Travel time Sensitivity Kernels

Σχετικά έγγραφα
Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering


Graded Refractive-Index

6.4 Superposition of Linear Plane Progressive Waves

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Finite difference method for 2-D heat equation

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

4.4 Superposition of Linear Plane Progressive Waves

D Alembert s Solution to the Wave Equation

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

Example Sheet 3 Solutions

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Homework 8 Model Solution Section


Note: Please use the actual date you accessed this material in your citation.

1 String with massive end-points

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Lecture 21: Scattering and FGR

Derivation of Optical-Bloch Equations

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

( ) Sine wave travelling to the right side

Srednicki Chapter 55

Sampling Basics (1B) Young Won Lim 9/21/13

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ECE 468: Digital Image Processing. Lecture 8

3.5 - Boundary Conditions for Potential Flow

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

A method of seeking eigen-rays in shallow water with an irregular seabed

of the methanol-dimethylamine complex

NMBTC.COM /

Higher Derivative Gravity Theories

ΠΑΡΑΡΤΗΜΑ Β. Πίνακας επιλεγμένων βιογραφικών στοιχείων

SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Spherical Coordinates

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Lifting Entry (continued)

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

is like multiplying by the conversion factor of. Dividing by 2π gives you the

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.


Second Order RLC Filters

Introduction to Time Series Analysis. Lecture 16.

Part 4 RAYLEIGH AND LAMB WAVES

YJM-L Series Chip Varistor

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

High Current Chip Ferrite Bead MHC Series

Chapter 7 Transformations of Stress and Strain

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Section 8.3 Trigonometric Equations

Oscillatory Gap Damping

CT Correlation (2B) Young Won Lim 8/15/14

Creative TEchnology Provider

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Surface Mount Aluminum Electrolytic Capacitors

Areas and Lengths in Polar Coordinates

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

LUNGOO R. Control Engineering for Development of a Mechanical Ventilator for ICU Use Spontaneous Breathing Lung Simulator LUNGOO

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Lecture 26: Circular domains

Computing Gradient. Hung-yi Lee 李宏毅

5. Since the range of the radius is small, R dτ. dr >> 1, atmosphere is eectively plane parallel.

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

TODA-ISU Corporation. SMD Power Inductor. SPI series. SMD Team

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

,,, (, ) , ;,,, ; -

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

4 Way Reversing Valve

[1] P Q. Fig. 3.1

SPECIAL FUNCTIONS and POLYNOMIALS

Local Approximation with Kernels

SMBJ SERIES. SMBG Plastic-Encapsulate Diodes. Transient Voltage Suppressor Diodes. Peak pulse current I PPM A with a 10/1000us waveform See Next Table

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

6.003: Signals and Systems. Modulation

Bulletin 1489 UL489 Circuit Breakers

Forced Pendulum Numerical approach

DATA SHEET Surface mount NTC thermistors. BCcomponents

Matrices and Determinants

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Multilayer Chip Inductor

Transcript:

Trave time Sensitivity Kernes in ocean acoustic propagation Manois Skarsouis Institute of Appied & Computationa Mathematics Foundation for Research & Technoogy - Heas Herakion, Crete, Greece In coaboration with Bruce Cornuee, Matt Dzieciuch Scripps Institution of Oceanography, University of Caifornia, San Diego, La Joa, Caifornia, USA FORTH - IACM - Wave Propagation Group - Underwater Acoustics

pressure Source Muti path propagation Receiver temperature sound speed range Typica measurement Arriva structure time (sec) time

Ray arrivas 250 c c + Δc 200 150 100 50 τ = Γ 1 c () d τ τ +Δτ t Typica measurement depth d Γ c(z) range Time (sec) 1 Δ τ = Δcd () 2 c () Γ Ray theoretic trave time sensitivity kerne

Ocean Acoustic Tomography Low frequency O(100 Hz) transmissions / ong range O(1000 km) propagation Ray theory, commony used for data anaysis, is a highfrequency asymptotic approximation How good are ray theoretic (high frequency) methods for the anaysis of ow frequency data? How do sensitivity kernes of ow frequency trave times compare with the corresponding ray theoretic kernes?

Outine Wave theoretic propagation modeing + notion of peak arrivas Finite frequency trave time sensitivity kernes (TSKs) Effects of increasing frequency / range on TSKs 3D vs. 2D kernes Vertica trave time sensitivity kernes (VTSKs) Effects of increasing range on VTSKs Concusions

Propagation modeing The pressure at the receiver in the time domain p r + 1 i t pr(; t c) = ω Ps( ω) G( xr xs; c; ω) e dω 2π P ( ω; c) Ps( ω ) :the emitted (source) signa in the frequency domain Gx ( x; cω ; ) : the Green s function of the acoustic channe s r ω cx ( ) x, x s r : the circuar frequency : the sound speed distribution : the source / receiver ocations

Green s function Hemhotz equation (in cyindrica coordinates), c=c(z) 2 2 G 1 G G + + + = r2 r r z2 cz () 2 ω δ δ G 2 ()( r z zs) 2πr Boundary interface radiation conditions Pressure reease (Dirichet) condition at the sea surface Continuity of pressure & vertica veocity at the interfaces Radiation condition (outgoing waves at infinity)

Norma mode representation of the Green s function (far fied) Grz (, z) s e iπ /4 ϕ ( z ) ϕ ( z) M m s m = 8π m= 1 kr m e ik r m k m, ϕ m( z) : rea eigenvaues and associated eigenfunctions of the Sturm Liouvie probem d ϕ ( z) ω + ϕ = ϕ dz c ( z) 2 2 m 2 2 2 m( z) km m( z) with appropriate boundary interface conditions

Trave time modeing Peak arriva times (oca maxima of arriva pattern atc (; ) = p(; tc) : a& ( τ ; c) = 0 Arriva time perturbations (due to sound speed perturbations): a& ( τ +Δ τ ; c+δ c) = 0 r a(t;c) τ τ c c + Δτ + Δc t Linear approximation: Δ τ = u& Δ u + u Δ u& + w& Δ w + wδw& 2 2 u& + u u&& + w& + ww&& p = u+ iw Δ p =Δ u+ iδw u = u( τ ; c) where,,, r r

Born approximation r r r r r r r Δcx ( ') r Δ Gx x = Gx x Gx x dvx 2 ( r s) 2 ω ( ' s) ( r ') ( ') 3 c ( z') V The perturbation sequence Δ c Δ G Δ p,i.e.( Δu, Δ w ) Δτ Trave time sensitivity kerne Representation of Δτ in terms of r r r r r r Δ τ = K ( x' x ; x ; c) Δ c( x') dv( x') V s Δc r Wave theoretic trave time sensitivity kerne

Trave time sensitivity kerne { r r r u iw r r r iωτ K ( x' xs; xr; c) =R iωq( x' xs; xr; ω; c) e dω 2π b u& iw& r r r iωτ + Qx ( ' xs; xr; ω; ce ) dω 2π b } & && & && 2 2 b = u + uu + w + ww where and 2 2 ω Ps ( ω) s r = 3 s r r r r r r r r Qx ( ' x; x; ω; c) Gx ( ' x; ω; cgx ) ( x'; ω; c) c ( z')

Numerica resuts Ray theory 150 m Source 1503 m/s Receiver 2.5 km 1547 m/s 52 km

Numerica resuts Ray theory 150 m Source 1503 m/s Receiver 2.5 km 1547 m/s 52 km

Numerica resuts Wave theory (400 Hz) 150 m Source 1503 m/s Receiver 2.5 km 1547 m/s 52 km

Numerica resuts Wave theory (100 Hz) 150 m Source 1503 m/s Receiver 2.5 km 1547 m/s 52 km

Effects of increasing range (100 Hz)

Cross section at mid range (100 Hz)

3D vs. 2D TSK G 3D e (, r z z ) = s iπ /4 M ϕm( zs) ϕm( z) ikmr e G2 D 8π m= 1 kr m 3D iπ /2 M e ϕm( zs) ϕm( z) ( x, z zs) = e 2 k m= 1 m ikmx 2D

3D vs. 2D TSK iπ /4 M ϕm( zs) ϕm( z) ikmr 3D(, r z zs) = e 8π m= 1 kr m Horizonta cross range G e m s m m G2 D( x, z zs) = 3D 2 m= 1 km 2D margina of the 3D TSK e iπ /2 M ϕ ( z ) ϕ ( z) e ik x

3D vs. 2D TSK (Cross range marginas)

3D vs. 2D TSK (Horizonta marginas)

Vertica sensitivity kerne (VTSK) Δ τ = D ( z) Δc( z) dz c c + Δc Ray arrivas dz 1 Δ τ = Δczdz ( ) 2 cz (( z) )sin( ψ (( z )) )) Γ τ τ +Δτ 0 t Source Γ depth z s ψ(z) z r Receiver c(z) range R D ( z)

Vertica sensitivity kerne (VTSK) Δ τ = D ( z) Δc( z) dz Peak arrivas a(t;c) atc (; ) = p(; tc) r c c + Δc + 1 iωt pr(; t c) = Ps( ω) Gsr( ω; c) e dω 2π τ τ +Δτ t u& Δ u + u Δ u& + w& Δ w + wδw& Δ τ = 2 2 u& + u u&& + w& + ww&& Norma mode representation ( ; ; ) ( ; ; ) Gsr ( ω; c) = e iπ /4 M e ϕn ω zs c ϕn ω zr c 8 π n= 1 kn ( ω; c) R ik n ( ω; ) c R

Vertica sensitivity kerne (VTSK) Eigenvaue/eigenfunction perturbations 2 ω Δ k = n h Δcz ( ) 2 ϕn( z ) dz ( ) 3 kn c z 0, Δ ϕ ( z) = 2ω n h 2 0 Δc( z ) ϕ ( z ) ϕ ( z ) ϕ ( z) dz c z k k M n m m 3 2 2 ( ) m= 1 n m m n Green s function perturbation iπ /4 h M M 2 e Unmϕn ( z ) ϕm( z ) 1 1 2 Δ G = ω ir U ( ) 2 2 nnϕn z 2π R + + 0 n= 1 m= 1 kn km kn 2kn m n e kc ik R n n 3 Δcz ( ) dz ( z ) where U nm ϕn( zs) ϕm( zr) + ϕm( zs) ϕn( zr), m n = 1 ϕn( zs) ϕn( zr), m= n 2

Vertica sensitivity kerne (VTSK) iπ /4 1 e iωτ D( z) = R ( u iw ) L( z; ) e d 3 & & ω ω bc ( z) 2π R 2π + + iπ /4 e iωτ + ( u iw ) iωl(; z ω) e dω 2π 2 M M ikmr 2 ϕm( z) ϕn( z) U mn 1 Ummϕm ( z) e Lz (; ω) = ω Ps ( ω) ir + + m= 1 n= 1 Λmn 2km k m kmr n m { ( τ ; )} u = R p c r { ( τ ; )} w = I p c r b u& u u&& w& w w&& 2 2 = + + + Λ = k k 2 2 nm n m U nm ϕn( zs) ϕm( zr) + ϕm( zs) ϕn( zr), m n = 1 ϕn( zs) ϕn( zr), m= n 2

North Pacific environment SD=RD=1100 m

Wave theoretic VTSK (100 Hz)? : Wave theoretic VTSK : Ray theoretic VTSK D ( z)/ R (smoothed)

Effects of increasing range (100 Hz) : Wave theoretic VTSK : Ray theoretic VTSK D ( z)/ R (smoothed)

Effects of increasing range (100 Hz) : Wave theoretic VTSK : Ray theoretic VTSK D ( z)/ R (smoothed)

Long range asymptotics M + 2 iπ /4 2 ( ) = R ( ) ( ) 3/2 3 & & 3/2 ( 2 π ) bc ( z) m= 1 km 1 ( ) D z u iw e S e d Ummϕm z i( ωτ kmr ω ω ) ω ( ) M + 2 iπ /4 3 Ummϕm ( z) i( ωτ kmr) + ( u iw ) e iω S( ω) e dω 3/2 m= 1 ( km )

Long range asymptotics Stationary Phase Approach i( km ) ( ) ( ) iδmπ/4 ωτ ω R 2π e ˆ ωτ Χm ω e dω = Χ ( ˆ m ωm) e 2 2 r d k ( ˆ ω ) dω m m ( ( ˆ ω ) ) i k R m m m dkm R ( ˆ ωm) = τ d ω Stationary point for mode m : δ ( 2 ( ˆ ) 2 m = sign d km ωm dω ) ˆ D z u iw e M 2 2 ˆ π 1 ˆ ωmsm ˆ ϕm( z) ˆ ϕm( zs) ˆ ϕm( zr) i ˆ ωτ m ikmr i( δm 1) ( ) ( ) 4 = R 3 & & 4 πbc ( z) 3/2 2 2 m= 1 kˆ ˆ m d km dω ˆ ( u iw ) e M 3 2 ˆ ˆ π ˆ ωmsm ˆ ϕm( z) ˆ ϕm( zs) ˆ ϕm( zr) iωτ m ikmr i( δm+ 1) 4 3/2 2 2 m= 1 kˆ ˆ m d km dω

Long range asymptotics Stationary Phase Approach : Wave theoretic VTSK : Ray theoretic VTSK : Stationary Phase approximation

Long range asymptotics Stationary Phase Approach : Wave theoretic VTSK : Ray theoretic VTSK : Stationary Phase approximation

Long range asymptotics + 2 mm ( ωϕ ) m ( z; ω) i( ωτ km ( ω) R) 3/2 km ( ω) 2 U I( z) = ω S( ω) e dω

Long range asymptotics Condition for SP approximation: 2 (; z ) smooth function of, ϕ ω ω m compared to i( km ( ) R e ωτ ω ) ϕm ( z) 2 2 ϕm ( z) << ϕm ( z) τ ω e km R ω e R=50 km, T=33.52 sec, f=100 Hz

Long range asymptotics Condition for SP approximation: 2 (; z ) smooth function of, ϕ ω ω m compared to i( km ( ) R e ωτ ω ) ϕm ( z) 2 2 ϕm ( z) << ϕm ( z) τ ω e km R ω e R=50 km, T=33.52 sec, f=100 Hz

R=100 km, T=67.04 sec, f=100, f=100 Hz Hz R=200 km, T=134.08 sec, f=100 Hz

Concusions The wave theoretic VTSK approaches the ray theoretic VTSK as the range increases The stationary phase approximation confirms ong range asymptotic behavior The condition for vaidity of the stationary phase approximation can be used as a measure of wave/ray theoretic proximity. From eigenfunction/eigenvaue characteristics a minimum range for ray theoretic behavior can be inferred on.

References H. Marquering, Dahen, Noet, Three dimensiona waveform sensitivity kernes, Geophys. J. Int., Vo. 132, pp. 521 534, 1998. Marquering, Noet, Dahen, Three dimensiona sensitivity kernes for finitefrequency trave times: the banana doughnut paradox, Geophys. J. Int.,Vo. 137, pp. 805 815, 1999. Skarsouis, Cornuee, Trave time sensitivity kernes in ocean acoustic tomography, J. Acoust. Soc. Am., Vo. 116, pp. 227 238, 2004. Skarsouis, Cornuee, Dzieciuch, Trave time sensitivity kernes in ong range propagation, J. Acoust. Soc. Am., Vo. 126, pp. 2223 2233, 2009. Skarsouis, Cornuee, Dzieciuch, Second order sensitivity of acoustic trave times to sound speed perturbations, Acta Acustica, Vo. 97, pp. 533 543, 2011.