Particle Physics: Introduction to the Standard Model

Σχετικά έγγραφα
The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Non-Abelian Gauge Fields

Ασθενής Αλληλεπίδραση και V-A ρεύµατα πιθανότητας. Σπυρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική 1

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Symmetric Stress-Energy Tensor

Space-Time Symmetries

Στοιχειώδη Σωματίδια II. Διάλεξη 11η Πετρίδου Χαρά

Higher Derivative Gravity Theories

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

Ενοποίηση της Ηλεκτροµαγνητικής και Ασθενούς Αλληλεπίδρασης τα W και Z Μποζόνια. Σ. Ε. Τζαµαρίας Σωµατιδιακή Φυσική

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Introduction to the Standard Model of Particle Physics

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

UV fixed-point structure of the 3d Thirring model

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Solar Neutrinos: Fluxes

Physics 582, Problem Set 2 Solutions

Numerical Analysis FMN011

General equilibrium second-order hydrodynamic coefficients for stress-energy tensor and axial current

Hadronic Tau Decays at BaBar

Dark Matter and Neutrino Masses from a Scale-Invariant Multi-Higgs Portal

Πειραµατική Θεµελίωση της Φυσικής Στοιχειωδών Σωµατιδίων

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Index , 332, 335, 338 equivalence principle, , 356

Constitutive Relations in Chiral Media

Lecture 2 The Wess-Zumino Model

Dirac s Observables for the SU(3)xSU(2)xU(1) Standard Model. Abstract

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Errata 18/05/2018. Chapter 1. Chapter 2

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Section 9: Quantum Electrodynamics

Λ p + π + + Όλα τα κουάρκ και όλα τα λεπτόνια έχουν ασθενείς αλληλεπιδράσεις Τα νετρίνα έχουν ΜΟΝΟ ασθενείς αλληλεπιδράσεις


Nuclear Physics 5. Name: Date: 8 (1)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

1 Poincare group and spinors

The scalar sector of the SU(3) c SU(3) L U(1) X model

Η ανακάλυψη του Μποζονίου Higgs στο CERN

8.324 Relativistic Quantum Field Theory II

Dark matter from Dark Energy-Baryonic Matter Couplings

Example Sheet 3 Solutions

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Questions on Particle Physics

Areas and Lengths in Polar Coordinates

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Polarizations of B V V in QCD factorization

Δομή του Πρωτονίου με νετρίνο. Εισαγωγή στη ΦΣΣ - Γ. Τσιπολίτης

Physics 523, Quantum Field Theory II Homework 9 Due Wednesday, 17 th March 2004

Section 8.3 Trigonometric Equations

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

CORDIC Background (2A)

Geodesic Equations for the Wormhole Metric

A manifestly scale-invariant regularization and quantum effective operators

Study on the discovery of new heavy, neutral gauge bosons with the ATLAS experiment. PhD Thesis

Matrices and Determinants

derivation of the Laplacian from rectangular to spherical coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Higher spin gauge theories and their CFT duals

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Section 7.6 Double and Half Angle Formulas

108/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒê ± Ö, Œ.. μ² μ μ²μ,.. Ò±μ. ³ ± Ê É É, ³, μ Ö

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Congruence Classes of Invertible Matrices of Order 3 over F 2

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Dirac Matrices and Lorentz Spinors

Dirac Matrices and Lorentz Spinors

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

CORDIC Background (4A)

Physics 513, Quantum Field Theory Examination 1

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας

Lectures on Quantum sine-gordon Models

EE512: Error Control Coding

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Chapter 9 Ginzburg-Landau theory

Spherical Coordinates

Physics of CP Violation (III)

Quantum Electrodynamics

Universidade Cruzeiro do Sul. e Tecnológicas - CETEC. Light-Cone QCD, and Nonpertubative Hadrons Physics. Electromagnetic Current of a Composed

Hartree-Fock Theory. Solving electronic structure problem on computers

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jordan Form of a Square Matrix

Parametrized Surfaces

The Feynman-Vernon Influence Functional Approach in QED

SPECIAL FUNCTIONS and POLYNOMIALS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

From Fierz-Pauli to Einstein-Hilbert

CRASH COURSE IN PRECALCULUS

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Partial Trace and Partial Transpose

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

Particle Physics Formula Sheet

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Introduction: Noncommutative Geometry Models for Particle Physics and Cosmology. Matilde Marcolli

Transcript:

Particle Physics: Introduction to the Standard Model Electroweak theory (I) Frédéric Machefert frederic@cern.ch Laboratoire de l accélérateur linéaire (CNRS) Cours de l École Normale Supérieure 4, rue Lhomond, Paris February 3th, 07 / 4

Part VI Electroweak theory (I) / 4

History 3 4 5 3 / 4

charged leptons and photon quarks and gluon neutrinos W ±, Z H ( ul d L ( νel e L ) ( cl s L ) ( νµl µ L ) ( tl b L ) ( ντl τ L u R c R t R d R s R b R e R µ R τ R ) ) γ g W ±, Z H 4 / 4

History 896 Henri Becquerel: β decay 899 Ernest Rutherford: distinguishes α and β rays 94 James Chadwick: the β decay has a continuous spectrum 930 Wolfgang Pauli: postulates the neutrino (ballroom) 933 Enrico : contact interaction 953 Frederick Reines: ν el + p n+e + 956 Lee, Yang, Wu, Garwin et al: Parity violation 96 Glashow, Salam, Weinberg,, EBKGH 973 Lagarrigue, Faissner: neutral currents (Z t-channel) 984 Rubbia, van der Meer : W ±, Z 0 discovery of the boson 5 / 4

n T fi p+e +ν el G( pγ µ n)(ēγ µν) G( pγ µ n) (ēγ q m µν) QED: m = 0 q if m q neglect q constant in momentum space Dirac function in space-time: contact interaction G 0 5 GeV α EM Currents ψψ scalar S ψγ µ ψ vector V ψσ µν ψ tensor T ψγ µ γ 5ψ axial vector A ψγ 5ψ pseudo scalar PS QED: V EW: V A V A violates parity (experiment) V A quark/lepton level, not hadron level 6 / 4

Chirality Chirality is the handed-ness of the particle: Definitions ψ = P L ψ + P R ψ = ψ L +ψ R Helicity: σ p m = 0: Helicity = chirality m = 0: ψ and γ 5ψ solve DIRAC Weyl basis γ 5 = iγ 0 γ γ γ 3 γ5 = 0 = γ ( 5γ µ +γ µ γ 5 ) 0 γ 5 = ( 0 ) 0 γ 0 = 0 γ 0 = γ 0 γ 5 = γ 5 7 / 4

chirality P L = ( γ5) P R = (+γ5) P L + P R = PL = ( γ5) ( γ5) = ( γ5)( γ5) 4 = 4 ( γ5 γ5 +γ 5) = ( γ5 γ5 + ) 4 = ( γ5) P L P R = ( γ5) (+γ5) = ( γ5)(+γ5) 4 = 4 ( γ5 +γ5 γ 5) = 0 P L ψ = P L ( ψl ψ R = ψ L ψp L = (P L γ 0 ψ) = ψ R ) 8 / 4

m = 0 helicity conserved σ p good QN particle (p) anti-particle p: σ σ ψ R right-(left)handed (anti-)particle ψ L left-(right)handed (anti-)particle EM current j µ = e ψγ µ ψ = e ψ(p L + P R )γ µ (P L + P R )ψ = e ψp L γ µ P L ψ e ψp R γ µ P R ψ e ψp R γ µ P L ψ e ψp L γ µ P R ψ = e ψγ µ P R P L ψ e ψγ µ P L P R ψ e ψp R γ µ P L ψ e ψp L γ µ P R ψ = e ψp R γ µ P L ψ e ψp L γ µ P R ψ Perfect symmetry under parity: p p 9 / 4

weak interaction: Left is not equal to Right use vector bosons ask for local gauge invariance remember that U() EM is QED and was extremely successful unify electromagnetic and weak interactions SU() U() SU(): three generators (gauge bosons) U(): one generators (gauge boson) SU() vector bosons must be massive (-contact interaction) massive vector bosons lead to a non-renormalizable theory 0 / 4

The free Lagrangian (L 0 ) History Remember QCD: GaugeGroup SU(3) Gaugebosons 8 Lorentz Vectors Gµ(x) a Field Tensor Gµν a = µgν(x) a νgµ(x) g a S f abc Gµ(x)G b ν(x) c Structure [ λa b abc λc SU() L : GaugeGroup SU() Gaugebosons 3 Lorentz Vectors Wµ(x) a Field Tensor Wµν a = µwν(x) a νwµ(x) g a ǫ abc Wµ(x)W b ν(x) c Structure [ Ta b T ] = iǫ c ( ) abc σa 0 (T a) 3 3 0 0 / 4

SU() L : GaugeGroup SU() Gaugebosons 3 Lorentz Vectors Wµ(x) a Field Tensor Wµν a = µwν(x) a νwµ(x) gǫ a abc Wµ(x)W b ν(x) c Structure [ Ta b abc Tc U() Y Y weak hypercharge: GaugeGroup U() Gaugeboson Lorentz Vector B µ(x) Field Tensor B µν = µb ν(x) νb µ(x) / 4

Free Lagrangian Gauge Fields SU() L U() Y L 0 W µν = 4 BµνBµν W a 4 µνw µν a = 4 BµνBµν Tr(WµνWµν ) = Wµν a Ta Organize the Dirac Fields e L(x) = P L e(x) e L(x) = (γ 0 P L e(x)) ν el (x) l(x) = e L(x) e R(x) No right-handed neutrinos Define the weak Hypercharge hypercharge left right: 0 0 Y = 0 0 0 0 y R SU() U(): y R to be chosen later... 3 / 4

Free Lagrangian Dirac Fields Minimal Substitution L 0 = ν el (x)iγ µ µν el (x) + e L(x)iγ µ µe L(x) + e R(x)iγ µ µe R(x) = l(x)iγ µ µl(x) µ Interaction Lagrangian L µ + ig W a µ Ta + ig B µ Y = lγ µ (g W a µ Ta + g B µ Y )l 4 / 4

use form of Pauli matrices and W ± µ = (W µ iw µ) Investigate the Interaction L = lγ µ (g W a µ Ta + g B µ Y )l = lγ µ [g (Wµ T + Wµ T + Wµ 3 T 3 )+g Y B µ ]l ( = g (ν el, e L)γ µ (Wµ τ + Wµ τ + Wµ 3 τ 3 ) νel + g ν el γ µ B µν el + g e Lγ µ B µe L y R g e Rγ µ B µe R = g (W + µν el γ µ e L + W µ e Lγ µ ν el ) e L ) (g W 3 µ g B µ)ν el γ µ ν el + (g W 3 µ + g B µ)e Lγ µ e L y R g B µe Rγ µ e R 5 / 4

Identify the gauge bosons charged bosons: W ± µ = (W µ iw µ) neutral boson: Z µ = (g g +g Wµ 3 g B µ) neutral boson: A µ = (g Wµ 3 + g B µ) g +g A µ and Z µ are orthogonal weak angle: sinθ W = g, cosθ g W = g +g g +g B µ = W 3 µ = g +g g +g (g A µ g Z µ) = cosθ W A µ sinθ W Z µ (g A µ + g Z µ) = sinθ W A µ + cosθ W Z µ 6 / 4

deduce (g W 3 µ g B µ)ν el γ µ ν el + (g W 3 µ + g B µ)e Lγ µ e L y R g B µe Rγ µ e R = [g g +g (g A µ + g Z µ) g (g g A µ g Z µ)]ν el γ µ ν el +g + [g (sinθ W A µ + cosθ W Z µ)+g (cosθ W A µ sinθ W Z µ)]e Lγ µ e L y R g (cosθ W A µ sinθ W Z µ)e Rγ µ e R = g + g Zµ[ νe Lγ µ ν el elγµ e L sin θ W ( e Lγ µ e L + y R erγµ e R)] g g A g µ( e Lγ µ e L + y R e Rγ µ e R) +g g g g +g deduce y R = = g cosθ W = g sinθ W = e 7 / 4

L = e sinθw (W + µν el γ µ e L + W µ e Lγ µ ν el ) e sinθ W cosθ W Z µ[ νe Lγ µ ν el elγµ e L sin θ W ( e Lγ µ e L e Rγ µ e R)] ea µ( e Lγ µ e L e Rγ µ e R) photon couples to charged particles only charged gauge bosons ensure transition between charged leptons and neutrinos a neutral gauge boson is predicted all gauge bosons are massless 8 / 4

Introduce a complex scalar doublet: ( ) φ (x) φ(x) =, I W = φ (x) Free Lagrangian L 0 = ( µφ )( µ φ) V(φ) V(φ) = κφ φ+λ(φ φ) Theory must be stable: λ > 0 Minimum not at 0: κ = µ < 0 The ground state is not unique: ( ) 0 φ = exp(i τa ϕa) µ λ Choose ϕ = 0 SU() symmetry is broken 9 / 4

Yukawa terms L Y h.c. = y ee Rφ ( νel e L ) y e(ν el, e L)φe R = y e(e Rφ νe L + e Rφ el) y e(ν el φ e R + e Lφ e R) Deduce the hypercharge: Q = I W 3 + Y W 0 = + Y W y H = Minimal Subsitution µφ µφ µφ+ig Wµ a τa φ y +ig B H µ φ µφ φ ig Wµ a τa φ y ig B H µ Calculate the interaction terms φ ( ig Wµ a τa ig y B H µ ) (+ig Wµ a τa + ig y B H µ )φ φ T µ = (0, ) = (0, v ) λ 0 / 4

µ (0, )( ig λ Wµ a τa ig y B H µ )(+ig Wµ a τa µ = (0, )(g λ Wµ a τa + g y B H µ )(g Wµ a τa µ = (0, λ ) g g A µ+(g g )Zµ g +g g g A µ+(g g )Zµ g +g g W µ g W + µ g W µ g +g Z µ = g v 4 W µ W µ+ + (g +g )v 8 Z µz µ The weak bosons have acquired a mass! + ig B µ y H ) + g y B H µ ) g W + µ g +g Z µ ( 0 µ λ ) ( 0 µ ( λ) 0 µ λ ) / 4

Charged lepton masses L Y = y e(e Rφ νe L + e Rφ el) ye(νe Lφ e R + e Lφ e R) = y e(e R v e L) y e(e L v e R) = y e v (e Re L + e Le R) = y e v (ee) Masses m e m W ± = y e v = g v 4 = m Z = (g +g )v m W ± m Z = cos θ W 4 = e v 4 sin θ W e v 4 sin θ W cos θ W L EQM / 4

Quantum Numbers weak Isospin SU() L of fermions weak hypercharge Q = I3 W + Y numerical coincidence of I3 W = I3 S for L I W I W 3 Y 3 ( ul d L ( νel e L ) ( cl s L ) ( νµl µ L ) ( tl b L ) ( ντl 4 0 0 u 3 R c R t R 0 0 d 3 R s R b R 0 0 e R µ R τ R τ L ) ) 3 / 4

e L = (γ 0 P L e) = e P L γ0 = e P L γ 0 = e γ 0 P R = ep R The interactions Electromagnetic Current L = e sinθw (W + µν el γ µ e L + W µ e Lγ µ ν el ) e Z sinθ W cosθ W µ[ νe Lγ µ ν el elγµ e L sin θ W ( e Lγ µ e L e Rγ µ e R)] ea µ( e Lγ µ e L e Rγ µ e R) L = ea µ( ep R γ µ P L e ep L γ µ P R e) = ea µeγ µ Qe = ea µeγ µ (I W 3 + Y )e = ea µj µ EM Charged Current L = e sinθw (W + µν el γ µ P L e+w µ ep R γ µ ν el ) e + µ µ 4 / 4