EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp


BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Delta Inconel 718 δ» ¼

2 SFI

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

v w = v = pr w v = v cos(v,w) = v w

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Ανώτερα Μαθηματικά ΙI

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

MECHANICAL PROPERTIES OF MATERIALS

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Blowup of regular solutions for radial relativistic Euler equations with damping

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

p din,j = p tot,j p stat = ρ 2 v2 j,

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

ER-Tree (Extended R*-Tree)

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

SIZE EFFECT OF MECHANICAL BEHAVIOR OF MINIA- TURE SOLDER JOINT INTERCONNECTIONS IN ELECTRONIC PACKAGING

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ²ÒÏ 1,,.Š. μ μ 1, 2, 1, 3, ,. ʳÌÊÊ. Œ œ ˆ ŒˆŠˆ ˆŒ œ ƒ Š ˆ -2Œ ˆ Š Œ ˆ ˆ Œ ˆŸ Œ ˆ. ² μ Ê ² Annals of Nuclear Energy

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Å/ ÅÃ... YD/ kod

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

3D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Transcript:

Ú 49 Ú 7 Vol.49 No.7 213 7 È Ú 775 782 ACTA METALLURGICA SINICA Jul. 213 pp.775 782 Á ² ¹ÙÉÛ ÏÀÍ Ñµ ßÓ Æ ( Šù, Ë 1116) ( Šù Ë ºÒÅ «( Ô, Ë 1116) Þ Ð µ ÎÇÆÌ Ñ ßº Ù Î Ø Ð. ²Â Å, Æ ÌÎÇ Å 34 ߺР٠: ¼ ÎÇ Õ, µæì Р٠͵; ²Á, Æ Ì Ø Ð ÇÞ Õ; Õ Á, Æ ÌÎÇ Ø ¼Ø б Î ÇÞ. ³Å 34 ßºÕ ÎÇÅ ÐÀ Ô, ÌÅ Ð Õ ĐÑ Í ÐÕËÎ, Ê Í ¼ ±, ÕÐ ² ¼. þ Ñ ßº, ÆÌ, Æ ÌÎÇ, Õ ĐÑ, Í ¼ È TG142.1 Ð Ì A ³ 412 1961(213)7 775 8 EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS XU Yong, ZHANG Shihong, CHENG Ming, SONG Hongwu Institute of Metal Research, Chinese Academy of Sciences, Shenyang 1116 WANG Sucheng Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 1116 Correspondent: ZHANG Shihong, professor, Tel: (24)83978266, E-mail: shzhang@imr.ac.cn Manuscript received 212 12 24, in revised form 213 5 26 ABSTRACT Driven by a good combination of strength and ductility, austenitic stainless steels have attracted much interest in the past decade. These metastable alloys fall into the category of transformation induced plasticity (TRIP) steels in which high strength and excellent ductility can be achieved due to their strain induced martensitic transformation at ambient temperature. However, there are few reports on the detail of promoting this phase transformation and enhancing the TRIP effect during deformation only by changing the loading mode. In present work, the effect of loading modes on mechanical property and microstructure of austenitic stainless steels was investigated under various temperatures. The tensile tests results reveal that cyclic tensile loading and unloading (CTLU) mode can strongly influence the deformation behavior of AISI 34 steel. There is no difference at high temperature tension by different loading modes. Compared with the conventional monotonic tensile loading (MTL) mode, the elongation has been slightly reduced by CTLU mode at cryogenic temperature. However, CTLU mode can improve both strength and ductility of AISI 34 steel at room temperature. An in situ X ray diffraction has been carried out to identify and evaluate strain induced martensitic transformation by different loading modes at room temperature. Experimental results showed that the fraction of strain induced martensite increases when unloading happens. It indicated that CTLU mode can enhance strain hardening in AISI 34 stainless steel, which prolongs the time to neck formation to a significant extent. Consequently the TRIP effect is enhanced. * Ú Á¾ : 212 12 24, Ú Ýµ¾ : 213 5 26 : Đ, Æ, 1983 Í, DOI: 1.3724/SP.J.137.212.769

776 ß Ú 49 KEY WORDS austenitic stainless steel, loading mode, cyclic tensile loading and unloading, strain induced martensite, transformation induced plasticity effect ÅÒ» ½ Ñ»Ó. Ç «ÅÒ Î, Ò Á M s ³Ã ß ½ ÖÕ ĐÖ Ò Î Ñ Î, Ë Ù ½Ñ² Ï Ú [1 3], Î Æ (TRIP) ½. ÅÒ» Ö Ö É Î TRIP ½Ñ ¼, ºÈ Çà ÑÖ [4,5], Ñ ÁÓ, «ÀÅÏ Å ÖÔ. Ö Ò Î Ü»ÓÑ Ö ³ ½ ßÔºÅÑ, Ë»Ó ±  ÇÃ Ñ Ú. È, Á ½ Á ÑÎÑ Æ. Lebedev Ï Kosarchuk [6] ½ Ñ ÀÔÑ Ï½ Å Ò Î Đ Ñ, ³ à «, ÏÈ Â Ñ Ò «, É, ÄÑ Å ½. ÅÒ» ½ Âѽ Ò Î Đ ÎÑ. Ƚ, ÆÖ Ò Î Æ². Park Ô [7] Å ÑÅ Ò»Á ÑÏÈ Æ, Ç ½ ßÛ Ö Ñ Ö, Ù ÑÆÉ Ç ² Ö½. [8,9] Ç, Í ÐÍ ½ÅÒ»Ö ÏÈ Ú, ± Ú Ñ Áº TRIP ½ ². Cullen Ï Korkolis [1,11] Ñ Â, ÐÍ ± ÅÒ»Ñ Ò Î ³ Ù, ÐÍÆ Ù Ñ Ö ÎÑ Ï½ À, Ë Å Ö. º È, ³ Æ ³ Î ÑÑ, ß Á Ñ ÐÍÏÈ, Æ Í ± Â Ú ÑÅ ³ ÅÖ Ò Î ÑÆ, ½ «Í ÅÒ» Ú ÑÞ. 1 Ý Ñ AISI 34 ÅÒ» (, %) : C.5, Cr 18, Ni 8.7, Mn 1.12, Si.5, P.2, S.1, N.43, Fe. ÏÈ Æ ¼ MTS 515 Ô ÞÊ Ý Ù Þ. Ö ÏÈ ÄÊ 2, ½ ÏÈ 2 Ï 35, Ö ÏÈ ß 25, 5 Ï 8. ÏÈÙ Á GBT228 22 ½, Ù Ö ±½ Å ( É 15, 3 min ÍØÅ ). ÏÈ Ñ Í ÐÍ ÏÆ Þ ÍÏÈ. ÐÍ Æ½ ½ Ê, ÏȽ ÄÆß Ü ½ ÐÍ, ½ Æ»È Û. Ñ, Í Ñ. Ñ ÉÏ Í ÆÚ Ö, ½ Æ ²½ ÏÐÍ. ½ ÆÜ, 4, 55, 6, 65 Ï 7 MPa, ½ É ÐÍ, ÐÍÉ ± ÂÑÃϲ ß, ½ ßÇ Þ. Á D8 advance X ÅË Å (XRD) ý, ¼ CuK α X ÅËÂ, ÝÅÏÝÙ 4 kv Ï 3 ma, ÝÃ ß 18 kw. X ÅËÂÑË Ä 5 mm, Ö Ù Ñ Ö¼. Å 2θ=4 1. X ÅË Å Ñ ÏÈÍÊÑ. Ù.3 mm, ½ Ð Þ Æ» ٠ѽ ÆÝµ Ä, ݵ 1%( ß ) Ñ HClO 4, ÝÅÄ 2 V, ÝÙ 1 ma. ¼ Tecnai G 2 2 ¹ÅÝ Æ (TEM) 34»Ù Ù. 2 ÝÄ 2.1 Ç Ö ¼ 1 ÃÑ ½ ßÂ Í Ö ÏÈÙ Ñ ½ ½ ¾Ë. ÏÈ Ù Ñ ½ 1. Ë ³Ã Â, ½ ßÑ Ö, Þ ÍÂ٠Ѳ «Æ ½, Èß, ÐÍ Â٠Ѳ Èß Æ ½. ½ ß 1. 1 2 s 1, 2 Í Â٠Ѳ Ï Èß ¹, ½ ½ ¾Ë Ü. ½ ßÑ Ö, Þ ÍÏÈ Å, ÐÍÏÈ ½ 34»Ñ² Ï Èß, ± ½ ßÑ Ö, Ú Ñ ½ Æ. Æ 1 Ç Ç, ½ ß 1. 1 3 s 1, ÐÍÏÈÂÑ Èßϲ Î Þ Í ½Ñ 24.3%Ï 9.2%. ¼ 1a, Þ ÍÏÈ Â ÃÇ«ÆÑ ²Ü, Ú Ö ÆÚ ÖÆ Ð. ÐÍÏÈÂ, Û ÉÐÍ ²Ü, ÐÍ Ï Í ¾ËÃÃÇÑ ²Ü, ± Ö Ñ, ²ÜÆ Æ«Æ. ½.4, 2 Í Âѽ ½ ¾Ë, ½ Æ.4 ³, ÐÍÏȾËÃÃÇÑ «Â ±, ± ½ ÑÃÇ. Ƚ, Ö ÏÈ ½ ß 1. 1 3 s 1, 2 Í ½ ½ ¾Ë «Æ, ºÈ, ѽ ÏÖ ÏÈ 1. 1 3 s 1 ѽ ß½ Å Æ.

Ú 7 Ó : Ë Ð µþ¹ Ø Í Ð Ì ¾Ï 777 9 8 7 6 5 4 3 2 1 (a) Monotonic tension Cyclic loading and unloading..1.2.3.4.5.6.7.8.9 1. 9 8 7 6 5 4 3 2 1 (c)..1.2.3.4.5.6.7.8.9 1. 9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1 (b)..1.2.3.4.5.6.7.8.9 1. (d)..1.2.3.4.5.6.7.8.9 1. 1 µ¼ «ÞÁ µæì ¼ ¼ ½Ê Fig.1 Engineering stress engineering strain curves under different loading modes at strain rates 1. 1 3 s 1 (a), 1.3 1 3 s 1 (b), 3.3 1 3 s 1 (c) and 1. 1 2 s 1 (d) 1 2 Î Ã É Ú Ò Û Table 1 Main mechanical properties of the tensile test under different loading modes Loading mode ε, 1 3 s 1 σ s, MPa σ b, MPa δ Monotonic tension 1. 27 65.7 1.3 275 65.73 3.3 275 645.7 1. 26 635.67 Cyclic loading and unloading 1. 27 71.88 2.2 Æ Õ 2 Ï 35 ½ ÏÈ٠ѽ ½ ¾Ë ¼ 2. Ö ÏÈ ³ÃÎ, 34» ½ Ñ Ú Ç«ÆÂ º, 2  ÏÈ É ½ Ö 46 MPa, Ö½ ¼Ä.5. ˼ 2 dzÂÃ, 2 Í Ù Ñ½ ½ ¾Ë¾, Ú ¹. Ƚ, 35 ½ ÏÈ, 2 Í Âѽ ½ ¾Ëà ÃÇÑ ³Đ. È [12, 13], Â Ö ÉÐ 34» ÎĐ ½ Ñ ¼. ºÈ, dz «Ï ȾËÃÑ ³Đ ÎĐ ½ Đ, 1.3 255 675.86 3.3 27 655.83 1. 265 635.7 Ö ÐÍÏȾËÃÃÇÑÂ. 2.3 Ç Ö Ö ÏÈ ¼ Þ Í ÐÍ ½ Å. ¼ 3 Ö Â 2 Í Ù Ñ ½ ½ ¾Ë. Ö ÏÈ ³ÃÎ, Ö ÏÈÙ Ñ 34»Ñ½ ½ ¾Ë Çà ËÑÖ, È Ç Ä ÑÆ ³Ã [14] Đ. ± Ñ Ö, 2 Í Â٠Ѳ Æ ½, Èß Â. 25, ÐÍ Ù Ñ Èß Ö Þ ÍÑ Ì, Ö ÏÈ ÇÃÎ Ñ Ý. Ö

778 ß Ú 49 5 4 3 2 1 (a) Monotonic tension Cyclic loading and unloading 12 1 8 6 4 2 (a) Monotonic tension Cyclic loading and unloading..1.2.3.4.5.6..2.4.6.8 5 4 3 2 1 (b) 12 1 8 6 4 2 (b)..1.2.3.4.5.6 2 ¼ ÎÇ ¼ ¼ ½Ê Fig.2 Engineering stress engineering strain curves for 34 stainless steel tested at 2 (a) and 35 (b) under imposed engineering strain rate of 1. 1 3 s 1 (Ð 8 ), ÐÍ ÂÙ ÑÙĐ½ Æ ½ Þ ÍÑ Ì, 2 Í ÂÙ ÇÃÑ Èß Æ Æ ¾. 2.4 Ö ½ Î Ò Đ ¼ ÏÈ ³Ã «, Ö Ï½ ßÑ, Í Å 34» Ú Ñ Ý Î«Æ. [9] ½ Ñ 34» XRD Á ÏÈ. ÅÙ Ö ÏÈÆ Ñ ÍÏÐ Íܽ, Ã Ö Ñ XRD Î Å. ³ à «, ÎÖ Ñ ٠¼ ÅÒ Î, ÖÑ Î, Î Ñ ¹½ ĐÅÒ ÎÑ Å ½Ñ. ½ Ñ, Ñ Ò Î ÅÒ ÎÅ½Ñ Å ² ½ ÐÍ Ñ Æ Æ, Å α (11) Ï γ(111) 2 Ñ Ò ÎÏÅÒ ÎÑ. ÅÙ Í ÐÍÆ Ñ Î ß Ñ³Ã 2. ³Ã «, Ò Î ÖÑ ± Î. ½.4, ÐÍÆ Å Ò Ç Ñ. ½ ½.4, Ò Ç ½ ÐÍ «Æ, ÉÐÍ Ò Ñ ß..2.4.6.8 12 1 8 6 4 2 (c)..2.4.6.8 3 Õ ÎÇ ¼ ¼ ½Ê Fig.3 Engineering stress engineering strain curves for 34 stainless steel tested at 25 (a), 5 (b) and 8 (c) under imposed engineering strain rate of 1. 1 3 s 1, Ù ½.67 ؾ Ö ÐÍ Đ Ò Î ß ½Ñ ¾ 1%. 3 Ë 3.1 Â Ö Ð Î Ò Ô ¼ 4 ÐÍÏÈ 34»Ù ¼ Ñ TEM. dz Ù Ö Ñ Ò ±Ï ÎÎ ÑÅÒ Î, Î ³¾ Ñ ß. Å Ö, ÆÚ ÖÕ ĐÓ Ñ Û, Ë ½. 34», Öѽ,

Ú 7 Ó : Ë Ð µþ¹ Ø Í Ð Ì ¾Ï 779 2 ÑÎÃ Ó Ò Ä Table 2 Calculated results of volume fraction of martensitic phase during loading and unloading Strain Loading status Martensitic fraction.3 Hold 21.% Unload 21.9%.4 Hold 29.2% Unload 32.7%.5 Hold 36.7% Unload 39.5%.6 Hold 42.5% Unload 45.7%.67 Hold 46.8% Unload 51.5% 4 Æ ÌÎÇØ»Ð TEM Fig.4 TEM image of deformed specimen after cyclic tensile loading and unloading (CTLU) tension Õ ß Î Ã. Breedis [15] Õ, Ö Â, ÖÑ, ÊĐ ½, Æ Ò ±ÑÖÌ. ѽ, Á Î ĐÆ ³ Ñ Î, ÏÖÓÑ Ò ±, Þ ÎÄÖÌ Ò ± ÑÆ. ½ Â, ½Ñ Đ Ò ÑÖÌ, ± ÄÖÌÑ Ò ± Ñ, ÅÒ ÑÞ ßÚ ½., Å Ò Î Ñ ³ Ú Ò Î. º È,, ½ Ö.4 ÎÅ Ö, Ð ÍÆ Å Ò Î Ñ. ½ ½.4 ³, ¼ 5a, Ñ Êб ß ÎÑ Ã, È ¼ Ñ ß± ÎÑÆ ³ Ñ, ºÈ, ÎÑ ½ ½ σ B Æ, Õ ÄÖÌ Ò Ñ. ¼ 5b, ½ ÍÊ Æ ÐÄ, ÁÄ ß Î ÃÑ Õ ½ Ñ Â, Ñ ³ ³ Æ Õ ß Ã Ä. Æ ß 5 Æ ÌÁ ¼ ĐÑ Í Î ÏÉ Ð» Fig.5 Schematic of the evolution on dislocations and martensitic transformation under CTLU tension (σ B back stress) Ñ ÖÑ ¹½ ½ Ðͳ. Ò ÔÙÆ Õ ĐÄÖÌ Ò ±Ñ. È, Ð ÍÆ Đ Ö, dz ÅÒ Î. ¼ 5c, ÏÉ Í ÅÒ µ γ, Ò ÑÖÌ «. ÏÈ Ñ½ ½ ¾ËÃÃÇ «Â ±, ¼ 1a, ± ½ Ç. Ó ÅÒ Î Ò Î Ñ. ½ Ø Ü Á Ò Î, Æ Õ ½ Â, Đ. Ò ±  ÖÑ. Ù Å Ò ÏÅÒ Ñ, ÖРѽ ½, ºÈ ĐÑ. ½, Ò, ½ ½ ÃÇÑ«É «ÆÑº, ɽ Ѻ, Ë

78 ß Ú 49 ³ ÃÂ, Ù Ñ ÃÇÑ ÑÓÑ Ò ± Đ. ½, ÓÑÙÜÃÇ Ò /Å Ò ¼ ³, ½ Õº Ð, Ñ Ò ± ÕÆ ËÌÐÎ ( ), Æ ½ ½ ¾ËÃÃÇѽ. Ƚ, Í ÐÍÆ Ö, Ö ÖÆ Ñ Ï. ± ½ ßÂ Å Ò Î Ñ [16]. º È, ÐÍ ÑÐÍÆ Å Ò ÖÌÏ 2 Ñ Đ Ö Ñ Ò Î ß, TRIP ½ ². 3.2  34 ºÚ ÊÜØ Ô Í Å 34» Ú Ñ Â ÅÖ Ò Î Ñ., ÐÍdz ½ 34» Ö Ò ÎÑ ß, È, Ò Î Ü Ö ³ Ö ßѲ. Ö ½ Æ ÅÒ ½ ÆÚÖ Î Ò Î Ñ ½ M d, Î Ò Î, ½ Ï È Í Å 34»Ñ Ú Î. Ö Ö ± ½ ÏÈ Ö Ç, Þ Í Î, ÐÍ ĐÙ Ñ Èß Ö.  ÅÒ ÎÑÞ ßÚ Ñ Ö Ö. Ð ß, ÖÁ, ÐÍ» Ñ Ò Ë ĐÙ ÑÆÚ Â. Ö ± ½ ߯Ö, Å Ò Æ, Í Å 34» Ú Ñ Æ«Æ. ÐÍÏÈ Ñ Èßϲ ½Ñ 24.3%Ï 9.2%, ºÈ, «Ö ±  ÐÍ ² 34» TRIP ½Ñ à Æ, dz ½ Ò Ä ÙÆ ÙÖ, Ë Ù ÑÆÚ. ¼ 6 ½ ß 1 3 s 1 ͱ ÂÑ Ö ÏÈÙ Ñ ¼ Ì. dzÂÃ, ÐÍÏÈ Ù ÃÃÇÑ«± ³, Þ ÍÙ ¼ Ñ ± ³. ÈÇ «Ò «² 34» à Ñ. :»Ó Ú ÑÙĐ σ = Cε n ε m (1) Çѻӽ ½ Û ÙĐ¾ËÑ ½ :»ÓѲ À C, ½ ß Ý m ³ ½ Ý n. C»Ó ÊÑ Î, Î Ñ»Ó C Ü Î. ºÈ, Í Ç Ñ½ ¼ m Ï n. 2 ½ Å»ÓÏÈÆ Ã Ñ ² Ï Èß, н.»Óѽ ß Ú ¼ m Ð, Á Ç ³µ»Ó ÖÆ ¹ Î, Î Ñ ½ ßÑ ÌÂÈ ¼ Ñ ß Ä Đ Ñ½ ߯ ½, Ã»Ó Å½ ß Ñ, Ñ, m Æ, È ÖÃ Û Ù Đ½ Õ Æ«, ³ ÖÆ ¼ ÖÚÐ Ö ÆÍ, Ù Ã Ñ ½. m n, m ƽ, ƽ ÐÑ Ò Ñ,»ÓÑ» Ö Ï½ ß [17]. ºÈ, Í Å 34» Ñ m Ñ Đ ßÙ Í Â m Ñ. m Ñ Ì«, ÁÅȱ ß Ñ [18 21]. ÏÈ º [17] ß m Ü. 6 µæì ػРFig.6 Low (a) and locally high magnified (b) images of neck regions of tensile specimens under different loading modes (MTL monotonic tensile loading)

Ú 7 Ó : Ë Ð µþ¹ Ø Í Ð Ì ¾Ï 781 Ñ ß 1 ÑÀ. Æ Ã 2 Í Ñ m Î,.1. ³ÃÛÄ «Ñ ± ÂÑ ÏÈ 34»Ù ± Ç ÆÚ [22]. É Ñ Ü, ÐÍ Þ Í ÂÙ Ñ m Î, ÐÍ ½ Ò, ± ½ 34»Ñ m Ë Èß ³ ½.»Óѽ Ü Ñ. n Æ, Ʋ, Ã Ñ Æ½. Å ß»Ó, л»ÓÖ Ñ Ð½ Ý n. Ǿ n ½ Ñ, ¾ Æ ³Ã Ç, n ² ½ ß Ú À. Å Ó, ÖÆ Î, Ç Õ Đ ½ ÓÑ [23 25]. Æ ÑÅÒ» Ó È Ó, Ý n ± ßÑ, ÖÆ, ºÈ, ¼ Á GB/T 528 1999 ß n, Æ 34»Ñ½ ßÑ. Äܼ ½ ßÑ ½Ù Ñ Ì. ß Ý»Ó½ ½ À¾ Ë ß,»Ó Ú½, л Ó½ ² ÑÝ [26]. ½ ß H Ñ Ç³ : H = σ ε (2) ¼ 7 Ö ÏȽ ß 1. 1 3 s 1 Í Âѽ ß ½ Ñ Ý. Ç ³ÂÃ, Þ Í½ ß ½ Ñ Ð Ö, ÐÍ ½ Æ.2 ½ ß ÃÇÑ ÃÏÑÆ, ÜÄ Þ ÍÂÑ 2. ± ÉÏ ÍÆ, ½ ß ¾Ë ÃÇ É Ç Ñ ½, ºÈ, «Ð Í ½Ñ 34»Ñ Ò Î, Ï ÍÆ ÃÇ«ÆÑÆÉ Ç ± ½ ², Strain hardening rate, 1-4 2 1 Monotonic tension Cyclic loading and unloading -1..1.2.3.4.5.6.7 True strain 7 µæì Á¼ «Þ ¼ ½Ê Fig.7 Strain hardening rate curves under different loading modes ĐÙ ² ½, Ð ÖÑ Î, Èß ½. 4 ÄË (1) Á ÏÈ Ù Õ«, ÐÍ ÑÐÍÆ ÅÅÒ» Ö Ò Î Ñ ÖÌÏ Ì½, Đ Ö Ñ Ò Î ß, ½ ², Ë ÖÑ Î. (2) 2 ³ÃÏÈ Ö, Í Å 34» Ñ Ú ; Ö ±  Ö, Þ Í, ÐÍ Ù Ñ Èß Ö; Ö Ö½ ß, ÐÍÏÈ Æ ½ ٠Ѳ ³ Èß, Èß ½Ñ 24.3%, Ãϲ ½Ñ 9.2%. «Ö ±  ÐÍ ² 34» TRIP ½Ñ à Æ.»Å Ð [1] Hecker S S, Stout M G, Staudhammer K P, Smith J L. Metall Trans, 1982; 13A: 619 [2] Rocha M R, Oliveira C A. Mater Sci Eng, 29; A517: 281 [3] Bayerlein M, Christ H J, Mughrabi H. Mater Sci Eng, 1989; A114: L11 [4] Nagy E, Mertinger V, Tranta F, Sólyom J. Mater Sci Eng, 24; A378: 38 [5] Yang Z Y, Su J, Chen J Y, Xiong J X. Iron Steel, 27; 42(5): 61 ( Å, ±, Å, Ü Ò. º², 27; 42(5): 61) [6] Lebedev A A, Kosarchuk V V. Int J Plast, 2; 16: 749 [7] Park W S, Yoo S W, Kim M H, Lee J M. Mater Des, 21; 31: 363 [8] Xu Y, Zhang S H, Song H W, Cheng M, Zhang H Q. Mater Lett, 211; 65: 1545 [9] Xu Y, Zhang S H, Cheng M, Song H W. Scr Mater, 212; 67: 771 [1] Cullen G W, Korkolis Y P. Int J Solids Struct, 213; 5: 1621 [11] Cullen G W, Korkolis Y P. AIP Conf Proc, 213; 1532: 725 [12] Hong S G, Lee S B. Int J Fatigue, 24; 26: 899 [13] Lee S H, Lee J C, Choi J Y, Nam W J. Met Mater Int, 21; 16: 21 [14] Huang G L, Matlock D K, Krauss G. Metall Trans, 1989; 2A: 1239 [15] Breedis J F. Acta Metall, 1965; 13: 239 [16] Spencer K, Veron M, Zhang K Y, Embury J D. Mater Sci Technol, 29; 25: 7 [17] Zhang X H, Qiu X G, Lu G Q, Tang J. Iron Steel Vanadium Titanium, 21; 22(1): 63 (, ¹, ÚÀµ,. º², 21; 22(1): 63) [18] Song Y Q, Guan Z P, Li Z G, Wang M H. Sci China Ser E Technol Sci, 27; 37: 1363 (,,, ÅÓ. ÀÆ E Đ: ĐÆ, 27; 37: 1363)

782 ß Ú 49 [19] Hedworth J, Stowell M J. J Mater Sci, 1971; 6: 161 [2] Gibbs G B. Philos Mag Lett, 1966; 13: 317 [21] Song Y Q, Lian S J, Zhang Z J. Chin J Mech Eng, 1989; 25(3): 38 (, ÞÀ,. Ý, 1989; 25(3): 38) [22] Wang G C, Cao C X, Dong H B, Li Z X, Yang G, Zhao X B. Acta Aeronaut Astronaut Sin, 29; 3: 357 ( ¼, ¾Ç, Ð ²,,,. ÈÈ, 29; 3: 357) [23] Zhang W F, Chen Y M, Zhu J H. Chin J Nonferrous Met, 2; 1: 236 (,, º. À ÁºÐ, 2; 1: 236) [24] Yu H Y. Mater Sci Eng, 28; A79: 333 [25] Zhou X F, Fu R Y, Su Y, Li L. Iron Steel, 29; 44(3): 71 («,,, ±. º², 29; 44(3): 71) [26] Fang X F, Dahl W. Mater Sci Eng, 1991; A141: 189 ( «: Å)