J. Comput. Chem. Jpn., Vol. 1, No. 4, pp. 135 142 (2002) a *, b, a, a, a a, 470-0393 101 b, 466-8666 101-2 *e-mail: h10205m@media.sccs.chukyo-u.ac.jp (Received: March 29, 2002; Accepted for publication: November 1, 2002; Published on Web: December 13, 2002) :,,,, 1 D [1 3] D [4] [5] D [6, 7] Gauss View[8] Chem3D[9] Win MOPAC[10], micro AVS[11] http://www.sccj.net/publications/jccj/ 135
[5] OpenGL API 2 Gaussian 98[12] cube Figure 1. Selection among three directional piled texture images in the rendering process. Only one piled texture image is selected in the rendering procedure. The selected one has the smallest angle between the normal vector face and the view-line vector. 136 J. Comput. Chem. Jpn., Vol. 1, No. 4 (2002)
ray casting method CG [6, 7] OpenGL API Microsoft Visual C++ OpenGL[13] GUI GLUT[14] 2.1 ( x, y, z ) γ( x, y, z ) α( x, y, z ) 2.2 Figure 1 N x N y N z xy N z i α i (x y)=α(x y i) (i = 1 2 ::: N 2 ) (2) OpenGL API yz zx (Figure 1) D D D 2.3 α(x y z)=k 1 γ(x y z) k 2 k 1 k 2 (1) k 1 k 2 3 http://www.sccj.net/publications/jccj/ 137
(Figure 2) 3.1 OpenGL API A B 1-k : k A B i α Ai, α Bi α i (3) i d i i -1 d i;1 α i (4) α i = (1 ; k)α Ai + kα Bi (3) d i = d i;1 (1 ; α i )+α i (4) d i = d i;1 (1 ;((1 ; k)α Ai + kα Bi )) + (1 ; k)α Ai + kα Bi (5) OpenGL α Ai = α Bi (5) d i = d i;1 (1 ; α Ai ) + (1 ; k)α Ai + kα Bi (k < 0:5) (6) d i = d i;1 (1 ; α Bi ) + (1 ; k)α Ai + kα Bi (k > 0:5) (7) i -1 d i;1 A B A 1-k B k (Figure 3) Figure 2. Interpolated position s state is rendered by blending neighboring key position s volume. The volume data on the key position are calculated beforehand. Figure 3. The interpolated state is generated by sequentially alternatively rendering two key position s volume data sets. 138 J. Comput. Chem. Jpn., Vol. 1, No. 4 (2002)
3.2 protonated Schiff base of retinal PSBR 568 nm trans 13-cis [15] C 13 =C 14 θ -180 trans -90 S 1 S 0 [16] Hartree-Fock S 1 HOMO π LUMO π* C 13 =C 14 HOMO LUMO θ θ C 12 H 16 N + 6-31g Gaussian 98 [12] cube -180 0 15 θ, -180-150 -120-110, -105-100, -95-90 -85, -80, -75, -70, -60, -30,0 trans -180. -90 θ 915MB Figure 4-90 HOMO LUMO θ HOMO LUMO θ 4 8271126 Figure 4. Molecular orbitals of PSBR at θ = -90 http://www.sccj.net/publications/jccj/ 139
4.1 OpenGL CG API 128128 K 128 2 (N x + N y + N z ) 4 K (byte) 3.2 18.3 K MB 15 275 MB 4.2 (1) CPU: Pentium III 600 MHz : 1.06GB/sec (PC133) Graphics chip: nvidia GeForce2 MX (32MB) (2) CPU: Athlon XP 1900+ (1.6GHz) : 2.1GB/sec (PC2100) Graphics chip: nvidia GeForce4 MX440 (64MB) (1) (2) (1) (2) (1) CPU GeForce4 MX Figure 5. Rendering time depending on the number of volume data sets. 140 J. Comput. Chem. Jpn., Vol. 1, No. 4 (2002)
Figure 5 256MB 512MB 768MB (1) 20 (2) 30 3.2 275MB 512MB PC [1],,, (1984). [2],,, (1988). [3] T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory, John Wiley & Sons (2000). [4],,,,,, J. Chem. Software, 8, 7-16 (2002). [5] S. Handa, T. Takada, Visual Computing: Integrating Computer Graphics with Computer Vision (1992), pp.313-328. [6] K. Akeley, In Computer Graphics, SIGGRAPH 93, Anahiem, CA (1993). [7] B. Cabral, N. Cam, and J. Foran, Proceedings of the 1994 symposium on Volume visualization (1994), pp.91-98. [8] Gauss View : Gaussian,Inc. [9] Chem3D : Cambridge Soft Corporation. [10] WinMOPAC : Fujitsu Limited. [11] microavs : Advanced Visual Systems Inc. 5 CG Newbold [12] Gaussian 98 Revision A.5 M. J. Frisch et al., Gaussian, Inc, 1998. [13] J. Neider, T. Davis, M. Woo, OpenGL Programming Guide, Addison-Wesley (1993), p.478. [14] http://reality.sgi.com/employees/mjk asd/glut3 /glut3.html [15] T. Kobayashi, T. Saito and H. Ohtani, Nature, 414, 531-534 (2001). [16] S. Yamamoto, H. Wasada, and T. Kakitani, Theochem, 451, 151-162 (1998). http://www.sccj.net/publications/jccj/ 141
Real-time Volume Rendering of Molecular Orbital Metamorphosis According to Molecular Frame Transformation Takatoshi NAKA a *, Shigeyoshi YAMAMOTO b, Yasuyo HATANO a, Masashi YAMADA a and Shinya MIYAZAKI a a School of Computer and Cognitive Sciences, Chukyo University 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393 Japan b Faculty of Liberal Arts, Chukyo University 101-2 Yagotohonmachi, Showa, Nagoya, Aichi, 466-8666 Japan *e-mail: h10205m@media.sccs.chukyo-u.ac.jp This paper presents a novel way of visualization of a molecular orbital as a cloud rendered by real-time computer graphics. Manipulation of molecular structure, such as rotating a certain bond, is realized and the change of orbital is observed in real time. The values of orbital function are sampled and represented by voxel data in rendering. Data sets are constructed when a certain atom stays at some position along a moving path, called the key position. Interpolated position s state is also rendered by blending neighboring key position s volume. That process is performed only by using the blending function in the rendering. Keywords: Molecular orbital, Electron density cloud, Scientific visualization, Volume rendering, Real-time computer graphics 142 J. Comput. Chem. Jpn., Vol. 1, No. 4 (2002)