MAHALAKSHMI ENGINEERING COLLEGE,TRICHY.

Σχετικά έγγραφα
Homework 8 Model Solution Section

Differentiation exercise show differential equation

Second Order Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Matrices and Determinants

Spherical Coordinates

Quadratic Expressions

Answer sheet: Third Midterm for Math 2339

Section 8.3 Trigonometric Equations

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Areas and Lengths in Polar Coordinates

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Differential equations

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Example Sheet 3 Solutions

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Trigonometry 1.TRIGONOMETRIC RATIOS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Solve the difference equation

EE512: Error Control Coding

Solution to Review Problems for Midterm III

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

F19MC2 Solutions 9 Complex Analysis

derivation of the Laplacian from rectangular to spherical coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Math221: HW# 1 solutions

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( y) Partial Differential Equations

Trigonometric Formula Sheet

2 Composition. Invertible Mappings

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

D Alembert s Solution to the Wave Equation

Strain gauge and rosettes

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ADVANCED STRUCTURAL MECHANICS

Section 8.2 Graphs of Polar Equations

The Simply Typed Lambda Calculus

CRASH COURSE IN PRECALCULUS

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Geodesic Equations for the Wormhole Metric

TRIGONOMETRIC FUNCTIONS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Προβολές και Μετασχηματισμοί Παρατήρησης

Reminders: linear functions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Laplace s Equation in Spherical Polar Coördinates

Lecture 26: Circular domains

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Statistical Inference I Locally most powerful tests

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

Finite Field Problems: Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Parametrized Surfaces

ST5224: Advanced Statistical Theory II

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Numerical Analysis FMN011

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Section 9.2 Polar Equations and Graphs

Solution Series 9. i=1 x i and i=1 x i.

Approximation of distance between locations on earth given by latitude and longitude

COMPLEX NUMBERS. 1. A number of the form.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Exercises to Statistics of Material Fatigue No. 5

6.3 Forecasting ARMA processes

SPECIAL FUNCTIONS and POLYNOMIALS

A METHOD OF SOLVING LAGRANGE S FIRST-ORDER PARTIAL DIFFERENTIAL EQUATION WHOSE COEFFICIENTS ARE LINEAR FUNCTIONS

SOLVING CUBICS AND QUARTICS BY RADICALS

Fourier Analysis of Waves

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Srednicki Chapter 55

Math 6 SL Probability Distributions Practice Test Mark Scheme

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

y = x h = x+ a 1 or x = y a 1

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Transcript:

MAHALAKSHMI ENGINEERING COLLEGE,TRICHY. PARTIAL IFFERENTIAL EQUATIONS-MA PART-A. Form the p.d.e from (x-a) + (y-b) + z r (AU May 03) Given that (x-a) +(y-b) +z r ---------- () d.p.w.r to x, (x-a) + z 0 [ z is a fun of x and y] (x-a) + zp 0 ---------- () d.p.w.r. to y, p (y-b) + z 0 q (y-b) + zq 0 ---------- (3) Eliminating a and b from, and 3 x a -zp 3 y b -zq () (-zp) +(-zq) +z r z p + z q + z r z (p +q +)r which is the required p.d.e. Find the p.d.e of all spheres having their centres on the z-axis (AU ec 0) Let the Centre of the sphere be (0, 0, c) point on the Z axis and r it s radius. (x-0) +(y-0) +(z-c) r [Since centre lies on Z axis] ie, x +y +(z-c) r ------- d () p.w.r. to x, [c&r arbitrary constants] x + (z-c) 0 x + p (z c) 0 ---------()

d () p.w.r. to y, y + (z-c) 0 y + q (z c) 0 ---------(3) From( ) and (3) () z c - x/p (3) z c -y/q -x/p - y/q qx py, which is the required p.d.e 3. Form the p.d.e by eliminating the constants a and b from z (x +a ) (y +b ) AU ec 00 G.T. z(x +a ) (y +b ) ----------- () d () p w.r to x p x (y +b ) y + b ----------- () d () p w.r to y, q y (x +a ) x + a ----------- (3) Substitute () & (3) in () z pq 4xyz 4. Eliminate the arbitrary function f from z f(y/x) and form a p.d.e (AU ec 0) Given that z f(y/x) -----------() d p.w. r to x, p f (y/x) (-y/x ) ---------- () d p.w.r to y, q f (y/x) (/x) -----------(3) Now, ( ) ( ) px -qy is, px + qy 0 is the required p.d.e.

5. Form the p.d.e by eliminating the arbitrary function from z -xy f(x/z) (AU June 0) G.T z xy f(x/z) -------- () d () p.w.r. to x z -y f (x/z) z p-y f (x/z) -------------() d ( ) p.w.r. to y z -x f (x/z) z q-x f (x/z) -------------(3) (-xq) (zp-y) (zq-x)(z-xp) -xzpq + xyq z q xzpq xz + x p xyq z q xz + x p x p + z q xyq xz x p (xy z )q xz is the required p.d.e 6. Form the p.d.e of all planes cutting equal intercepts from the x and y axes (AU ec 009) The equation of such plane is x/a + y/a + z/b --------- (x and y have equal intercepts) p.d.w.r. to x p.d.w.r. to y, p - --------------------

q - -------------------- (3) From () and (3) p q p q 0 is the required p.d.e. 7. Find the complete integral of p + q pq (AU May 03) Given p + q pq --------------() It is of the form F (p,q) 0 --------------() Hence the trial saln is z ax + by + c ---------------(3) To get the complete integral of solution 3 we have to eliminate any one of the arbitrary constants. Now (3) > > b - ab - a > b(-a) -a > b -a / -a Hence the complete soln is z 8. Solve : pq x (AU May 00) It is of the form f (x,p) f (y,q) Let p/x /q k > p/x k > p kx z

zk 9. Solve : (- ) 3 z o (AU ec 0) The A.E. is (m-) 3 0 m,, The C.F f (y+x) + x f (y+x) + x f 3 (y+x) 0. Solve: ( 3 - ) Z 0 (AU ec 009) The A.E. is m 3 m 0 >m (m-) 0 >m 0, 0, z f (y+0x) + xf (y+0x) + f 3 (y+x) f (y) + xf (y) + f 3 (y+x). Solve :( -7 +6 ) Z 0 (AU June 0) A.E is m -7m + 6 0 > (m-6) (m-) 0 > m 6, C.F. f (y+x) + f (y+6x). Find the P.I. of ( - + ) Z e x y (AU ec 00) a, b - P.I. ex-y.

3. Solve :(-) (- +) z 0 (AU ec 0) It is of the form (-m -c ) (-m -c ) z0 Compare with general form the given eqn can be written as (-O -) (- -(-))Z0 Here m 0, m C, C - z e x f (y+ox)+e -x f (y+x) e x f (y)+e -x f (y+x) 4. Form the p.d.e by eliminating the function from zf(x+t) + g(x-t) Solution : (AUN/ 00) d.p.w.r. to x, p f (x+t)+g (x-t) ------------- () d.p.w.r to t, q f (x+t)-g (x-t) ------------- () f (x+t) +g (x-t) --------------( 3) f (x+t) +g (x-t) -------------- (4) 5. Form a p.d.e by eliminating the arbitrary constants a and b from z (x+a) (y+b) --------() (AUM/J 008) d() p.w. r to x, z/ x (y+b) > p y+b - ------() d. p.w. r to y z/ y (x+a) > q x+a --------(3) Sub () and (3) in (), z qp

6. Solve:( 3-3 + 3 )z0 (AU A/M 00) m 3-3m+ 0> m, C.F (y+x) + (y+x) 7. Form the p.d.e by eliminating a and b from z (x+a) + (y+b) (AU A/M 008) Given that z(x+a) +(y+b) --------- () d () p.w.r to x z/ x (x+a) p(x+a) P/ x+a ---------() d () p.w.r. to y z/ y (y+b) q (y+b) q/ y+b --------- (3) > z (p/) + (q/) p /4 + q /4 > 4z p +q 8. Form a p.d.e by eliminating the arbitrary Constants a and b from the equation (x +a )(y +b ) z (AU ec 00) z(x +a )(y +b ) -------() d.p.w.r to x px(y +b ) --------() d.p.w.r to y, qy(x +a ) ------- (3) () > y +b -- ------(4) ( 3) > x +a - - - - (5) Sub (4) and (5) in () we have z z 4xyz pq.

PART B. Form the p.d.e by eliminating the arbitrary function from x +y +z,ax+by+cz 0 Given (AUC ec 00) x +y +z,ax+by+cz 0 --------- Let u x +y +z --------- v ax+by+cz ---------3 Eqn () u,v 0 ---------4 Elimination of from (4) gives u v x x 0 u v y y u v x+zp a+cp x x u v y+zq b+cq y y Now (6) in (5) --------5 --------6 x+zp a+cp 0 y+zq b+cq x+zp b+cq -a+cp y+zq 0 x+zp b+cq - a+cp y+zq 0 x+zp b+cq - a+cp y+zq 0 x+zp b+cq -a+cp y+zq 0 bx+cqx+zpb+zcpq-ay-azq-cpy-cpzq0

p(zb-cy)+q(cx-az)ay-bx. Solve :(mz-ny)p+(nx- x)qy-mx l (AUC Apr/May 00) P +Q R p q Pmz-ny, Qnx-lz, R l y-mx The Lagrange s subsidiary equations are dx dy dz P Q R ie, dx dy dz mz-ny nx-lz y-mx Using lagrangian multipliers as l, m, n each of ratio is equal to ldx+mdy+ndz ldx+mdy+ndz l(mz-ny)+m(nx- lz)+n( ly-mx) 0 l dx+mdy+ndz0 Integrating, l x+my+nzc Choosing another set of multipliers x, y, z xdx+ydy+zdz xdx+ydy+zdz x(mz-ny)+y(nx-lz)+z(y-mx) 0 xdx+ydy+zdz0 Integrati ng, x x +y +z C + y + z The general solution C x +y +z, lx+my+nz 0 ( is arbitrary)

3. Solve: x (y-z)p+y z-x qz x-y (AUC ec 00/June 0) Solution : x (y-z)p+y (z-x)q z (x-y) --------- Lagrange s equation is P +Q R p q Here P x y-z,q y z-x,r z x-y dx dy dz P Q R dx dy dz x y-z y (z-x) z x-y The S.E is x y z dx dy dz dx dy d + + y x z x y z y-z z-x x-y y-z+z-x+x-y dx dy + dz + 0 x y z Choosing,, as multipliers each ratio is equal to Integrating we have dx dy dz0 x y z - - - x dx y dy z dz 0 - -+ x + y-+ z + + C -+ -+ -+ - - - C x y z + + C x y z u + + x y z Similary choosing + + x y z vx y z + +, xyz 0 x y z as Lagrange s multipliers we get

3 3 4. Solve : + +4 +4 zcos(x+y) (AUC Jun 0) The A.E is m 3 +m +4m+40 (m+) (m +4) 0 m-, m ±i synthetic division C.F y-x y+ix y-ix 3 4 4 0-0 -4 0 4 0 Now, P.I + +4 +4 3 3 cos x+y -4-4 -4-4cos x+y 3 is. - Cos(x+y) 8 + Re place 4,, Cos (x+y) (X and by ) - 8 (+ ) Cos (x+y) - 8 + - sin (x+y) - 8-4- sin (x+y) 48 sin( x y) 4 z y-x y+ix 3 y-ix sin(x+y) 4

5. Solve the p.d.e. x( y z) p y( z x) q z( x y) (AUC ec 0 Solution : Lagrange s type P p +Q q R The S.E is dx dy dz P Q R P x(y-z) Q y(z-x) R z(x-y) dx dy dz x(y-z) y(z-x) z(x-y) to Choosing,, as lagrange s multipliers, each of above ratio is equal dx+dy+dz dx+dy+dz xy-xz+yz-yx+zx-zy 0 dx+dy+dz0 ux+y+z Integrating, d(x+y+z)0 x+y+z c choosing,, x y z as Lagrange s multipliers dx+ dy+ dz dx+ dy+ dz x y z x y z y-z+z-x+x-y 0 dx + dy + dz 0 x y z Integrating, log x +log y +log z log C l og(xyz)logc (xyz)c x+y+z, xyz 0 vxyz

x-z + z-y q y-x 6. Solve: p P p +Q q R The equation is of the form P p +Q q R P x-z, Q z-y, Ry-x The S.E dx dy dz P Q R ie, dx dy dz x-z z-y y-x Using multipliers as,, Each ratio dx+dy+dz dx+dy+dy x-z+z-y+y-x 0 ie, dx+dy+dx0 Integrating x+y+z C u x+y+z Next, using multipliers as y, x, z Each ratio ydx+xdy+zdz yx-yz+xz-xy+yz-xz ie ydx+xdy+zdz 0 ie, ydx+xdy+zdz0 d(xy)+zdz 0 integrating, xy+ z C xy+z C v xy+ z (x+y+z, xy+z )0

7. x yz p y zx q z xy (AUC May 00) The equation is of the form P p +Q q R P x -yz,qy -zx,rz -xy Lagrange s subsidiary equations are dx dy dz P Q R dx dy dz ie, x -yz y -zx z -xy Using lagrange s multipliers x,y,z we have xdx+ydy+zdz dx+dy+dz 3 3 3 x +y +z -3xyz x +y +z -xy-yz-zx xdx+ydy+zdz x+y+z (x +y +z -xy-yz-zx) dx+dy+dz x +y +z -xy-yz-zx xdx+ydy+zdz dx+dy+dz x+y+z xdx+ydy+zdz(x+y+z)(dx+dy+dz) Integrating x + y + z x+y+z x +y +z x +y +z +xy+yz+zx (xy+yz+zx)0 uxy+yz+zxc u (x,y,z) xy+yz+zx -------------

Now, dx-dy dy-dz x -yz -y -zx y -zx -z -xy d y-z dx-dy x -y +z(x-y) y+z y-z +x y-z d(x-y) x-y (x+y+z) d(x-y) x-y d(y-z) y-z d(y-z) (y-z)(x+y+z) log(x-y)log(y-z)+logc x-y log logc y-z x-y C, ie, y-z x-y v y-z x y The general solution is xy yz zx, 0 y z 8. Solve : x(y -z )p+y(z -x )qzx -y It is of the form P p +Q q R (AUC May 03) Here Px y -z, Qy z -x, R z (x -y ) The S.E is dx dy dz p Q R dx dy dz x(y -z ) y z -x z x -y Use lagrange s multipliers x,y,z Each ratio xdx+ydy+zdz xdx+ydy+zdz x (y -z )+y (z -x )+z x -y 0

ie, xdx +ydy+zdz 0 x +y +z a ie, u x +y +z integrating, x + y + z a Similarly, taking,, x y z as L.M we get dx dy dz x y z y z z x x y Each ratio ie, dx dy dz x y z 0 dx dy dz 0, integrating, logx+logy+logz log b x y z ie, log (xyz) logb bxyz ie, vxyz (x +y +z,xyz)0 9. ( 3 - )z e x +3x y (AUC ec 0) The A.E is m 3 -m 0 m (m-) 0 m0,0, C.F (y+ox) x (y+ox) 3 (y+x) x+oy e P.I - 3 e x 8-0 e x 4 a, b0 Replace 0 3 P.I - 3x y

.3x y 3 3-3 3 3.x y - 3 - x y 3 3 4 + + +... x y 3 3 x x y+ 3 3 x y +6 (x ) 3 4 5 6 x x y. 6 60 360 5 6 x y x + 60 60 x 5 6 e x y x zf y+ox +xf y+ox +f3 y+x + + + 4 60 60 0. Solve z z x x y 3 3 x+y e 4sin ( x y) 3 3 The given equation can be written as ( 3 - ) ze x+y +4sin (x+y) The A.E is m 3 -m 0 m (m-)0 m0,0 (or) m C.F f (y) + xf (y)+f 3 (y+x)

P.I x+y e + 4sin (x+y) 3 3 - - a, b m, n -4 -+ x+y e + 4sin(x+y) 4sin(x+y) 3 -+ x+y - e + 4(sin(x+y)) 3 - + x+y - e + x+y 4cos(x+y) - e + 3-3 x+y - e -4cos(x+y) x+y zf (y)+xf (y)+f 3(y+x)- e -4cos(x+y) 3 Replace. Solve: ( + -6 ) zy cosx (AUC May 03) m +m-60 m, -3 C.F (y+x) (y-3x) P.I ycosx + -6 6 + - ycosx - 6 6 + - ycosx + - ycosx - 6 - - +... ycosx 6 ycosx - ycosx + ycosx 6 ycosx - cosx + (0)

ycosx -sinx (ycosx -sinx) ysinx+cosx -y cos x + sin x z C.F+P.I. Solve: P (+q) qz Give that p(+q) qz -------------- It is of the form f (z,p,q) 0 Let u x+ay Now u u, a x y dz dz p,qa du du dz dz dz () +a a.z du du du dz +a az du dz a az- du dz az- du a du dz a az- adz du az- Integrating on b.s u log (az-) +logc

Hence the complete solution is (since the number of a.c no.of. I.V) x+aylog [c(az-)] 3. Solve zpx+qy+ p +q + (AUC ec 0, May 03) Given that zpx+qy+ p +q + It is of the form z px+qy+f(p,q) (Clairaut s form) Hence the complete integral is zax+by+ a +b + To find singular solution: (a and b are arbitrary constants) zax+by+ a +b + -------- d () p.w.r. to a, a -a ox+ x -------- a +b + a +b + d () p.w.r. to b, b -b oy+ y --------3 a +b + a +b + a +b x +y +a +b a +b -x +y - +a +b -x -y +a +b ---------i -x -y +a +b --------ii +a +b -x -y

() x-a -x -y by (i) (3) y-b -x -y by (ii) Now -x -y a, b -x -y -x -y Substitute in () -x y z - + -x -y -x -y -x -y by(ii) -x -y -x -y z -x -y z -x -y x +y +z is the singular solution To find the general integral Put b (a) in (), zax+ (a)y+ +a + (a) -------------4 d. (4) p.w.r to a ox+ '(a)y+ a+ (a) (a) -------------5)\ +a + (a) Eliminate a between (4) and (5) we get the general solution 4. Solve : p +q x +y Solution : Give that p +q x +y It is of the form F (x,p) F (y,q) Let p -x y -q a constant p -x a p a +x p x +a ------------

y q a q y a ------------- z pdx qdy -----------3 Substitute () and () in (3) z x a dx y -a dy x x x +a y y -a a y - a - sin h + + - cos h +b a a Which is the complete integral 5. Solve :p (-q ) q(-z) (AU Nov/ec 009) Given p(-q ) q(-z) ------------- It is of the form F (z,p,q) 0 Let z f (x+ay) be the solution of () -------------- Put x+ay u Z f(u) u u, a x y (*) z dz u dz p.. x du x du z dz u dz q..a y du y du Using (*) 3 Substituting (3) in () dz dz dz du du du -a a -z

dz -a a(-z) du dz a -a+az du dz du a az+(-a) dz du az+(-a) a - az+(-a dz u+b a - + az+ -a x+ay +b - + a a az+ -a x+ay +b a a az+(-a) (x+ay)+b a a which is complete integral 5.Solve: z ( -5 +6 )z ysinx (or) z z -5 +6 ysinx x xy y m -5m+60 (m-3) (m-) 0 m3, C.F (y+x)+ (y+3x) P.I. -5 +6 5 6 - + ysinx ysinx 5 6 - - ysinx -

5 6... y sinx 5 6 ysinx+ (ysinx)- ysinx 5 6 ysinx+ sinx- (0) ysin x sin x ysinx 0 ysinx+5(-cosx) -cosx.y-5sinx -ysinx+5cosx The general solution is Z C.F +P.I 3 7. Solve 3-7 -6 zsin(x+y) m 3-7 m-60 m-, -, 3 (AUC May 03) C.F (y-x)+ (y-x)+ 3(y+3x) P.I -7-6 3 3 sin(x+y) by - - sin(x+y) ( )-7-6 3 by- -4 sin(x+y) (-)-7(-) -6(-4) by-()()- sin(x+y) -+4 +4 sin(x+y) -+38

--38 sin(x+y) -444 --38 sin(x+y) --444(-4) -cos(x+y)-38cos(x+y). 5775 - cos(x+y)+76cos(x+y) 5775 77 - cos(x+y) 5775 - cos(x+y) 75 8. Find the singular integral of zpx+qy+p +pq+q (AUC ec 0) Z px+qy+p +pq+q It is of the form zpx+qy+f(p,q) (clairaut s form) Hence the complete soln is z ax+by+a +ab+b ------------- (since the number of a.c number of I.V) To find the singular integral d.(). p.w.r.to a and b we get 0 x+a+b ------------- 0 y+b+a -------------3 () x a+b+x 0 -------------4 (3)x a+4b+y0 -------------5 (4) (5) -3b+x-y 0

3b x-y b x y 3 Similarly, y (3) 0y+ x- +a 3 x-y y-x a- a 3 3 Substitute a,,b in () y-x x-y y-x y-x x-y x-y z x+ y+ + + 3 3 3 3 3 3 Simplifying, 3 9 3 z -x -y +xy z -x -y +xy 3z-x -y +xy 3z+x +y -xy0 which is the singular integral. y 9. ( - - +6+3 )zxe (AU June 0 ) Given ( - - +6+3 )0 + - +3 0 The solution of -m -α -m -α z0 is αx αx ze f (y+m x)+e f y+m x Here α 0, m - α -3, m ox -3x C.Fe fy- x +e fy+x P.I xe - - +6+3 y +O

(+0) -(+0)( +)-( +) +6(+0)+3( +) ox+y e x y e x - -- -- +6+3 +3) y e x - +5+ - + - +5+ - + y e x 0. Solve : y e - +5+ - +.x - e y - +5+ - - +... x y e 5 x- z C.F +P.I x-y ( - + -3+3 +)ze (AU ec 0) The given equation can be written as - - - - ze C.F: x-y -m -α -m -α z0 is αx αx ze f (y+m x)+e f (y+m x) Here α, α, m, m Replace x x C.Fe f (y+x)+e f (y+x)

P.I x-y - - - - e +- (+-) x-y e z C.F +P.I x-y e x-y x x e f (y+x)+e f (y+x)+ e. 3 4 z cos( x y) xy Give that +3-4 z0 (AU Nov/ec 0) The A.E is m +3m-40 (m-) (m+4) 0 m, -4 C.F (y-4x) (y+x) P.I +3-4 cos(x+y) cos(x+y) -4+3(-)-4(-) - cos(x+y) 6 P.I xy xy +3-4 3-4 +

xy 3 4 + - xy 3 4 + - 3 4 + - xy 3 4 - - +... xy 3 xy- xy 3 xy- x 3x xy- 3x xy- 3 3 x 3x x y x y- - 6-3 4 x x y- 6 8. Solve: ( - +)z e x+y +4 (AU ec 0) Here m 0, c 0 m, c - C.F. f (y)+e -x f (y+x)

P.I e e - + 4-+4 6 x+y x+y e x+y P.I 4e - + 4 e - + x 4 e ox+oy x z C.F+P.I ox+oy ox+oy -x x+y f (y)+e f (y+x)+ e +x 6 3.Find the p.d.e of all planes which are at a Constant distance from the origin (AU May 00) The equation of a plane which is at a distance k from the origin is l x+my+nzk where l +m +n ---------------- Let l a ; m b ; nc we get ax+by+czk --------------- () a +b +c c -a -b c -a -b ---------------3 Substitute (3) in () ax+by+ -a -b zk ---------------4 d.p.w.r to x z a+ -a -b 0 x

-a -a -b p a p -a -b d (4) p.w.r to y z b+ -a -b 0 y -b q -a -b Now, a p b q - -a -b (say) ap ; bq and -a -b -λ -p λ -q λ -λ Squaring on b.s -p λ -q λ λ - p +q λ λ λ +λ (p +q )λ +p +q +p +q +p +q λ ± λ - +P +q λis-ve (*) (4) pλx+qλy-λzk (px+qy-z)λk k px+qy-z λ zpx+qy- k λ px+qy+k +p +q ***** [by (*)]