Faculdade de Engenharia. Transmission Lines ELECTROMAGNETIC ENGINEERING MAP TELE 2008/2009

Σχετικά έγγραφα
Chapter 4 : Linear Wire Antenna

16 Electromagnetic induction

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Κύµατα παρουσία βαρύτητας

The Finite Element Method

Pairs of Random Variables

Second Order RLC Filters

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Leaving Certificate Applied Maths Higher Level Answers

Homework 8 Model Solution Section

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Transmission Line Theory

EE101: Resonance in RLC circuits

Inverse trigonometric functions & General Solution of Trigonometric Equations

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Lifting Entry (continued)

Matrices and Determinants

Example Sheet 3 Solutions

Section 8.3 Trigonometric Equations

ΕΝΙΣΧΥΣΗ ΠΛΑΚΩΝ ΚΑΙ ΔΟΚΩΝ ΣΕ ΚΑΜΨΗ ΜΕ ΜΑΝΔΥΕΣ Η ΕΛΑΣΜΑΤΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ.

ST5224: Advanced Statistical Theory II

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2


Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Trigonometry 1.TRIGONOMETRIC RATIOS

Areas and Lengths in Polar Coordinates

Chapter 6 BLM Answers

Review of Single-Phase AC Circuits

Differential equations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

CRASH COURSE IN PRECALCULUS

General theorems of Optical Imaging systems

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

MathCity.org Merging man and maths

6.003: Signals and Systems. Modulation

Note: Please use the actual date you accessed this material in your citation.

Approximation of distance between locations on earth given by latitude and longitude

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ECE 222b Applied Electromagnetics Notes Set 3a

Strain gauge and rosettes

Section 8.2 Graphs of Polar Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

PARTIAL NOTES for 6.1 Trigonometric Identities

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Section 9.2 Polar Equations and Graphs

EE 570: Location and Navigation

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

2 Composition. Invertible Mappings

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Spherical Coordinates

ECON 381 SC ASSIGNMENT 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Reminders: linear functions


Sampling Basics (1B) Young Won Lim 9/21/13

= 0.927rad, t = 1.16ms

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Review Exercises for Chapter 7

Suggested Solution to Assignment 4

Partial Differential Equations in Biology The boundary element method. March 26, 2013

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

CORDIC Background (4A)

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Second Order Partial Differential Equations

If we restrict the domain of y = sin x to [ π 2, π 2

Local Approximation with Kernels

4.6 Autoregressive Moving Average Model ARMA(1,1)

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Trigonometric Formula Sheet

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

CORDIC Background (2A)

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Lecture 26: Circular domains

is like multiplying by the conversion factor of. Dividing by 2π gives you the

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL

Appendix A. Stability of the logistic semi-discrete model.

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Finite Field Problems: Solutions

1 String with massive end-points

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Transcript:

Facudad d Ennharia Transmission ins EECTROMAGNETC ENGNEERNG MAP TEE 8/9

Transmission ins Facudad d Ennharia transmission ins wavuids supportin TEM wavs most common typs para-pat wavuids coaxia wavuids two-wir wavuids EE 89 ins

Transmission ins Facudad d Ennharia nra transmission in quations today tim-harmonic soutions finit transmission ins vota, currnt and impdanc aon th in transmission ins in circuits Smith chart impdanc matchin λ/4 transformr nxt wk ractiv mnts sin-stub doub-stub transints EE 89 ins 3

EE 89 ins 4 Facudad d Ennharia TEM wavs in para-pat wavuids b y x W x E H y E E ˆ ˆ η r r x E H y E E ˆ ˆ η r r insid th uid:

ota btwn th pats Facudad d Ennharia vota P r r E d P y b x W vota btwn th pats: b ( ) E y dy be insid th uid: r E E yˆ r E H η xˆ E y E EE 89 ins 5

EE 89 ins 6 Facudad d Ennharia Currnt dnsity on th pats b y x W x E H y E E ˆ ˆ η r r â n currnt dnsity on th pats: uppr pat: y a n ˆ ˆ insid th uid: owr pat: y a n ˆ ˆ â n ˆ H H a J n s r r r Hr x E H ˆ η r E b y J s ˆ η r Hr x E H ˆ η r E y J s ˆ η r

EE 89 ins 7 Facudad d Ennharia Currnt on th pats b y x W uppr pat currnt: A ds J r r E W η x E H y E E ˆ ˆ η r r insid th uid: E b y J s ˆ η r currnt W s dx J ˆ r E b y J s ˆ η r E y J s ˆ η r currnt dnsity: owr pat currnt: E W η W s dx J ˆ r

ossss transmission in quations Facudad d Ennharia be E η W d d d d be E W η η ω µ µε ε x y W b d µ b ω d W d εw ω d b µ b ( H/m ) d W ω d C ε W d ( C/m) ωc b d qs. for in a ossss transmission in d ω C d d ω C d EE 89 ins 8

Equivant circuit of a ossss transmission in Facudad d Ennharia diffrntia nth D of a transmission in: i(,t) i(,t) v(,t) C v(,t) - - i C v (, t) i t v, t C t v (, t) i (, t) (, t) i t v C v (, t) t (, t) i (, t) EE 89 ins 9

Equivant circuit of a ossss transmission in Facudad d Ennharia v (, t) i (, t) (, t) i t v C v (, t) t (, t) i (, t) i(,t) v(,t) - C im v i (, t ) i(, t) d (, t) v(, t ) C t t phasor notation d d d ω ωc d ω C d d ω C d sam as bfor EE 89 ins

Equivant circuit of a ossy transmission in Facudad d Ennharia diffrntia nth D of a transmission in: i(,t) R i(,t) C G v(,t) v(,t) - - v R R i (, t) i(, t ) v t i G v, t i G C C v(, t ) t (, t ) v i (, t ) (, t ) i Ri(, t ) t v Gv(, t ) C t (, t ) im v (, t ) R i(, t) i, t (, t) i v t v G v, t C (, t ) (, t) t i (, t ) EE 89 ins

Gnra transmission in quations Facudad d Ennharia (, t ) v i (, t ) (, t ) i Ri(, t ) t v Gv(, t ) C t (, t ) v(,t) i(,t) - phasor notation d d d d ( R ω) ( G ωc) ( R ω)( G ωc ) d d d d nra soution propaation constant α attnuation constant phas constant EE 89 ins

Attnuation and phas constants Facudad d Ennharia ± v { } t ω, R t α { ( ω t ) α ( ω t )} R atnuation α α ( ωt ) cos( ωt ) cos phas if and ar ra EE 89 ins 3

ota and currnt in transmission in Facudad d Ennharia 4 constants rquird to dfin votaand currnt, ± d d d d ( ) R ω ( G ωc), R ω R ω R ω ony constants ar rquird EE 89 ins 4

Charactristic impdanc Facudad d Ennharia Charactristic impdanc ratio btwn vota andcurrnt for an infinit nth transmission in infinit in no rfctions, ±, R ω ( R ω)( G ωc ) R G ω ωc ( Ω) charactristic impdanc not: in nra EE 89 ins 5

Summary Facudad d Ennharia Propaation constant α ( R ω)( G ωc ) ( m ) Charactristic impdanc R ω G ωc ( Ω) Propaation vocity ω v ( ms ) Gnra cas frquncy dpndnt attnuation frquncy dpndnt vocity π Wavnth λ ( m) SGNA DSTORTON EE 89 ins 6

Transmission ins spcia cass Facudad d Ennharia α ossss ins R G ( R ω)( G ωc ) R ω ω v ω C α G ωc ω C v C C Distortionss ins R G C ( R ω) C C α R ω C C v C ro or constant attnuation constant vocity constant and ra charactristic impdanc NO DSTORTON EE 89 ins 7

Transmission-in paramtrs Facudad d Ennharia Th bhaviour of a transmission in dpnds on th opratinfrquncyand on paramtrs R,, G and C n turn, ths paramtrs dpnd on th in omtry and on th matrias that constitut th in t σ dictric conductivity σ C conductor conductiviity ε ctric prmitivitty of th dictric µ mantic prmabiity of th dictric µ C mantic prmabiity of th conductor EE 89 ins 8

Transmission-in paramtrs Facudad d Ennharia b a D a a h h W coaxia two-wir conductor ovr round para pat EE 89 ins 9

EE 89 ins Facudad d Ennharia Finit transmission ins [ ] [ ] o o o o ± o o

EE 89 ins Facudad d Ennharia mpdanc aon th transmission in ± [ ] [ ] tanh tanh tanh tanh x x x x x ) tanh(

nput impdanc ossss transmission in Facudad d Ennharia ± ( ) ( ) ( ) tanh tanh ( ) ( ) ossss in ( x) tan( x) tanh ( ) tan tan ( ) ( ) nth in tan tan ( ) ( ) EE 89 ins

nput impdanc of ossss transmission ins spcia cass Facudad d Ennharia ossss transmission in of nth tan( ) in tan( ) in in cot ( ) an( ) in t aways imainary λ n in λ ( ) 4 n in EE 89 ins 3

Rfction cofficint at th oad Facudad d Ennharia Rfction cofficint (vota) ratio btwn rfctd and incidnt votas at th oad: rf inc ( ) o ( ) ( ) ( ) Spcia cass: no rfctions MATCHED NE EE 89 ins 4

Rfction cofficint at th oad Facudad d Ennharia r x ( r ) x ( r ) x Nots:. For currnt rf inc. Most oftn, is compx θ, EE 89 ins 5

Rfction cofficint aon th in Facudad d Ennharia at th oad: rf inc ( ) o ( ) θ aon th in: rf o inc ( ) ossss in: ( ) ( θ ) absout vau is constant EE 89 ins 6

ota aon th in Facudad d Ennharia ( ) ( ) cos ( x) x x ( ) cos( ) propaatin wav stationary wav EE 89 ins 7

Not propaatin and stationary wavs Facudad d Ennharia t A ωt ( ωt ) v(, t) R{ A } R{ A } Acos( ωt ) propaatin wav t Acos( ) v( t) R Acos( ) ωt { } Acos( ) cos( ωt), stationary wav nods ( v for vry t ) EE 89 ins 8

EE 89 ins 9 Facudad d Ennharia ota aon th in propaatin stationary wavs cos sin cos θ θ θ priodic trm priod/ θ

ota aon th in - xamp Facudad d Ennharia ( ) cos( θ ) t.8.5 m π 4 ( λ π m).6.4. MAX.8.6.4. 9 8 7 6 5 4 λ 3 min EE 89 ins 3

ota maxima and minima Facudad d Ennharia ( ) cos( θ ) vota maxima: cos ( θ ) ocation: / / θ M nπ M ( nπ θ) n intr vau: MAX ( ) MAX vota minima: cos( θ ) / ocation: θ ( n )π / m [( n ) π θ ] m n intr vau: ( ) min min EE 89 ins 3

ota aon th in - xamp Facudad d Ennharia ( ) cos( θ ) t.5 m π 4 ( λ π m).8.6.4. π 8 MAX MAX ( ). 5.8 M min nπ 8 5 nπ 8 / π m / π ( ). 5.6.4. 9 8 7 6 5 λ π 4 3 5π 8 min EE 89 ins 3

SWR Facudad d Ennharia SWR (ota Standin Wav Ratio) ratio btwn vota maxima and minima SWR MAX min ( ) ( ) SWR Not: SWR SWR SWR EE 89 ins 33

SWR particuar cass Facudad d Ennharia SWR SWR SWR Particuar cass: SWR MAX min no stationary wav no rfctions SWR matchd in SWR EE 89 ins 34

SWR particuar cass Facudad d Ennharia SWR SWR SWR Particuar cass: SWR ( ) ( ) MAX min MAX min SWR EE 89 ins 35

EE 89 ins 36 Facudad d Ennharia Currnt aon th in propaatin stationary wavs cos sin cos θ θ θ priodic trm priod/ θ

Currnt maxima and minima Facudad d Ennharia ( ) cos( θ ) currnt maxima: cos( θ ) ocation: θ ( n )π [( n ) π θ ] n intr vau: MAX MAX ( ) currnt minima: cos ( θ ) ocation: θ nπ ( nπ θ ) n intr vau: min ( ) min EE 89 ins 37

ota and currnt maxima and minima ocation Facudad d Ennharia ( ) cos( θ ) ( ) cos( θ ) ( θ ) cos máximos vota d maxima tnsão AND mínimos currnt d minima corrnt / M n θ ( π ) n intr cos ( θ ) vota minima AND currnt maxima / m θ [( n ) π ] n intr EE 89 ins 38

Transmission ins in circuits Facudad d Ennharia ± in in o o o o in in in in ( ) ( ) in in [ ] [ ] [ ( ) ( )] EE 89 ins 39

EE 89 ins 4 Facudad d Ennharia Transmission ins in circuits ± in in [ ] [ ] (rfction cofficint at th sourc) [ ] vota and currnt as functions of oad: in: sourc:,,,

EE 89 ins 4 Facudad d Ennharia Transmission ins in circuits ± in in 3 x x x x

EE 89 ins 4 Facudad d Ennharia Transmission ins in circuits ± in in 3 3 3 3 3

EE 89 ins 43 Facudad d Ennharia Transmission ins in circuits ± in in 3 3 3 3

EE 89 ins 44 Facudad d Ennharia Powr in ossss transmission ins θ θ (ossss transmission in) { } R * P av * R av P θ θ { } R θ θ { } sin R θ constant av P incidnt rfctd

EE 89 ins 45 Facudad d Ennharia Powr in transmission ins nra cas θ α α θ α α { } R * P av * R av P θ α α θ α α { } sin R 4 R θ α α α av R P α α, av av R P P av in av R P P α α, R if

Probm Facudad d Ennharia formua EE 89 ins 46

Probm Facudad d Ennharia formua EE 89 ins 47

Probm Facudad d Ennharia formua EE 89 ins 48

Probm Facudad d Ennharia formua EE 89 ins 49

oad impdanc rfction cofficint Facudad d Ennharia whr (normaid oad impdanc) R X R (ossss in) r x θ r im r x ( r ) im ( r ) im r x r r ( ) im im ( ) r im im EE 89 ins 5

oad impdanc rfction cofficint Facudad d Ennharia r x r r ( ) im im ( ) r im im r r im r r ( x x ) ( y y ) R im circ of radius ( r ) r cntrd at r im r ( r ) r r r th rfction cofficints of a whos ra part is r ar in this circ EE 89 ins 5

oad impdanc rfction cofficint Facudad d Ennharia r r im r r im Not: curv dos not dpnd on x r r r for any r im r, r, r r opn circuit r r, r r, EE 89 ins 5

oad impdanc rfction cofficint Facudad d Ennharia r x r r ( ) im im ( ) r im im ( ) r im x x ( x x ) ( y y ) R circ of radius x im x x cntrd at r im x th rfction cofficints of a whos imainary part is x ar hr r EE 89 ins 53

oad impdanc rfction cofficint Facudad d Ennharia ( ) r im x x Not: curv dos not dpnd on r symmtrica curvs for x < x im x x x infinit radius r x EE 89 ins 54

Smith chart Facudad d Ennharia im x constant r constant r EE 89 ins 55

Smith chart Facudad d Ennharia EE 89 ins 56

Smith chart Facudad d Ennharia from: point in chart ( intrsction of curvs corrspondin to r and x ) x and θ im θ from: r and x r r EE 89 ins 57

Rfction cofficint aon th in Facudad d Ennharia aon th in: rf o inc ( ) ossss in: ( ) ( θ ) constant manitud phas dcrass with im Not: ( ) toward nrator Smith chart can b usd to obtain from () r toward oad EE 89 ins 58

Distancs in th Smith chart Facudad d Ennharia in Smith chart th distancs ar masurd as fractions of ( θ ) ( ) whn π initia position π λ a compt turn (36º) corrsponds to a distanc / im toward nrator r toward oad EE 89 ins 59

nput impdanc Facudad d Ennharia. draw th point corrspondin to th normaid oad impdanc point P. draw th circ cntrd at th oriin with radius OP 3. draw th straiht in from O to P 4. draw th straiht in from O that corrsponds to a rotation of toward th nrator 5. intrsction of this in with prvious circ point P 6. obtain, whr in is rad from P in in im P P r EE 89 ins 6

Admittanc Facudad d Ennharia tan ( ) λ tan( π ) tan( ) 4 tan( π ) ( λ 4) y ( λ ) 4 λ 36º im λ 4 8º r. draw y. rotat 8º EE 89 ins 6

Maxima and minima ocation Facudad d Ennharia ( ) cos( θ ) cos θ ( θ ) cos vota maxima and currnt minima cos ( θ ) vota minima and currnt maxima ( θ ) ( ) vota maxima whr ( ) nπ vota minima whr ( ) ( n )π EE 89 ins 6

Maxima and minima ocation Facudad d Ennharia vota maxima whr ( ) nπ vota minima whr ( ) ( n )π im vota maxima vota minima Not:. maxima and minima whr input impdanc is ra. maxima (minima) points ar sparatd by n/ r EE 89 ins 63

Probm Facudad d Ennharia EE 89 ins 64

Probm Facudad d Ennharia EE 89 ins 65

Probm Facudad d Ennharia EE 89 ins 66

Probm Facudad d Ennharia EE 89 ins 67