2 Composition. Invertible Mappings

Space-Time Symmetries

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Non polynomial spline solutions for special linear tenth-order boundary value problems

Matrices and Determinants

Section 7.6 Double and Half Angle Formulas

Math221: HW# 1 solutions

Concrete Mathematics Exercises from 30 September 2016

Higher Derivative Gravity Theories

Section 8.3 Trigonometric Equations

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

The role of the Seiberg Witten field redefinition in renormalization of noncommutative chiral electrodynamics

Statistical Inference I Locally most powerful tests

( y) Partial Differential Equations

ST5224: Advanced Statistical Theory II

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

35 90% %

Example Sheet 3 Solutions

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Fractional Colorings and Zykov Products of graphs

Lecture 2. Soundness and completeness of propositional logic

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Inverse trigonometric functions & General Solution of Trigonometric Equations

arxiv: v2 [math.dg] 14 Oct 2017

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

NON-HOMOGENEOUS BOUNDARY-VALUE PROBLEMS OF HIGHER ORDER DIFFERENTIAL EQUATIONS WITH p-laplacian

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

On a four-dimensional hyperbolic manifold with finite volume

Phasor Diagram of an RC Circuit V R

The challenges of non-stable predicates

CRASH COURSE IN PRECALCULUS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Every set of first-order formulas is equivalent to an independent set

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

arxiv:q-alg/ v1 21 Jul 1997

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Approximation of distance between locations on earth given by latitude and longitude

Calculating the propagation delay of coaxial cable

Section 9.2 Polar Equations and Graphs

Areas and Lengths in Polar Coordinates

Congruence Classes of Invertible Matrices of Order 3 over F 2

Areas and Lengths in Polar Coordinates

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Strain gauge and rosettes

TMA4115 Matematikk 3

arxiv: v1 [math.dg] 11 Oct 2017

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

Example of the Baum-Welch Algorithm

6.3 Forecasting ARMA processes

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Solution Set #2

Problem Set 3: Solutions

Bounding Nonsplitting Enumeration Degrees

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Other Test Constructions: Likelihood Ratio & Bayes Tests

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Transcript:

Preprnt typeset n JHEP style - HYPER VERSION SISSA//7/FISI ZTF-EP-7-6 hep-th/7.xxxxx One-loop effectve actons and hgher spns. II arxv:79.73v [hep-th] 6 Sep 7 L. Bonora a, M. Cvtan b, P. Dons Prester c, S.Gaccar b,t. Šteberga b a Internatonal School for Advanced Studes SISSA, Va Bonoea 65, 336 Treste, Italy, and INFN, Sezone d Treste b Departent of Physcs, Faculty of Scence, Unversty of Zagreb, Bjenčka cesta 3, Zagreb, Croata c Departent of Physcs, Unversty of Rjeka, Radle Matejčć, 5 Rjeka, Croata E-al: bonora@sssa.t, cvtan@phy.hr, pprester@phy.unr.hr, sgaccar@phy.hr, tsteber@phy.hr Abstract: In ths paper we contnue and prove the analyss of the effectve actons obtaned by ntegratng out a scalar and a feron feld coupled to external syetrc sources, started n the prevous paper. The frst subject we study s the geoetrzaton of the results obtaned there, that s we express the n ters of covarant Jacob tensors. The second subject concerns the treatent of tadpoles and seagull ters n order to pleent off-shell covarance n the ntal odel. The last and by far largest part of the paper s a repostory of results concernng all two pont correlators ncludng xed ones of syetrc currents of any spn up to 5 and n any densons between 3 and 6. In the assless case we also provde forulas for any spn n any denson. Keywords: Two pont correlators. Hgher spns.

Contents. Introducton. Geoetry n effectve actons 3. Geoetrzaton n ters of Jacob tensors 5 3. Tadpoles, seagulls and conservaton 3. Ferons - spn 3.. Odd party part 3. Scalars - spn 3.3 Ferons - spn 3 3.3. Even party part 3.3. Odd party part 6 3. Scalars - spn 6. All types of correlator: a repostory 9. Scalar apltudes. Expansons n UV and IR for scalars 5.3 Dvergences of the scalar apltudes 7. Feron apltudes.5 Expansons n UV and IR for ferons.6 Dvergences of the feron apltudes 3 5. Concluson A. Spn - expansons B. Hgher spn traceless actons 5. Introducton Ths paper s a follow-up of []. In that paper we analyzed the two-pont functons of conserved currents of two odels a free scalar and a free Drac feron odel coupled to dverse backgrounds n varous densons. For a background, represented by a copletely syetrc feld, the two-pont functon of the current nally coupled to t s the basc ngredent of ts quadratc effectve acton EA. We found n [] that the effectve acton for any background feld obtaned n ths way s based on the correspondng lnearzed Fronsdal knetc operator, [], n the nonlocal for ntroduced by Franca and Sagnott, [3]. In vew of constructng a covarant acton for a copletely syetrc tensor feld,

ths result s prosng. It suggests that ntegratng out scalar or feron felds or any other feld by whch one can for conserved currents ay be a useful way to analyze the dynacs of hgher spn felds. But of course what we have done n [] s only the begnnng. The crucal next step s the calculaton of the three-pont functons of conserved currents, the analyss of the lowest order nteracton ters n the effectve actons and ther consstency wth covarance. Before arrvng at the three-pont functons, t s however necessary to prove our analyss of the quadratc EA. In fact n the course of our research we realzed that t nevtably branches out n dfferent drectons. At the sae te, n [], several aspects and questons were left behnd. In ths and a subsequent paper we would lke to cover as thoroughly as possble any aspect of the quadratc EA s. The frst ssue s the geoetrzaton at the lnear level of our results n []. They were expressed there ostly n ters of a projecton operator, whch s very convenent n that context because t autoatcally ensures conservaton. But, n ths way, the geoetrcal content of the resultng equatons of oton or the EA reans plct. Now the forulaton of our results n ters of geoetrcal objects s essental, f our target s to arrve at covarant EA s. One frst a of ths paper wll be to geoetrze the results of []. We wll do t n ters of Jacob tensors. A second related portant pont s related to local subtractons. In [] we found several volatons of the Ward Identtes nduced by the conservaton of the ntal current whch nduces a gauge nvarance of the relevant nal couplng. Such volatons consst of local ters, so that t s rather eleentary to recover conservaton by subtractng local counterters fro the EA. There s nothng specal n ths, t s a very ordnary procedure. The nterestng pont s that t s n general not necessary to do t, because the perturbatve feld theory forals already autoatcally takes care of covarance, provded one takes nto account not only the two-pont bubble dagras but also other dagras such as tadpole and seagull ones. Now, fro a practcal pont of vew t s uch easer to subtract easly dentfable local counterters, than calculatng addtonal dagras to guarantee conservaton. The latter could appear as an acadec exercse for spn and, where we already know the covarant for of the nal couplng. But, t s portant to show that densonal regularzaton, whch we use, s gvng anfestly covarant expressons wthout subtractons by hand. For spn 3 and hgher t ay be a very useful and even necessary calculaton. The reason s that seagull dagras are related to ters n the ntal acton that do not belong to the nal odel we start wth a scalar or feron feld nally coupled to a background feld. Conservaton wthout subtractons requres the presence of such addtonal ters and constrants not only ther for but also ther coeffcents. It s clear, that when we consder hgher spn backgrounds, ths reark ay be used n order to deterne addtonal acton ters, as well as condtons for ther coeffcents. Ths goes n the drecton of constructng an ntal off shell covarant odel, an portant target n tself and a necessary step n the constructon of a covarant EA. The thrd portant ssue s represented by xed two-pont correlators. In [] we have consdered only two-pont functons of each current wth tself. Of course ths provdes basc nforaton about the relevant EA. However hgher spn theores are known to be consstent only f they encopass an nfnte nuber of felds although n 3d consstent theores ay

exst wth a fnte nuber of felds. It s obvous that ths requres not only the knowledge of the two-pont correlator of each hgher spn current wth tself, but also of any two currents xed correlators coupled to felds that ay enter the acton. Ths part has the structure of a repostory of results about the two pont correlators of syetrc currents of spn up to 5 n denson 3 d 6 for both the assve scalar and feron theory. In 3d we also consder the odd party sector whch eerges fro the party-breakng feron ass ter, and we fnd a nce generalzaton of Pope and Townsend s Chern-Sons-lke acton n the case when dfferent hgher-spn felds are taken nto consderaton. In ths paper we wll deal wth these three ssues. Other topcs, such as the dscusson of the abgutes nherent n the choce of the conserved currents n the ntal atter odel, wll be ncluded n a subsequent artcle. Ths s a good pont to enton that our research s ndebted to several preexstng works, n partcular wth [, 5] as far as the nspraton s concerned, wth [6, 7,, 9,,,, 3] as far as the ethods are concerned and wth [3,, 5, 6, 7,, 9] for HS theores. Other papers of ours, related to the present one are, besde [], [, ]. The paper s organzed as follows. In the next secton we show how to geoetrze the results of [] and of ths paper, that s how to express the n ters of Jacob tensors. In secton 3 we dscuss the ssue of tadpole and seagull ters and how they guarantee covarance wthout subtractons n the case of spn and. Secton fors the bulk of the paper. After an explanatory ntroducton we lst all possble conserved two-pont correlators for currents up to spn 5, ncludng the xed ones. Ths part of the paper s ntended as a source book. It contans the coplete correlators as well as ther UV and IR expansons. Several results were already contaned n []. We have left the here for copleteness. Fnally, secton 5 s devoted to soe conclusons.. Geoetry n effectve actons The constructon of nteractng quantu feld theores wth assless hgher spn s > felds stll poses an nterestng theoretcal proble. On the one hand, there are dfferent no-go theores puttng serous constrants on such theores, especally n flat space-te. On the other hand, we have sgnfcant hgher spn results: free felds can be constructed n the sae anner as n lower spn cases see, e.g. []; a few cubc nteracton ters have been constructed n the lterature see [5, 6]; ost notably, a full consstent covarant HS theory n AdS background has been constructed by Vaslev and collaborators [3]. In our prevous paper, [], we rearked that free lower spn feld theores possess conserved hgher spn currents whch sply beg to be coupled to hgher spn felds. Therefore such sple odels see to be a useful tool to study hgher spn theores. A basc ngredent of the approach n [] s the connecton between the on shell conservaton of the ntal free feld theory current and the gauge nvarance of the nal couplng ter wth the hgher spn feld, whch nduces a gauge nvarance of the lnearzed hgher spn EA or covarance of the correspondng equaton of oton. In [] ths nvarance was left soewhat plct. There s, however, a way to ake t explct, by expressng the results n ters of covarant 3

geoetrc tensors constructed out of the syetrc hgher spn felds. In ths secton we would lke to ake connecton wth such a geoetrzaton progra. In the sequel we frst ntroduce well-known defntons and propertes about hgher spn tensors, ther lnearzed eo s and ther possble geoetrcal forulatons. Then we show how to use ths ateral to express the results obtaned n [, ] and n ths paper n a geoetrc language. Dfferences between lower spn s and hgher spn theores eerge already at the level of classcal free feld theores. The splest way to construct a free theory of hgher spn feld s provded by the Fronsdal equaton, [,, 5]: F ϕ ϕ ϕ =. where the spn-s feld s descrbed by the copletely syetrc rank-s tensor feld ϕ ϕ µ µ s. In ths expresson standard HS conventons fro [3, 7, ] are assued. The Fronsdal equaton. s nvarant under local transforatons paraetrsed by traceless copletely syetrc rank-s tensor felds Λ Λ µ µ s δϕ = Λ. wth Λ =. Whle ths gauge syetry guarantees that the feld propagates only free spn-s exctatons, we see that for s 3 the gauge syetry s constraned to tracefree paraeters Λ. One can rewrte the Fronsdal equaton n an unconstraned for by ntroducng a rank-s 3 copensator feld α transforng on unconstraned gauge transforatons. as δα = Λ, n the followng way F = 3 α.3 Ths equaton s nvarant under the unconstraned gauge transforatons. because the varaton of α exactly cancels the varaton of the Fronsdal tensor. Most portant, the syste ϕ, α can be cast n a local Lagrangan for. By the partal gauge fxng condton α = one obtans the orgnal Fronsdal s equaton.. The generalzaton F n of the Fronsdal dfferental operator, whch s gauge nvarant for n large enough, s gven n ters of the recursve equaton F n = F n wth F = ϕ. So, n partcular, n n Fn n Fn. F F = ϕ ϕ ϕ.5 s the orgnal Fronsdal operator. However, the connecton wth our results cannot be n ters of the tensor F n, because the latter does not satsfy a conservaton law, whle Conventons assue syetrzaton over free ndces wth nal nuber of ters and wthout any syetry factors. Also, a pre denotes contracton of a par of ndces, so, e.g., ϕ ϕ µ µ s = η µ sµ s ϕ µ µ s s a copletely syetrc rank-s tensor feld.

our results are conserved two-pont functons. To ake the connecton one constructs the Ensten-lke tensor n G n p n p! = p η p F n[p].6 n! p= where the superscrpt n square bracket denotes the nuber of te F n has been traced, and η s the Mnkowsk etrc. The assocaton of ϕ wth the spn s s as follows: { s = n s even s = n s odd The G n tensor s dvergenceless G n =.7 The free unconstraned lnearzed equatons of oton for ϕ are G n =. Once agan, t can be shown that such an equaton can be cast n local Lagrangan for, provded one ntroduces auxlary felds copensators. G n are the objects that can be drectly connected wth the LHS of.5 below.. Geoetrzaton n ters of Jacob tensors In [] all the two-pont correlators and correspondng effectve actons are presented n oentu space and expressed n ters of the projector π k µν = η µν k µk ν k.9 Appled to k ν gves, so any two-pont functon expressed n ters of t alone s conserved. We showed that any conserved correlator for spn s can be wrtten n ters of the followng structures: à s k, n, n = n π k n s. à s k, n, n = n π k n s n π k n n π k n.......... à s l k, n, n = n π k n sl n π k n l n π k n l.......... where n, n are generc polarzaton vectors, and n π k n = n µ πk µν n ν. There are s/ ndependent such ters. The generc ter n the fnal forulas are cobnatons of k, n, n wth nuercal coeffcents a l, say à s l Ẽ s k, n, n = s/ l= a l à s l k, n, n.3 5

preceded by a functon of f k, and the ass. Eq..3 can be easly translated nto a correspondng dfferental operator by Fourer ant-transforng E s, n, n = s/ l= a l A s l, n, n. These are the types of dfferental operators that appear n the EA s actng on the spn s feld ϕ µ...µ s. The correspondng eo wll take the followng for. Set s ϕ = s! µ...µ s ϕ µ...µ s and n = n {n µ }, n = { µ }. The eo are s! n s E s, n, s ϕ =.5 ultpled by a functon of k and. The purpose of ths secton s to rewrte the equatons such as.5 n the geoetrcal for of [3]. To ths end let us ntroduce the sybol of G n, Gn k, n, n, as follows. Frst we saturate all ts s naked ndces of G n wth n polarzatons, then we Fourer transfor t and replace the Fourer transfor of ϕ, ϕ, wth a syetrc tensor ade out of the product of s polarzatons n. Fnally we defne G n s! n s G n, n, s ϕ.6 Then the connecton between. and.5 s gven by s/ k G n k, n, n = l s/ à s l k, n, n,.7 l l= whch corresponds to a partcular choce of the coeffcents a l n.3. Of course we are nterested not only n the relaton.7, but n expressng all the à s l k, n, n n ters of the G n k, n, n. To do so we have to take the successve traces of.7. We have, for nstance In general G n = s/ s/ D G n n π k n. and G n[p] = p s/ D!! s/! s/ D p!! s/ p! G np n π k n p.9 G n[n] n s/ D!! s/! = G n π k n n. D!! Ths functon can be expanded n seres of / k or k / near the IR and UV, respectvely, whch gves the toographc expansons consdered n []. The latter clearly show that the structures of the two-pont functons and correspondng lnearzed EA s are deterned by the unque Fronsdal operator approprate for the gven source, although, generally, the operator appears n a nonlocal for and n dfferent gauges. In ths paper we consder only these operators and dsregard the functon f. 6

for s even, wth G = k, and G n[n] n s/ D!! s/! = G n π k n n. D!! for s odd, wth G = k n π k n. Now, usng.7, one can wrte n π k n s Ãs k, n, n = k G n k, n, n. s/ l s/ n π k n l n π k n sl n π k n l l l= for even s, and a slar expresson for odd s. Now the strategy conssts n repeatng the sae step for the second lne n., by usng. and successvely.. The end result s k n π k n s = s/ p= In a slar way one can obtan p s/ D p!! n π k n p p! s/ D!! Gn[p] k, n, n.3 k n π k n sl n π k n l n π k n l. s/ = p p s/ D p!! n π k n p s/ l p! s/ D!! Gn[p] k, n, n p=l l In concluson any expresson of the type.3,.e. any conserved structure, can be expressed n ters of the generalzed Ensten sybols G n k, n, n and ts traces. Thus any EA or any eo we obtan fro our odels, by ntegratng out atter, can be expressed n ters of the generalzed Ensten tensor G n and ts traces preceded by a functon of and the ass of the odel, wth sutable ultples of the operator η µν µ ν actng on the traces. Usng.6 one can replace the dependence on G n of such expressons wth the dependence on F n. The geoetrzaton progra can be copleted by ntroducng the Jacob tensors R µ,...µ sν...ν s one of the possble generalzatons of the d Reann tensor, [6, 7] by eans of s! s R s n s s l = s!s l!l! sl n l l ϕ n sl.5 The tensors R s are connected to the F n as follows: { F n R s[n] s = n = n R s[n] s = n n l=.6 7

where the traces n square brackets refer to the frst set of ndces. In ths way we can express any EA or any eo n ters of R s and traces n the second set of ndces thereof. Snce above we have referred to [3], we feel that, to end ths secton, t s opportune for us to clarfy the context n whch our results are derved and pont out the dfferences wth the sprt of [3, 7, ]. In these papers the ntal purpose was to wrte down a generalzaton of the Fronsdal equatons for hgher spn n such a way as to avod the constrants needed n the orgnal forulaton of []. The authors of [3] chose to sacrfce localty n favor of an unconstraned gauge syetry. The typcal lnearzed non-local equaton of oton one obtans n ths way s.. As we have already ponted out, t can be shown that such an equaton can be cast n Lagrangan for, provded one ntroduces auxlary felds copensators. Therefore one can say that the nonlocalty of. s a gauge artfact, wth no physcal plcaton. However equatons of oton nvarant under unrestrcted gauge syetry are far fro unque. There actually exst several fales of the dependng on arbtrary paraeters by the way, ths s evdent by reversng the arguent above and startng fro the generc operator., nstead of the copletely fxed one.7. These are all equally vald as long as the feld ϕ s consdered n solaton and the lnearzed eo s the free one,.. However, f the spn s syste s nally coupled to a conserved current the queston arses as to whether the propagatng degrees of freedo are the truly physcal ones,.e. those correspondng to the approprate lttle group representaton for assless felds. The authors of [7, ] were able to prove that there exst only one choce for the Ensten-lke tensor whch s Lagrangan and satsfes such a physcalty condton. Such physcal Ensten tensors do not correspond, n general, to the knetc operators we fnd n our effectve acton n secton below. Ths s not surprsng, as our an goal s covarance: our purpose s to arrve at a covarant EA wth respect to a copletely unfolded gauge syetry. In a logcal developent the next step wll be to ntroduce auxlary felds to elnate nonlocaltes. Followng ths we would need to gauge-fx the acton and ntroduce approprate ghosts to produce the physcal propagators. At that pont would the proble handled by [7, ] coe to the surface. However, we would lke to recall that our edate prospect s to construct the lnearzed covarant EA n preparaton for the analyss of the three-pont functon. 3. Tadpoles, seagulls and conservaton In ths secton we wsh to llustrate the role of tadpole and seagull dagras n pleentng conservaton n two-pont correlators. In [], n order to evaluate the two pont correlators of conserved currents we coputed only the bubble dagras fored by two nternal scalar or feron lnes and two vertces. In ths way we found several volatons of the relevant Ward denttes. Such volatons consst of local ters, so that t was rather eleentary to recover conservaton by subtractng local counterters fro the EA. However t s n general not necessary to do ths, because the perturbatve feld theory forals already autoatcally takes care of t provded one takes nto account not only the two-pont bubble

dagras but also other dagras such as tadpole and seagull ones, [, 9]. Although ths s a rather well-known fact, we would lke to show t n detal here for spn and as a gude for the ore challengng hgher spn cases. The reason s that seagull dagras reflect the presence n the ntal acton of addtonal ters, addtonal wth respect to the nal couplngs sybolcally jϕ, whch are on-shell covarant, but off-shell noncovarant. One of the crucal steps n our progra s clearly pleentng off-shell gauge covarance of the ntal odels, that s addng to the nal couplngs n the relevant actons the ters that render the off-shell covarant, at least to the lowest order n a perturbatve approach to the gauge syetry. We know such addtonal ters exactly n the case of spn and spn because we know the full covarant acton, but not yet for hgher spns. In the latter cases, however, we can pleent off-shell current conservaton by satsfyng the correspondng two-pont functon Ward dentty. In turn ths requres consderng tadpoles and seagull ters. The latter, n partcular, orgnate fro the above addtonal ters, whch n ths way ay hopefully be dentfed 3. Hereafter n ths secton we work out the cases of spn and spn n any denson n 3d for the odd party part n detal, showng the role of tadpole and seagull ters n the Ward denttes for two-pont functons of spn and respectvely, and ther orgn n the varous ters of the ntal actons. We keep the dervaton at a pedagogcal level and, for copleteness, we analyze the full structure of the relevant two-pont functons and, n partcular, ther IR and UV expansons, as well as ther contrbutons to the EA s. Startng fro the generatng functon ˆ Z[a] = e W [a] = DψD ψe S S nt [a] 3. where a s the external hgher spn feld, we wll copute the effectve acton for the external source felds up to the quadratc order: ˆ W [a] = W [] d d x a µ...µ s xθ µ...µ s x ˆ d d xd d y a µ...µ! s xa ν...ν s yt µ...µ sν...ν s x, y... 3. where Θ µ...µ s x = δ W [a] 3.3 δa µ...µ s x a= s a tadpole -pont functon and T µ...µ sν...ν s x, y = δ W [a] 3. δa µ...µ s xδa ν...ν s y a= s a -pont functon. Usng Feynan dagras we wsh to copute the -pont functon ncludng not only the bubble dagra as n [] but also tadpoles and seagulls. 3 An approach related to ours s outlned n [9]. It s based on Weyl quantzaton. Its an advantage s that t provdes a full quantu acton and quantu syetry for the ntal scalar odel. It wll be nterestng to copare the two approaches. 9

The one-loop -pt correlator for the external feld s up to the lnear order: J µ...µ s δw [a] x = δa µ...µ s x ˆ = Θ µ...µ s x d d y a ν...ν s yt µ...µ sν...ν s x, y... 3.5 External spn s felds a µ...µ s are n partcular Spn a µ = A µ gauge feld 3.6 Spn a µν = h µν gravton feld We wll need one-loop conservaton whch for spn reads µ J µ x = 3.7 Ward dentty for the two-pont functon n oentu space can be wrtten as g k µ T µν k = 3. Furtherore, for spn, the energy-oentu tensor s defned wth T µν x =. The full conservaton law of the energy-oentu tensor s δw δh µνx Hence, the Ward dentty for one-pont functon s whle for two-pont correlator we have µ T µµ x = 3.9 µ Θ µµ x = 3. µ T µµνν x, y = ηνν δx y µ Θ µµ x Θνν x µ δx y µ δ x y Θ µν x η µν 3. As we wll see, the tadpole contrbuton s Θ µµ k = Θ η µµ where Θ s a constant. The Ward dentty n oentu space s now k µ T µµνν k = [k ν η µν ] kµ η νν Θ 3. 3. Ferons - spn The acton for the theory of ferons nteractng wth gauge feld can be wrtten as ˆ S = dx [ ψ γ µ D µ ψ ] 3.3 where D µ = µ A µ. There s one feron-feron-photon vertex V µ ffp : γµ 3.

In the case of ferons coupled to gauge feld the tadpole dagra vanshes, whle the seagull s zero because the theory s lnear n the gauge feld. The only contrbuton we get fro the -pt correlator.7 fro [] whch n the oentu space reads T µν k = d d π d d k Γ d F [, d ; 3 ; k ] d k π µν 3.5 where π µν = η µν kµ k ν s the projector. Snce the -pont correlator can be expressed k n ters of the projector, t satsfes Ward dentty 3.7 We can expand the two-pont correlator n the IR regon T µν k = d d d π d n n Γ n d n k n π µν 3.6 n!! Usng the Fourer transfor of 3.6 n the one-loop -pont functon 3.5 we get J µ x = d d d π d n n n Γ n d n n ν F µν 3.7 n!! n= The one-loop -pont correlator satsfes 3.7 Usng the sae expanson n the IR 3.6 for the effectve acton 3. we obtan W = d d d π d n n n Γ n d ˆ n d d xf µν n F µν n!! n= IR d d = d π d Γ d ˆ d d xf µν F µν 3. 3 So, n the IR regon large we get the Maxwell acton. Furtherore, the donatng ter n the UV O of 3.5 corresponds to the assless case B. fro [] The effectve acton n the UV s then 3.. Odd party part n= T µν k UV = d d π 3 d d e πd Γ k d π µν 3.9 d W UV = d d d π 3 d d e πd Γ F µν d F d µν 3. For the analyss of the odd party correlators we wll restrct ourselves to d = 3. The odd part of the two-pont correlator s non-vanshng only n 3d and t s gven by T o µν k = πk ArcCoth ɛ µνλ k λ 3. k

The expanson of 3. n the IR reads T o µν k = π n= k n n n n ɛµνλ k λ 3. Usng the IR expanson n 3.5, the odd part of the one-loop -pont correlator s now J µ x = π n= n n n3 n ɛµνλ n F λν 3.3 and just lke the even party part satsfes 3.7. The effectve acton n the IR the donatng ter W IR = ˆ π ɛµνλ d 3 x A µ ν A λ... 3. corresponds to Chern-Sons ter n 3d S CS = ˆ d 3 x T r A da 3 π A A A 3. Scalars - spn The acton n the scalar QED odel s 3.5 ˆ S = [ ] d d x D µ ϕ D µ ϕ ϕ ϕ 3.6 where D µ = µ A µ. The full covarant acton s ˆ ] S = dx [ µ ϕ µ ϕ A µ ϕ µ ϕ µ ϕ ϕ A µ A µ ϕ ϕ ϕ ϕ 3.7 In the scalar odel the scalar-scalar-photon vertex s V µ sspp, p : p p µ 3. and we also have scalar-scalar-photon-photon vertex cong fro d d xa µ A µ ϕ ϕ ter n Lagrangan V µν ssppp, p : η µν 3.9 The two-pont functon for the assve scalar n any denson d for spn s = s T µν k = d π d/ d Γ d [ F, d ; 3 ; k ] π µν kµ k ν k 3.3 whch has a non-conserved part. However, snce the theory s quadratc n the external photon feld A we also have a seagull dagra whch s obtaned by jonng wth a unque a feron lne the two feron legs of the vertex 3.9 for whch we obtan T µν s k = d π d d Γ d η µν 3.3

After cobnng 3.3 and 3.3 we can wrte down the full -pont functon T µν k = d π d d Γ d F [, d ; 3 ; k ] π µν, 3.3 whch s conserved. Expandng the two-pont functon 3.3 n the IR gves T µν k = d d π d n Γ n d n k n π µν 3.33 n 3!! n= Usng the IR expanson together wth 3.5, the one-loop -pont functon 3.5 now reads J µ = d d π d n n Γ n d n n ν F µν 3.3 n 3!! n= On the other hand, the donatng ter of the effectve acton n the IR regon s W IR = d 3 d π d Γ d ˆ d d xf µν F µν 3.35 In the IR for large ass we get the Maxwell acton. The leadng order ter of the expanson n the UV ter corresponds to B.3 fro [] Hence, the effectve acton n the UV s 3.3 Ferons - spn T µν k UV = 3d π 3 d k d e πd Γ π µν 3.36 d W UV = d 3d π 3 d ˆ e πd Γ d d d xf µν d F µν 3.37 Let us consder the free feron theory n a generc denson d ˆ S = d d x [ g ψe a γ a ] Ω ψ ψψ 3.3 where Ea s the nverse verben. Fro now on we wll set g µν = η µν h µν. Usng the followng expansons g µν = η µν h µν h µν..., g = h h hµν h µν..., e µ a = δ µ a hµ a 3 h µ a..., e a µ = δ a µ ha µ h a µ... 3.39 we can expand the party even part of the acton 3.3 n powers of h: ˆ [ S e = d d x ψγ ψ ψψ hµ µ ψγ ψ ψψ ψh a γ a ψ 3

h µ µ h ν µh µ ν ψγ ψ ψψ hµ µψh a γ a ψ 3 6 ψh a γ a ] ψ... There s one feron-feron-gravton vertex : 3. V µµ ffh p, p : p p µ γ µ ηµµ /p /p 3. and one vertex wth two ferons and two gravtons: V µµνν ffhh p, p : 3 p p µ γ ν η µν p p ν γ µ η µν 6 /p /p η µµ η νν η µν η µν p p µ γ µ η νν p p ν γ ν η µµ 3. We can also expand the odd party part of the acton the latter contans a part proportonal to the copletely antsyetrc sybol. We wll restrct ourselves to 3d because only n ths case can we get a non-vanshng contrbuton to the effectve acton and -pont correlator. S o = ˆ d 3 x ɛ abc a h bσ h σ c ψψ 3.3 6 The relevant vertex wth two ferons and two gravtons s 3.3. Even party part V µµνν ɛ,ffhh : 6 ηµν ɛ µνλ k k λ 3. The tadpole contrbuton s now Θ µµ k = d d d π d Γ d η µµ = Θ η µµ 3.5 where Θ s a constant. Snce the theory of gravty s non-lnear we have a contrbuton fro the seagull ter, whch can be wrtten as T µµνν s k = 3d d d π d Γ d 3η µν η µν η µµ η νν 3.6 The bubble dagra contrbutes two parts, the transverse conserved part, T µµνν t k = dd k d d d π d Γ d [ d k F [, d,, k ] d k π µν π µν We use the conventon accordng to whch two repeated dentcal ndces represent a syetrzed couple of ndces, and so on.

whose expanson n the IR s d k F [, d,, k ] ] k π µµ π νν T µµνν t k = 3d d d π d n= 3.7 n Γ n d n k n n π µν π µν π µµ π νν 3., n!! and the non-transverse non-conserved part T µµνν nt k = 3d d d π d Γ d η µν η µν η µµ η νν. 3.9 Takng forulas 3.5, 3.6, 3.7 and 3.9 and substtutng the n 3. we can see that the Ward dentty s satsfed for any denson d. The one-loop -pont functon energy-oentu tensor defned as T µν x = δw g δh µνx now becoes T µµ x = d d d π d [ Γ d g µµ n n Γ n d n n!! n n G µµ n n η µµ µ µ R ] Oh 3.5 where G µµ = R µµ η µµr s the Ensten tensor. The energy-oentu tensor s clearly dvergence free 3.9. For the effectve acton n the IR we obtan n the even party sector ˆ [ W IR = d d d π d d d x g Γ d Γ d R Γ d R µνλρ R µνλρ R µν R µν 3 ] R... Oh 3 3.5 The dvergent part of the effectve acton for d =.e. d = ε s W IR = ˆ π d x g ε R W... Oh 3 3.5 The frst ter s a cosologcal constant ter and the second s the lnearzed Ensten- Hlbert acton. The thrd ter ter s the Weyl densty W = R µνλρ R µνλρ R µν R µν 3 R conforal nvarant n d. The donatng ter n the UV O ter corresponds to B.3 fro [] of the transverse part T µµνν t T µµνν t k s k UV = 3d d π 3 d k d e πd Γ d3 The effectve acton n the UV s then W UV = d d d π 3 d ˆ e πd Γ d3 n= d π µν π µν π µµ π νν 3.53 d d x [ g d R µνλρ d R µνλρ 6 R µνλρ d R µνλρ R µν d R µν 3 R d R ]... Oh 3 3.5 5

3.3. Odd party part In 3d the contrbuton fro the seagull dagra wth vertex 3. becoes T µµνν s,o k = 6π ηµν ɛ µνλ k λ 3.55 The odd part of the two-pont correlator s non-vanshng only n 3d the vertex s 3.. The transverse part can be wrtten as T µµνν t,o k = k ArcCoth k π µν ɛ µνλ k λ 3.56 6πk k and the expanson of µµνν T t,o k n the IR s T µµνν t,o k = 6π The odd non-transverse part reads 5 T µµνν nt,o n= k n n n n πµν ɛ µνλ k λ 3.57 k = 6π ηµν ɛ µνλ k λ 3.5 and can be canceled by the seagull contrbuton 3.55. So, only the transverse odd part reans. The odd part of the one-loop -pt functon energy-oentu tensor T µµ x = 3π n= n n n n n C µµ 3.59 where C µµ s lnearzed the Cotton tensor A.6. The effectve acton n the IR the donatng ter W IR = ˆ 3π ɛµνλ d 3 x h νν λ µ ν h µµ λ h ν µ Oh 3 3.6 corresponds to gravtatonal Chern-Sons ter n 3d S gcs = ˆ 9π ɛµνλ d 3 x µ ω ab ν ωλ ba 3 ω µa b ω c a νb ω λc 3. Scalars - spn 3.6 Let us consder the acton of a scalar feld ϕ n a curved space g µν = η µν h µν wth a scalar curvature couplng ˆ S = d d x g g µν µ ϕ ν ϕ ϕ ϕ ξrϕ ϕ 3.6 Let us redefne φ = g ϕ. The expanson of the acton n the external feld h s ˆ [ S = d d x η µν µ φ ν φ φ φ h µν φ µ ν φ ξ µ ν η µν φ φ 5 In the notaton fro the prevous paper π µν ɛ µνλ k λ corresponds to n π n ɛk n n 6

h µσ h ν σ µ φ ν φ 6 h hφ φ ξ µ h µ hφ φ ξh µν ν λ h λ µφ φ ξh µν h µν φ φ ξ ν h µν λ h λ µφ φ 3 ξ λh µν λ h µν φ φ ξ λh µν ν h λ µφ φ ξ h µν µ ν hφ φ ξ ] µ h ν h µν φ φ 3.63 The scalar-scalar-gravton vertex s: V µµ ssh p, p : pµ p µ ξ p µ p µ η µµ p p 3.6 and there s a vertex wth two scalars and two gravtons: V µµνν sshh p, p, k, k : η µν p µ p ν p µ p ν [ ξ η µµ k ν k ν η νν k µ k µ ξη µν η µν 6 ηµµ η νν k ξη µν k µ k ν] [ ξ η µµ η νν 3 ξηµν η µν k k 3.65 ξ η µµ k ν k ν η νν k µ k µ ξη µν k µ k ν ξη µν k ν k µ] The result for the tadpole dagra s Θ µµ = d π d/ d Γ d η µµ 3.66 whle the contrbuton fro the seagull ter s T µµνν s k = d π d/ d Γ d dk ξη µµ η νν η µν η µν dk ξ dξη µν k µ k ν 3.67 Furtherore, the transverse part of the bubble dagra reads T µµνν t k = 3d d k d e πd π d/ d/ Γ d [ d k ξ ξ d d ξ dk 3 ξ 9k ξ 96 6 6k d ξ dξ ξ ξ k dξ ξ 96 6 [ F, d ; ; k ] π µµ π νν d k d d dk 96k k 9 6 k [ F, d ; ; k ] π µν π µν] 3.6 7

The expanson of the transverse part T µµνν t k = 3d d π d k π µν π µν µµνν T t k n the IR s n Γ n d n n 5!! n= an, ξ π µµ π νν k n 3.69 where an, ξ s a constant an, ξ = n 5n 3ξ n 5ξ 3.7 The non-transverse part of the bubble dagra s T µµνν nt k = d π d/ d Γ d 3 η µν η µν dk d η µν k µ k ν d 6ξ η µµ k ν k ν η νν η µµ dk 5 ξ d6ξ k µ k µ 3.7 The seagull dagra and the non-transverse part of -pt functon together gve T µµνν µµνν s k T nt k = d π d/ d Γ d η µν η µν η µµ η νν 3.7 d π d/ d ξ Γ d k π µν π µν π µµ π νν 6 Takng forulas 3.66, 3.67, 3.6 and 3.7 and substtutng the n 3. we can see that the Ward dentty s satsfed for any denson d. The one-loop -pont correlator [ T µµ x = d d π d Γ d g µµ Γ d n n Γ n d n n n!! n= G µµ Γ d an, ξ satsfes 3.9. For the effectve acton n the IR we obtan ˆ [ W [h] IR = d d π d d d x g Γ d Γ d R µνλρ R µνλρ ξ G µµ 6 ] η µµ µ µ R Oh 3.73 a, ξ R... ξ R 6 ] Oh 3 3.7 For ξ = 6 the conforal value the thrd ter n the expanson s proportonal to ˆ d d d x g R µνλρ R µνλρ 3 R 3.75

We can use the Gauss-Bonnet theore R µνλρ R µνλρ R µν R µν R = total dervatve 3.76 to wrte the dvergent part of the effectve acton n d = as a Weyl square densty W IR = ˆ 6π d x g 3 ε W Oh 3 3.77 where In the assless case s the donatng ter n the UV we have T µµνν k UV = d π 3 d k d e πd Γ d3 π µν π µν bd, ξ π µµ π νν 3.7 bd, ξ = d ξ d ξ 3.79 The effectve acton n the UV now becoes W UV = d d d π 3 d ˆ e πd Γ d d x d3 R µνλρ d R µνλρ bd, ξ R d R 3. After we use 3.76 and put ξ = 6 n d we wll agan get the Weyl square densty ˆ W UV = d d x W 3.. All types of correlator: a repostory Ths last secton of the paper s a systeatc collecton of results concernng all types of two-pont correlators, ncludng the xed ones, for syetrc currents of of spn up to 5 and n denson 3 d 6. It also contans results concernng the correlators of currents of any spn and n any densons, n the case of assless odels, for whch t s possble to wrte down very copact forulas. The two pont apltudes n queston for feron and of scalar currents for spns up to 5, are scheatcally denoted as follows: Scalar and feron currents are gven by T µ...µ s ν...ν s k J µ...µ s k J ν...ν s k,. T s µ...µ s = s ϕ µ s ϕ, T f µ...µ s = s ψγµ µ s ψ. For ferons n case s = we use T s= f = ψψ. These currents wll be henceforth referred to as sple currents. In the feronc case the two pont correlator s ˆ T µ f d d p...µ s ν...ν s k = π d Tr /p γ σ /p /k γ τ Vµ σ...µ s Vν τ...ν s.3 9

whereas n the scalar case t s ˆ T µ s...µ s ν...ν s k = d d p π d p p k V µ...µ s V ν...ν s. wth the Feynan vertces for ferons and scalars respectvely V σ µ...µ s = δ σ µ p µ k µ s, V µ...µ s = p µ k µ s.5 To label the correlators we often suppress wrtng ndces and add the nuber of spacete densons n the subscrpt on the left hand sde. Addtonally, when s, s, we splt the apltudes n the transverse and the non-transverse part, so for the correlator of e.g. feronc spn-s and spn-s currents n d densons we wrte: T f s,s,d f,t f,nt = T s,s,d T s,s,d.6 There s no preferred way to do the splttng n.6 because one can always add soe transverse quantty to T t and subtract the sae quantty fro T nt. However, t always happens that the non-transverse part can be chosen to be a polynoal n k and.e. local. Here, we always ake ths choce so that the non-transverse part s local. After ths choce s ade there s stll soe reanng freedo n the splttng nto the transverse and the non-transverse part n.6, nevertheless the quanttes we defne below do not depend on ths reanng freedo. f,uv-ir One such quantty s T s,s,d, the dfference between the UV and the IR expansons n the shortly explaned sense. Snce, as explaned above, the non-transverse part s always local the non-transverse parts of UV and IR are the sae and therefore cancel so that only transverse parts rean n the expresson for T f,uv-ir s,s,d T f,uv-ir s,s,d = f,uv f,ir T s,s,d T s,s,d.7 T f,t,uv s,s,d where the UV and IR expansons are denoted by T f,ir s,s,d s the part of the IR expanson of order On wth n. Another such quanttes are the dvergences of the correlators: k T s f,s,d = k µ µ...µ s ν...ν s T f k s,s,d = k ν µ...µ s ν...ν s T f,nt s,s,d T f,nt s,s,d and T f,t,ir s,s,d µ...µ s ν...ν s respectvely, and µ...µ s ν...ν s. The defntons.6,.7,. are analogous n the scalar case. Before lstng the results for the assve odels, t s worth to show soe general forulas for any spn and any denson that t was possble to obtan for the assless case. We recall that the results for the assless cases correspond to the donant ter n the UV expanson of the assve case. In addton soe general forulas are easy to wrte n ters of partcular lnear cobnaton of the prevous currents whch becoe

traceless n the assless case. These traceless versons of the currents can be defned n the followng way: s T µ st...µ s = a s s,l π µµ l s T µ...µ sl, l= T ft µ...µ s = s l= a f s,l π µµ l T f µ...µ sl.9 where a s s,l = l s! Γ s d3 l l l!s l! Γ s d3, a f s,l = l s! Γ s d3 l l l!s l! Γ s d3. It s easy to see that apltudes for two general spns s and s for the traceless currents can be wrtten as lnear cobnatons of the apltudes. and.5 of the sple currents. T st µ...µ s ν...ν s = s l= s k= a s s,l as s,k k η µµ kµ l k η νν kν k s T µ...µ slν...ν sk T ft µ...µ s ν...ν s = s l= s k= a f s,l af s,k k η µµ kµ l k η νν kν k f T µ...µ slν...ν sk The result for the traceless currents n the assless lt s µ...µ sν...ν s = s ds π 3 d T st,assless s! k d s e πd Γ ds s l= a s s,l πl µµπ l ννπ sl µν. = s ds π 3 d s! k d s s e πd Γ π s ds µν F, s, 5 d s, π µµπ νν πµν We note that for traceless currents xed spn ters are zero.e. the result vanshes for spn s s. For sple currents ths s not the case and the general expresson for spn s s, s s s T µ s,assless...µ s ν...ν s = s s s s s s πνν l=!! s!! d ss π 3 d s s!! e πd Γ ds s s!s s!! ll s l!s s l!! k ds s π l µµπ l ννπ s l µν. For ferons n the assless lt t also happens that only the dagonal s = s s and s > apltudes survve for the traceless currents T µ ft,assless,even...µ sν...ν s = s 3ds d s π 3 d s!d 3 s k d s e πd Γ ds l= a s s,l πl µµπ l ννπ sl µν

= s 3ds d π 3 d s!d 3 s k d s e πd Γ ds s πµν s F, s, 5 d s, π µµπ νν πµν.3 The forula above s vald for d and for the even part n d = 3. For the odd part n d = 3 we obtan for traceless currents, for the donant ter n the UV, a general expresson for spn s s, s s, s >, s > ft,uv donant,odd T µ...µ s ν...ν s ;3D = ss k s s 3 s π = s s k s s 3 s π s s νν s s νν s l= π s µν s F, s, s, π µµπ νν πµν l Γ s l l l!γ s l πl µµπ l ννπ s l µν ɛ σµν k σ ɛ σµν k σ. In Appendx B we show that ths forula s a straghtforward generalzaton of the lnearzed acton proposed long ago by Pope and Townsend, [3], for conforal hgher spn felds. In the case of sple currents we nstead get f,uv donant,odd T µ...µ s ν...ν s ;3D = ss s s πνν s!! s s s 3!!k s s 3 s s!! s s!! ɛ σµν k σ s l= s!s s!! ll s l!s s l!!.5 π l µµπ l ννπ s l µν In the case of sple currents t s possble to wrte the forula for the IR expanson of the transverse part: T f,t,ir,odd µ...µ s ν...ν s ;3D = ss s!! s s s 3!!k s s πs s!! s s.6!! s s πνν ɛ σµν k σ s l= s!s s!! ll s l!s s l!! π l µµπ l ννπ s l µν In the rest of the secton we lst the results for the assve case. The results are gven for d = 3,, 5, 6 and spn s 5. For even d, we use d d ε and expand around ε. For odd d ths s not necessary. It s convenent to use the followng shorthand notaton L n = ε log π γ n k= k.7

as well as We see that there s a relatonshp K = log k P = ε log k γ. π P = K L.9 Furtherore we defne T = coth k π S = k csc k. It turns out that T s useful n even densons d and S s useful n odd. The branches of the functons T and S are chosen such that the IR and UV expansons are and T S UV = UV = T S IR = k π k3 π 3 k5 π 5... IR k 3 = k k5.... πk 63 3πk 3 65 5πk 5... kk K K k k 3 6 5 6K 3k 5.... In the results for UV-IR whch follow, the dfference s shown for the ters contanng the powers of and k that overlap n UV and IR n sense that those powers appear both n UV and n IR expansons. The rest,.e. the UV expanson that does not overlap wth the IR, s denoted by ellpses. The followng results are organzed as follows: frst coe the ones for the scalar odel, sec..-.3, then those of the feron odels, sec..-.6. Sectons. and. contan the full transverse analytc expressons of the correlators. Sectons. and.5 contan the UV and IR expansons of the latter, as well as the above-entoned UV-IR expressons. Sectons.3. and.6 are devoted to the non-transverse local parts of the correlators. These are the non-transverse expressons whch have not been already dscussed n the prevous secton and should be elnated by the use of tadpole and seagull ters. The ethod to obtan the results below has been explaned n [] and s largely based on the approach of Davydychev and collaborators, [3], see [3]. 3

. Scalar apltudes Scalars, spn x, denson 3: Scalars, spn x, denson : Scalars, spn x, denson 5: T s,;d = T s,;3d = T T,;5D s = 3π k π L S π k T 3π k k Scalars, spn x, denson 6: T,;6D s = 6π 3 9 L k 7 L S π 3 k k Scalars, spn x, denson 3: T s,t,;3d = k π νν π k T 6 k T s,nt,;3d = η νν π k 3 Scalars, spn x, denson : T s,t,;d = k π νν 6π 3 L k S 6π k k 3 T s,nt,;d = η νν L π Scalars, spn x, denson 5: T s,t,;5d = k π νν 3π 3 k T 3π 6 k k k 3 T s,nt,;5d = η νν π 3.3..5.6.7..9.3.3.3 Scalars, spn x, denson 6: T s,t,;6d = k π νν π 3 3 L 3 k 6 L 6 5 k

S 6π 3 6 k k k 3 T s,nt,;6d = η L νν 6π 3 Scalars, spn x, denson 3: T s,t 5,;3D = k πνν π k 33 k T 3 6 k 3 k 3 3 k 5.33.3.35 Scalars, spn x, denson : T s,t,;d = k πνν 5π T s,nt,;3d = k νη νν π ηνν k 3.36 π 3 L 6 7 6 k k S 5π k k 3 k 5.37 T s,nt,;d = k νη νν L π ηνν L π k 3L Scalars, spn x, denson 5: T s,t,;5d = k π νν T 6π π 3 3 3 k 5 k 6 k 3 6 k 3 k 3 6 k 5 T s,nt,;5d = k νη νν 6π 3 ηνν π k 3 5 5.3.39. Scalars, spn x, denson 6: T s,t,;6d = k πνν π 3 7 L 6 35 k S 35π 3 k 337 336 L 3 k 6 k 3 6 k 3 k 3 6 k 5. T s,nt,;6d = L k νη νν 3π 3 ηνν 3π 3 L k L 3 6 Scalars, spn x, denson 3: T s,t,;3d = k π µν π k T 6 k k 3..3 5

Scalars, spn x, denson : T s,nt,;3d = η µν π T s,t,;d = k π µν 6π 3 L k S 6π k k 3 Scalars, spn x, denson 5:,;5D = k π µν 3π T s,t Scalars, spn x, denson 6:,;6D = k π µν π 3 T s,t S 6π 3 Scalars, spn x 3, denson 3: T s,nt,;d = η µν L π 3 k T 3π 6 k k k 3 T s,nt,;5d = η µν 3 L 6 6 k k k 3 π 3 3 k T s,nt,;6d = η L µν 6π 3 T s,t 5,3;3D = k π νν π µν π k 33 k T 3 6 L 6 k 3 5 k 3 3 k 5 k..5.6.7..9.5.5 T s,nt,3;3d = kνη µν k µ k ν η νν π η µν η νν k 3.5 π Scalars, spn x 3, denson : T s,t 3,3;D = k π νν π µν 5π L 7 6 6 k k S 5π k k 3 k 5.53 T s,nt,3;d = kνη µν k µ k ν η νν L π η µν η νν L π k 3L.5 6

Scalars, spn x 3, denson 5: T s,nt T s,t,3;5d = k π νν π µν π,3;5d = k νη µν k µ k ν η νν 3 3 3 k 5 k T 6π 6 k 3 6 k 3 k 3 6 k 5 π 3 η µν η νν π k 3 5 5.55.56 Scalars, spn x 3, denson 6: T s,t,3;6d = k π νν π µν π 3 7 L 6 35 k S 35π 3 k 337 336 L 3 6 k 3 6 k 3 k 3 6 k 5 k.57 T s,nt,3;6d = kνη L µν k µ k ν η νν 6π 3 η µν η νν 3π 3 L k L 3 6 Scalars, spn x 5, denson 3: T s,t,5;3d = k6 πννπ µν π 3 k 5 3 5 T k 5 3 k 3 5 3 k 5 k 5 5 5 6 k 7.5.59 T s,nt,5;3d = k µkνη 3 νν π kνη µν π k µ k ν ηνν π 3k 3 kνη µν η νν 3π η µν ηνν π k 3 k 3 5 k 3 3.6 Scalars, spn x 5, denson : T s,t,5;d = k6 πννπ µν 7π S 7π k 3 5 L 6 k 3 6 k 5 6 k 7 9 5 k 3 k 6.6 T s,nt,5;d = k µkνη 3 νν L π k νη µν L k µ k ν ηνν L π k 5L π 7

k νη µν η νν η µν η νν π L π k 5L L k 5L k 5L 3 6 Scalars, spn x 5, denson 5: T s,t 5,5;5D = k6 πννπ µν 3π 6 73 3 k 55 5 k 57 T 5 3π 56 k 5 6 k 5 k 3 56 k 5 5 k 7.6.63 T s,nt,5;5d = k µk 3 νη νν 6π 3 k µ k ν ηνν 3π η µν ηνν π Scalars, spn x 5, denson 6: T s,t,5;6d = k6 π ννπ µν 7π 3 3 6 7 k 9 k νη µν k 3 5 π 3 kνη µν η νν 3π k 3 3 k 5 7 7 563 L 5 S π 3 k 3 5 9 k 6 L 6 5 k 9 k k k 3 6 3 k 5 3 k 7.6.65 T s,nt,5;6d = k µkνη 3 L νν 3π 3 kνη L µν 6π 3 k µ k ν ηνν 3π 3 L k 5L 3 3 6 kνη µν η νν 6π 3 L k 5L 3 3 6 η µν ηνν L 3π 3 k 5L 3 3 k 6 5L Scalars, spn x, denson 3: T s,t 3,;3D = k πµν π k 3 k T 3 k k 3 k π µµ π νν π k 3 k T 6 k k 5 k 3 k 5 T s,nt,;3d = k µk ν η µν π η µµ η νν 3π 3 ηµν π k 3 3.66.67.6

Scalars, spn x, denson : T s,t,;d = k πµν 3 3π 3 L L k 5 S 5π k k 3 k 5 3 k π µµ π νν 3π 6 L S 5π k k 3 k 5 k 3 L k 5 k.69 T s,nt,;d = k µk ν η µν L π η µµ η νν L π ηµν L π k L.7 Scalars, spn x, denson 5: T s,t,;5d = k πµν 6π T π 6 3 3 k 9 k 6 5 k k k 3 3 3 3 3 k k π µµ π νν π T 6π 9 k 6 k k 3 3 6 k 5 5 k 6 k 5.7 T s,nt,;5d = k µk ν η µν 6π 3 η µµ η νν 5π 5 ηµν 3π k 3 5 5.7 Scalars, spn x, denson 6: T s,t,;6d = k πµν 3π 3 735 L k 337 6 L 6 65 6 L 6 k 6 35 k S 35π 3 96 k k k 3 6 3 k 5 k π µµ π νν 3π 3 7 L k 7 6 L 6 k 6 35 k S 35π 3 9 k 6 k k 3 6 3 k 5 337 336 L 3.73 9

T s,nt,;6d = k L L3 µk ν η µν 3π 3 η µµ η νν 96π 3 6 ηµν 6π 3 L k L 3 3 6 Scalars, spn x, denson 3: T s,t,;3d = k6 πµνπ νν 3 π k 3 π µµ πνν π 3 k 3 T k 3 3 3 k 5 T 3 3 k k 3 3 k 5 5 6 k 7 k 3.7 k 3 3 k 5 6 k 7.75 T s,nt,;3d = k µkνη νν π k µ k 3νη π µν kνη µµ η νν 3π 3 kµη νν 3π 3 k µ k ν η µν η νν 3k 6 3 k 3π νηµν π k 3 3 η µµ ηνν 3 π k 3 5 5 ηµνη νν π k 3 k 3 3 5 5.76 Scalars, spn x, denson : T s,t,;d = k6 πµνπ νν π 3675 L 3 L k 6 k 3 35 S 35π k 6 k 3 k 5 36 k 7 π µµ πνν π 3675 L 337 56 L k k 6 35 S 35π k 3 k 3 6 k 5 6 k 7 T s,nt,;d = k µk νη νν L π kµη νν L kνη µν π η µνη νν π π L Scalars, spn x, denson 5: T s,t,;5d = k6 π µνπ νν π k µ k 3νη µν L π k νη µµ η νν L k µ k ν η µν η νν L π k L k L η µµ ηνν π L k L k L 3 6 6 7 3 6 k π L k L 3 6 5 k 7 6.77.7 3

T s,nt,;5d = k µkνη νν kµη νν kνη µν η µνη νν π Scalars, spn x, denson 6: T s,t,;6d = k6 πµνπ νν 5π 3 7 T π 56 k 6 k 3 k 3 6 k 5 k 7 3 5 π µµ πνν 3π 6 k k 7 T 3π 56 k 6 k 3 k 3 6 k 5 k 7.79 π 3 k µ k 3νη µν 6π 3 k νη µµ η νν 5π 5 5π 5 k µ k ν η µν η νν 3π k 3 5 5 3π k 3 5 5 η µµ ηνν 5π 3 k 5 7 7 k 3 5 k 5 6 35 7. 563 9 k 375 L 6 35 L L 6 k 5 6 9 k 6 63 S 5π 3 k 3 k k 3 6 6 3 k 5 6 3 k 7 π µµ πνν 5π 3 563 7 L 9 k 6 33 L 6 k 3 6 9 k 63 S 5π 3 T s,nt,;6d = k µk νη νν L 9 k k k 3 6 3 k 5 3 6π 3 kµη νν L3 kνη µν π 3 η µµ ηνν 3π 3 96π 3 6 η µνη νν π 3 L Scalars, spn 3 x 3, denson 3: T s,t 3,3;3D = k6 πµν 3 7 π 6 k 3 L k 7 k µ kνη 3 L µν 3π 3 kνη L3 µµ η νν π 3 6 k µ k ν η µν η νν π 3 L k L 3 3 6 k L 3 3 6 L 3 3 k 6 L L k L 3 3 k 6 L 3 k 5 T 6 k 3 6.. k 3 3 k 5 6 k 7 3

3 π µµ π µν π νν π 6 k 3 k 35 3 T k 9 3 k 3 9 k 5 3 6 k 7.3 T s,nt 3 3,3;3D = k µkνη µν π kνη µµ η µν k µ k ν η µµ η νν kµη µν η νν k µ k ν ηµν 3k 3 η µµ η µν η νν η 3 µν π π k 3 k 3 6 5 5 5π π 3 k 3 5 Scalars, spn 3 x 3, denson : T s,t 3,3;D = k6 πµν 3 π 3675 L 9 3L k k 6 35 S 35π k 3 k 3 k 5 66 k 7 π µµ π µν π νν π 5 3L 337 56 3L k 7 6 35 S 3 35π k 9 k 3 k 5 6 k 7 T s,nt 3,3;D = k µkνη µν 3L π kνη µµ η µν k µ k ν η µµ η νν kµη µν η νν 3L k µ k ν ηµν 3L π k 3L 3L η µµ η µν η νν π k 3L 3 6 ηµν 3 π L k L k L 3 6 Scalars, spn 3 x 3, denson 5: T s,t 3,3;5D = k6 πµν 3 6π T 6π 6 53 56 k 6 3 k 3 3 k 5 k 7 k 3 6 k 5 k 7 3 5 π µµ π µν π νν 3π 6 6 k k 37 T 3 3π 56 k 3 6 k 9 k 3 36 k 5 3 k 7 6 k π T s,nt 3,3;5D = k µkνη µν π 3 kνη µµ η µν k µ k ν η µµ η νν kµη µν η νν 5π 5..5.6.7 3

k µ k ν ηµν π k 3 5 5 η µµ η µν η νν 5π ηµν 3 π k 3 5 k 5 35 7 Scalars, spn 3 x 3, denson 6: T s,t 3,3;6D = k6 πµν 3 5π 3 563 635 L 3 59 3L 6 S 5π 3 96 k 6 k 9 k k 6 6 9 k 63 6 756 L k 7 k 3 3 k 5 3 π µµ π µν π νν 5π 3 563 336 L 6 699 3L 6 k 3 6 63 k S 35π 3 9 k k k 3 6 3 k 5 3 T s,nt 3,3;6D = k µk νη µν 3L k µ k ν η µν 6π 3 6π 3 η µµ η µν η νν 3π 3 ηµν 3 6π 3 k k 5 7 7 9 7 3L k 7 kνη µµ η µν k µ k ν η µµ η νν kµη L 3 µν η νν 3L k L 3 6 L 3 k 6 3L L k L 3 3 k 6 L 3π 3 6..9.9 Scalars, spn 3 x 5, denson 3: T s,t 3,5;3D = k πµνπ 3 νν π T 5 56 7 6 k 73 3 k 55 5 3 7 k 5 6 k 3 5 π µµ π µν πνν 5 π 6 k 73 6 T 5 k 5 6 k 3 5 3 k 5 56 k 7 5 k 9 3 k 55 k 5 5 5 6 k 7 5 57 k 9.9 T s,nt 3,5;3D = k3 µkνη 3 νν π k νη µµ η µν k 3 µk ν η νν k µk νη µν 3 π 3 π k µ kνη 3 µµ η νν π 3 k µk νη µν η νν π 3k 3 33

k µ kνη 3 µν 3k 6 3 π k µ k ν η µµ ηνν kµη µν ηνν k 3 5 π kνη µµ η µν η νν k 3 6 5 π k µ k ν ηµνη νν 3k 6k 3 6 5 π kνη µν 3 π k 3 k 3 3 3 5 η µµ η µν ηνν k 3 56k 5 96 7 7π ηµνη 3 νν π k6 3 k 3 3 3 k 5 7 7 Scalars, spn 3 x 5, denson : T s,t 563 3,5;D = k πµνπ 3 νν 7π 567 L 59 36 5 3L k 3 5 k 6 6 7 9 S π 6 k 3 k 3 6 k 5 6 3 k 7 3 k 9 563 π µµ π µν πνν 7π 756 L 9 3L k 5 k 6 9 3 3 S 7π k 3 k 3 6 k 5 3 3 k 7 3 3 T s,nt 3,5;D = k3 µkνη 3 νν L π k µk νη µν 3L kνη µµ η µν kµk 3 ν ηνν 3L π kµk νη 3L µν η νν π k 9L k 9.9.93 k µ k 3νη µµ η νν 3L π π k µ kνη 3 µν 3L π k 3L k µ k ν η µµ ηνν kµη µν ηνν 3L π k 5L 3 6 kνη 3L µµ η µν η νν π k 5L 3 6 k µ k ν ηµνη νν π 3L k 3L k L 3 6 k νη 3 µν π L k L k 5L 3 3 6 3

η µµ η µν ηνν π η 3 µνη νν π Scalars, spn 3 x 5, denson 5: T s,t 3,5;5D = k π 3 µνπ νν T π π 3L k 5L 3 k 6 5L L k6 L k 5L 3 3 k 6 5L 5 3 3 k 5 5 k 7 7 k 5 3 k 3 5 6 k 5 5 k 7 k 9 k 5 56 π π µµ π µν πνν T 3 6π k 5 56 9 3 7 3 56 k 5 5 k 7 7 6 3 k 5 3 k 3 5 6 k 5 5 k 7 3 k 9 T s,nt 3,5;5D = k3 µkνη 3 νν π 3 k µk νη µν π 3 k µ k 3νη µµ η νν kνη µµ η µν kµk 3 ν ηνν 5π 5 kµk νη µν η νν π k 3 6 5 5 k µ kνη 3 µν π k µ k ν η µµ ηνν kµη µν ηνν π 5 k 5 7 7 kνη µµ η µν η νν π 5 k 5 7 7 k µ k ν ηµνη νν π k 3 5 k 5 6 7 7 kνη µν 3 3π k 3 5 k 5 6 7 7 η µµ η µν ηνν π 5 k 5 7 k 7 6 9 ηµνη 3 νν 3π k6 3 5 k 5 6 7 k 7 6 9 9 5π 5.9.95 k 3 5 5 Scalars, spn 3 x 5, denson 6: T s,t 67 3,5;6D = k πµνπ 3 νν 7π 3 37 L k 7 36 996 L 593 35 3L 6 k 69 6 5 k 56 97 6 99 S 693π 3 6 k 5 k k 3 6 k 5 k 7 6 k 9 67 π µµ π µν πνν 7π 3 95 L k 7 665 L 9.96 35

667 S 3π 3 7 3L 6 k 73 6 95 k 6 99 6 33 6 k 5 6 k 5 k 3 6 k 5 k 7 6 k 9.97 T s,nt 3,5;6D = k3 µkνη 3 L νν 6π 3 k µk νη µν 3L kνη µµ η µν kµk 3 ν ηνν L 3 kµk νη µν η νν 6π 3 k µ kνη 3 µν π 3 k µ k ν η µµ η νν k µη µν η νν kνη µµ η µν η νν 6π 3 6π 3 3π 3 6 3L k 3L 3 6 3L k L 3 6 3π 3 L 3 k 6 5L k µ kνη 3 L3 µµ η νν 6π 3 6 L 3 k 6 5L k µ k ν ηµνη νν π 3 kνη µν 3 L π 3 k L 3 3 k 6 5L η µµ η µν ηνν 3π 3 η 3 µνη νν π 3 3L k L 3 k 6 5L 6 L 3 k 6 5L k 3L 5 L k6 L 3 3 k 6 5L 6 k L 5.9 Scalars, spn x, denson 3: T s,t 5,;3D = k πµν π 6 k 5 T k π µµ πµνπ νν π T 3 k 3 π k 3 3 3 6 3 k 3 5 7 k 5 6 k 7 k 9 3 k 3 9 k 5 66 k 7 6 k 9 k k 5 7 πµµπ νν 3 6 k 3 6 k 5 37 T 3 k 3 6 k 3 9 3 k 5 3 6 k 7 3 k 9.99 T s,nt,;3d = k3 µkνη 3 µν π kµk νη µµ η νν π 3 36

k µ kνη 3 µµ η µν kµk 3 ν η µν η νν kνη µµη νν kµη µµ ηνν 6 5π 5 π 3 kµk νη µν k µ k ν η µµ η µν η νν k 3 5 5π kνη µµ ηµν kµη µνη νν k 3 6 5 5π k µ k ν ηµν 3 6k k 3 56 3π 5 5 ηµµη νν k 5 967 5π 7 η µµ ηµνη νν k 3 6k 5 76 5π 7 7 ηµν π k6 3 k 3 6 5 k 5 56 35 7 3k 3 π Scalars, spn x, denson : T s,t 563,;D = k πµν 5π 95 L 97 6 76 7L 56 k 339 56 3L k 3 6 9 56 63 S 5π 3 k 6 3 k 3 3 k 5 56 6 3 k 7 56 3 563 π µµ πµνπ νν 5π 665 L 9 735 3L 7 3L k 3 6 63 56 S 35π 3 k 6 3 k 3 3 k 5 56 6 3 k 7 56 3 k 9 563 πµµπ νν 5π 59 L 9 336 5 3L 56 699 56 3L k 6 63 3 S 35π k 3 k 3 k 5 3 6 3 k 7 3 3 k 9 T s,nt,;d = k3 µkνη 3 µν L π k µk νη µµ η νν 3L k µ kνη 3 µµ η µν kµk 3 ν η µν η νν 3L π kµk νη µν 3L π k 3L π k 9 k k.. 37

Scalars, spn x, denson 5: T s,t,;5d = k πµν kνη µµη νν kµη µµ ηνν L 3 π 6 k µ k ν η µµ η µν η νν 3L π k L 3 6 kνη µµ ηµν kµη µνη νν 3L π k L 3 6 k µ k ν ηµν 3 π L k L k L 3 3 6 ηµµη νν π L 3 k 6 3L η µµ ηµνη νν 3L π k L 3 k 6 L ηµν L π k6 L k L 3 3 k 6 L T π 5 73 3 9 k 5 5 k 7 7 k 3 k 3 6 k 5 k 7 5 5π 5 k 56 π µµ πµνπ νν 5π T 3 π 5 k 3 56 πµµπ νν π 9 k 9 3 5 7 3 6 k 6 5 5 k 7 7 3 k 3 3 k 3 3 6 k 5 3 k 7 3 5 k 9 T 3 6π 5 k 3 56 k 3 3 k 3 3 6 k 5 3 k 7 3 5 9 3 7 3 56 k 5 5 k 7 7 6 3 k 9 T s,nt,;5d = k3 µkνη 3 µν 3π 3 k µk νη µµ η νν 5π 5 k µ kνη 3 µµ η µν kµk 3 ν η µν η νν 5π 5 kµk νη µν π k 3 5 5 kνη µµη νν kµη µµ ηνν k µ k ν η µµ η µν η νν 5π k 5 6 7 7 kνη µµ ηµν kµη µνη νν k 5π 5 37 7 k µ k ν ηµν 3 3π k 3 5 k 5 35 7 ηµµη νν 35π k 7 6 3 9 9 35π 7..3 3