Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Σχετικά έγγραφα
Mean-Variance Analysis

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

4.6 Autoregressive Moving Average Model ARMA(1,1)

2 Composition. Invertible Mappings

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Part III - Pricing A Down-And-Out Call Option

Homework 8 Model Solution Section

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Example Sheet 3 Solutions

Statistical Inference I Locally most powerful tests

( y) Partial Differential Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ST5224: Advanced Statistical Theory II

6.3 Forecasting ARMA processes

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Uniform Convergence of Fourier Series Michael Taylor

Inverse trigonometric functions & General Solution of Trigonometric Equations

Notes on the Open Economy

Section 8.3 Trigonometric Equations

Mean-Variance Hedging on uncertain time horizon in a market with a jump

Concrete Mathematics Exercises from 30 September 2016

D Alembert s Solution to the Wave Equation

Solution Series 9. i=1 x i and i=1 x i.

Homework 3 Solutions

Matrices and Determinants

EE512: Error Control Coding

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The challenges of non-stable predicates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Every set of first-order formulas is equivalent to an independent set

Areas and Lengths in Polar Coordinates

C.S. 430 Assignment 6, Sample Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Areas and Lengths in Polar Coordinates

Approximation of distance between locations on earth given by latitude and longitude

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Parametrized Surfaces

Second Order RLC Filters

The Simply Typed Lambda Calculus

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

ECON 381 SC ASSIGNMENT 2

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Solutions to Exercise Sheet 5

5. Choice under Uncertainty

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Congruence Classes of Invertible Matrices of Order 3 over F 2

Capacitors - Capacitance, Charge and Potential Difference

derivation of the Laplacian from rectangular to spherical coordinates

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

1 String with massive end-points

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Problem Set 3: Solutions

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Lecture 26: Circular domains

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Reminders: linear functions

Lecture 34 Bootstrap confidence intervals

Generating Set of the Complete Semigroups of Binary Relations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Forced Pendulum Numerical approach

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

6. MAXIMUM LIKELIHOOD ESTIMATION

Finite Field Problems: Solutions

Lecture 21: Properties and robustness of LSE

Exercises to Statistics of Material Fatigue No. 5

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Quadratic Expressions

Homomorphism in Intuitionistic Fuzzy Automata

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

DOI /J. 1SSN

Math 5440 Problem Set 4 Solutions

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

On a four-dimensional hyperbolic manifold with finite volume

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Srednicki Chapter 55

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Financial Risk Management

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Appendix to Technology Transfer and Spillovers in International Joint Ventures

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Transcript:

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1

IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two default free assets, one total default asset 1.2 Two default free assets, one defaultable with recovery 2. Two defaultable assets 2

Two default-free assets, one defaultable asset Two default-free assets, one defaultable asset We present a particular case where there are two default-free assets the savings account Y 1 with constant interest rate r 3

Two default-free assets, one defaultable asset Two default-free assets, one defaultable asset We present a particular case where there are two default-free assets the savings account Y 1 with constant interest rate r An asset with dynamics dy 2 t = Y 2 t (μ 2,t dt + σ 2,t dw t ) where the coefficients μ 2,σ 2 are F-adapted processes 4

Two default-free assets, one defaultable asset Two default-free assets, one defaultable asset We present a particular case where there are two default-free assets the savings account Y 1 with constant interest rate r An asset with dynamics dy 2 t = Y 2 t (μ 2,t dt + σ 2,t dw t ) where the coefficients μ 2,σ 2 are F-adapted processes a defaultable asset dy 3 t = Y 3 t (μ 3,t dt + σ 3,t dw t + κ 3,t dm t ), where the coefficients μ 3,σ 3,κ 3 are G-adapted processes with κ 3 1. 5

Two default-free assets, one defaultable asset Here, M is the compensated martingale of the default process M t = H t t 0 (1 H s )λ s ds W is an F and a G-Brownian motion, where F is the natural filtration of W and G = H F, λ is an F adapted process. 6

Two default-free assets, one defaultable asset Our aim is to hedge defaultable claims. As we shall establish, the case of total default for the third asset (i.e. κ 3,t 1) is really different from the others. 7

Two default-free assets, a total default asset Two default-free assets, a total default asset We assume that dy 3 t = Y 3 t (μ 3,t dt + σ 3,t dw t dm t ). Y 3 t = Ỹ 3 t 1 t<τ. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 8

Two default-free assets, a total default asset Arbitrage condition, completeness of the market Our aim is to determine the emm(s) Q for the model dyt 1 = Yt 1 rdt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t dm t ). when Y 1 is the numéraire. The probability Q such that Y i,1 = Y i /Y 1 are martingales is dq Gt = L t dp Gt, where dl t = L t (θ t dw t + ζ t dm t ) dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 9

Two default-free assets, a total default asset with as soon as ζ> 1. θ = r μ σ 2 ζλ = μ 3 r + σ 3 r μ σ 2, dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 10

Two default-free assets, a total default asset Under Q are martingales. W t = W t M t = M t t 0 t 0 θ s ds (1 H s )λ s ζ s ds Under Q, the process is a martingale where H t t 0 (1 H s )λ sds λ t = λ t (1 + ζ t ) dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 11

Two default-free assets, a total default asset Here, our aim is to hedge survival claims (X, 0,τ), i.e. contingent claims of the form X 1 T<τ where X F T. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 12

Two default-free assets, a total default asset Here, our aim is to hedge survival claims (X, 0,τ), i.e. contingent claims of the form X 1 T<τ where X F T. The price of the contingent claim is C t = e r(t t) E Q (X 1 T<τ G t ) dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 13

Two default-free assets, a total default asset Here, our aim is to hedge survival claims (X, 0,τ), i.e. contingent claims of the form X 1 T<τ where X F T. The price of the contingent claim is C t = e r(t t) E Q (X 1 T<τ G t ) The hedging strategy consists of a triple of predictable processes φ 1,φ 1,φ 3 such that φ 3 t Y 3 t = C t, t <τ, φ 1 t e rt + φ 2 t Y 2 t =0 and which satisfies the self financing condition dc t = φ 1 t re rt dt + φ 2 t dyt 2 + φ 3 t dyt 3 dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 14

Two default-free assets, a total default asset Indeed, under Q, forr = 0, one has and, dc t = α t dw t C t dm t φ 2 t dy 2 t + φ 3 t dy 3 t = φ 2 t σ 2 Y 2 t dw t C t dm t hence the existence of φ 2,andφ 1 such that φ 1 t e rt + φ 2 t Y 2 t =0 dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 15

PDE Approach PDE Approach We are working in a model with constant (or Markovian) coefficients dy t = Y t rdt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t dm t ). dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 16

PDE Approach PDE Approach We are working in a model with constant (or Markovian) coefficients dy t = Y t rdt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t dm t ). Let C(t, Y 2 t,y 3 t,h t ) be the price of the contingent claim G(Y 2 T,Y3 T,H T ) and λ be the risk-neutral intensity of default. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 17

PDE Approach Then, t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+r y 3 3 C(t, y 2,y 3 ;0) r C(t, y 2,y 3 ;0) + 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;0)+λ C(t, y 2, 0; 1) = 0 2 i,j=2 where r = r + λ dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 18

PDE Approach Then, t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+r y 3 3 C(t, y 2,y 3 ;0) r C(t, y 2,y 3 ;0) + 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;0)+λ C(t, y 2, 0; 1) = 0 2 i,j=2 where r = r + λ and t C(t, y 2 ;1)+ry 2 2 C(t, y 2 ;1)+ 1 2 σ2 2y2 2 22 C(t, y 2 ;1) rc(t, y 2 ;1)=0 dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 19

PDE Approach Then, t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+r y 3 3 C(t, y 2,y 3 ;0) r C(t, y 2,y 3 ;0) + 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;0)+λ C(t, y 2, 0; 1) = 0 2 i,j=2 where r = r + λ and t C(t, y 2 ;1)+ry 2 2 C(t, y 2 ;1)+ 1 2 σ2 2y2 2 22 C(t, y 2 ;1) rc(t, y 2 ;1)=0 with the terminal conditions C(T,y 2,y 3 ;0)=G(y 2,y 3 ;0), C(T,y 2 ;1)=G(y 2, 0; 1). dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 20

PDE Approach The replicating strategy φ for Y is given by formulae φ 3 t Yt 3 = ΔC(t) = C(t, Yt 2, 0; 1) + C(t, Yt 2,Yt ;0) 3 3 σ 2 φ 2 t Y 2 t = ΔC(t)+ i=2 Y i t σ i i C(t) φ 1 t Y 1 t = C(t) φ 2 t Y 2 t φ 3 t Y 3 t. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 21

PDE Approach The replicating strategy φ for Y is given by formulae φ 3 t Yt 3 = ΔC(t) = C(t, Yt 2, 0; 1) + C(t, Yt 2,Yt ;0) 3 3 σ 2 φ 2 t Y 2 t = ΔC(t)+ i=2 Y i t σ i i C(t) φ 1 t Y 1 t = C(t) φ 2 t Y 2 t φ 3 t Y 3 t. Note that, in the case of survival claim, C(t, Yt 2, 0; 1) = 0 and φ 3 t Yt 3 = C(t, Yt,Y 2 t ; 3 0) for every t [0,T]. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 22

PDE Approach The replicating strategy φ for Y is given by formulae φ 3 t Yt 3 = ΔC(t) = C(t, Yt 2, 0; 1) + C(t, Yt 2,Yt ;0) 3 3 σ 2 φ 2 t Y 2 t = ΔC(t)+ i=2 Y i t σ i i C(t) φ 1 t Y 1 t = C(t) φ 2 t Y 2 t φ 3 t Y 3 t. Note that, in the case of survival claim, C(t, Yt 2, 0; 1) = 0 and φ 3 t Yt 3 = C(t, Yt,Y 2 t ; 3 0) for every t [0,T]. Hence, the following relationships holds, for every t<τ, φ 3 t Y 3 t = C(t, Y 2 t,y 3 t ;0), φ 1 t Y 1 t + φ 2 t Y 2 t =0. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 23

PDE Approach The replicating strategy φ for Y is given by formulae φ 3 t Yt 3 = ΔC(t) = C(t, Yt 2, 0; 1) + C(t, Yt 2,Yt ;0) 3 3 σ 2 φ 2 t Y 2 t = ΔC(t)+ i=2 Y i t σ i i C(t) φ 1 t Y 1 t = C(t) φ 2 t Y 2 t φ 3 t Y 3 t. Note that, in the case of survival claim, C(t, Yt 2, 0; 1) = 0 and φ 3 t Yt 3 = C(t, Yt,Y 2 t ; 3 0) for every t [0,T]. Hence, the following relationships holds, for every t<τ, φ 3 t Y 3 t = C(t, Y 2 t,y 3 t ;0), φ 1 t Y 1 t + φ 2 t Y 2 t =0. The last equality is a special case of the balance condition. It ensures that the wealth of a replicating portfolio falls to 0 at default time. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 24

PDE Approach Example 1 Consider a survival claim Y = 1 {T<τ} g(yt 2 ). Its pre-default pricing function C(t, y 2,y 3 ;0)=C g (t, y 2 ) where C g solves t C g (t, y;0)+ry 2 C g (t, y;0)+ 1 2 σ2 2y 2 22 C g (t, y;0) r C g (t, y;0) = 0 The solution is C g (t, y) = e (r r)(t T ) C r,g,2 (t, y) =e λ (t T ) C r,g,2 (t, y), C g (T,y;0) = g(y) where C r,g,2 is the price of an option with payoff g(y T ) in a BS model with interest rate r and volatility σ 2. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 25

PDE Approach Example 2 Consider a survival claim of the form Y = G(Y 2 T,Y 3 T,H T )= 1 {T<τ} g(y 3 T ). Then the post-default pricing function C g ( ; 1) vanishes identically, and the pre-default pricing function C g ( ;0) is C g (t, y 2,y 3 ;0)=C r,g,3 (t, y 3 ) where C α,g,3 (t, y) is the price of the contingent claim g(y T )inthe Black-Scholes framework with the interest rate α and the volatility parameter equal to σ 3. dy 1 = Y 1 rdt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ),dy 3 = Y 3 (μ 3 dt + σ 3 dw dm) 26

Two default-free assets, one defaultable asset with Recovery, PDE approach Two default-free assets, one defaultable asset with Recovery, PDE approach Let the price processes Y 1,Y 2,Y 3 satisfy dyt 1 = ryt 1 dt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t + κ 3 dm t ) with σ 2 0and where the coefficients are constant. Assume that the relationship σ 2 (r μ 3 )=σ 3 (r μ 2 ) holds and κ 3 0,κ 3 > 1. dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 27

Two default-free assets, one defaultable asset with Recovery, PDE approach Two default-free assets, one defaultable asset with Recovery, PDE approach Let the price processes Y 1,Y 2,Y 3 satisfy dyt 1 = ryt 1 dt dyt 2 = Yt 2 (μ 2 dt + σ 2 dw t ) dyt 3 = Yt (μ 3 3 dt + σ 3 dw t + κ 3 dm t ) with σ 2 0and where the coefficients are constant. Assume that the relationship σ 2 (r μ 3 )=σ 3 (r μ 2 ) holds and κ 3 0,κ 3 > 1. Then the price of a contingent claim Y = G(YT 2,Y3 T,H T ) can be represented as π t (Y )=C(t, Yt 2,Yt 3 ; H t ), where the pricing functions C( ;0) and C( ;1) satisfy the following PDEs dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 28

Two default-free assets, one defaultable asset with Recovery, PDE approach t C(t, y 2,y 3 ;1)+ry 2 2 C(t, y 2,y 3 ;1)+ry 3 3 C(t, y 2,y 3 ;1) rc(t, y 2,y 3 ;1) + 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;1)=0 2 i,j=2 dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 29

Two default-free assets, one defaultable asset with Recovery, PDE approach t C(t, y 2,y 3 ;1)+ry 2 2 C(t, y 2,y 3 ;1)+ry 3 3 C(t, y 2,y 3 ;1) rc(t, y 2,y 3 ;1) + 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;1)=0 2 and i,j=2 t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+y 3 (r κ 3 λ) 3 C(t, y 2,y 3 ;0) rc(t, y 2,y 3 ;0)+ 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;0) 2 i,j=2 +λ ( C(t, y 2,y 3 (1 + κ 3 ); 1) C(t, y 2,y 3 ;0) ) =0 dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 30

Two default-free assets, one defaultable asset with Recovery, PDE approach t C(t, y 2,y 3 ;1)+ry 2 2 C(t, y 2,y 3 ;1)+ry 3 3 C(t, y 2,y 3 ;1) rc(t, y 2,y 3 ;1) + 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;1)=0 2 and i,j=2 t C(t, y 2,y 3 ;0)+ry 2 2 C(t, y 2,y 3 ;0)+y 3 (r κ 3 λ) 3 C(t, y 2,y 3 ;0) rc(t, y 2,y 3 ;0)+ 1 3 σ i σ j y i y j ij C(t, y 2,y 3 ;0) 2 i,j=2 +λ ( C(t, y 2,y 3 (1 + κ 3 ); 1) C(t, y 2,y 3 ;0) ) =0 subject to the terminal conditions C(T,y 2,y 3 ;0)=G(y 2,y 3, 0), C(T,y 2,y 3 ;1)=G(y 2,y 3, 1). dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 31

Two default-free assets, one defaultable asset with Recovery, PDE approach The replicating strategy equals φ =(φ 1,φ 2,φ 3 ) ( φ 2 1 3 t = σ 2 κ 3 Yt 2 κ 3 σ i y i i C(t, Yt 2,Yt,H 3 t ) φ 3 t = i=2 σ 3 ( C(t, Y 2 t,y 3 1 κ 3 Y 3 t t (1 + κ 3 ); 1) C(t, Yt 2,Yt ;0) 3 )), ( C(t, Y 2 t,yt (1 3 + κ 3 ); 1) C(t, Yt 2,Yt ;0) 3 ), and where φ 1 t is given by φ 1 t Y 1 t + φ 2 t Y 2 t + φ 3 t Y 3 t = C t. dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 32

Two default-free assets, one defaultable asset with Recovery, PDE approach Example Consider a survival claim of the form Y = G(Y 2 T,Y 3 T,H T )= 1 {T<τ} g(y 3 T ). Then the post-default pricing function C g ( ; 1) vanishes identically, and the pre-default pricing function C g ( ; 0) solves t C g ( ;0) + ry 2 2 C g ( ;0)+y 3 (r κ 3 λ) 3 C g ( ;0) + 1 3 σ i σ j y i y j ij C g ( ;0) (r + λ)c g ( ;0)=0 2 i,j=2 C g (T,y 2,y 3 ;0) = g(y 3 ) Denote α = r κ 3 λ and β = λ(1 + κ 3 ). Then, C g (t, y 2,y 3 ;0)=e β(t t) C α,g,3 (t, y 3 ) where C α,g,3 (t, y) isthe price of the contingent claim g(y T ) in the Black-Scholes framework with the interest rate α and the volatility parameter equal to σ 3. Let C t be the current value of the contingent claim Y,sothat C t = 1 {t<τ} e β(t t) C α,g,3 (t, y 3 ). dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 33

Two default-free assets, one defaultable asset with Recovery, PDE approach The hedging strategy of the survival claim is, on the event {t <τ}, φ 3 t Yt 3 = 1 e β(t t) C α,g,3 (t, Yt 3 )= 1 C t, κ 3 κ 3 φ 2 t Yt 2 = σ ( ) 3 Yt 3 e β(t t) y C α,g,3 (t, Yt 3 ) φ 3 t Yt 3 σ 2. dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 34

Two default-free assets, one defaultable asset with Recovery, PDE approach Hedging of a Recovery Payoff The price C g of the payoff G(YT 2,Y3 T,H T )= 1 {T τ} g(yt 2) solves t C g ( ;1)+ry y C g ( ;1)+ 1 2 σ2 2y 2 yy C g ( ;1) rc g ( ;1) = 0 C g (T,y;1) = g(y) hence C g (t, y 2,y 3, 1) = C r,g,2 (t, y 2 ) is the price of g(yt 2 Y 1,Y 2. Prior to default, the price of the claim solves ) in the model t C g ( ;0) + ry 2 2 C g ( ;0)+y 3 (r κ 3 λ) 3 C g ( ;0) + 1 3 σ i σ j y i y j ij C g ( ;0) (r + λ)c g ( ;0)= λc g (t, y 2 ;1) 2 i,j=2 C g (T,y 2,y 3 ;0) = 0 Hence C g (t, y 2,y 3 ;0)=(1 e λ(t T ) )C r,g,2 (t, y 2 ). dy 1 = ry 1 dt, dy 2 = Y 2 (μ 2 dt + σ 2 dw ), dy 3 = Y 3 (μ 3 dt + σ 3 dw + κ 3 dm) 35

Two defaultable assets with total default Two defaultable assets with total default Assume that Y 1 and Y 2 are defaultable tradeable assets with zero recovery and a common default time τ. dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 Then with dỹ i t Yt 1 = 1 {τ>t} Ỹt 1, Yt 2 = 1 {τ>t} Ỹt 2 = Ỹ i t ((μ i + λ t )dt + σ i dw t ),i=1, 2 dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 36

Two defaultable assets with total default The wealth process V associated with the self-financing trading strategy (φ 1,φ 2 ) satisfies for t [0,T] ( t ) V t = Yt 1 V0 1 + φ 2 u dỹ u 2,1 where Ỹ 2,1 t = Ỹ 2 t /Ỹ 1 t. Obviously, this market is incomplete, however, some contingent claims are hedgeable, as we present now. 0 dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 37

Two defaultable assets with total default Hedging Survival claim: martingale approach A strategy (φ 1,φ 2 ) replicates a survival claim C = X 1 {τ>t} whenever we have T ) ỸT (Ṽ 1 1 0 + φ 2 t dỹ 2,1 t = X for some constant Ṽ 1 0 and some F-predictable process φ 2. It follows that if σ 1 σ 2, any survival claim C = X 1 {τ>t} is attainable. 0 Let Q be a probability measure such that Ỹ 2,1 t is an F-martingale under Q. Then the pre-default value Ũt(C) attimetof (X, 0,τ) equals ) Ũ t (C) =Ỹ t (X(Ỹ 1 T 1 ) 1 F t. E Q dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 38

Two defaultable assets with total default Example: Call option on a defaultable asset We assume that Yt 1 = D(t, T ) represents a defaultable ZC-bond with zero recovery, and Yt 2 = 1 {t<τ} Ỹt 2 is a generic defaultable asset with total default. The payoff of a call option written on the defaultable asset Y 2 equals C T =(Y 2 T K) + = 1 {T<τ} (Ỹ 2 T K) + The replication of the option reduces to finding a constant x and an F-predictable process φ 2 that satisfy x + T 0 φ 2 t dỹ 2,1 t =(Ỹ 2 T K) +. Assume that the volatility σ 1,t σ 2,t of Ỹ 2,1 is deterministic. Let F 2 (t, T )=Ỹ 2 t ( D(t, T )) 1 dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 39

Two defaultable assets with total default The credit-risk-adjusted forward price of the option written on Y 2 equals where and C t = Ỹ 2 t N ( d + ( F 2 (t, T ),t,t) ) K D(t, T )N ( d ( F 2 (t, T ),t,t) ), d ± ( f, t, T )= ln f ln K ± 1 2 v2 (t, T ) v(t, T ) v 2 (t, T )= T t (σ 1,u σ 2,u ) 2 du. Moreover the replicating strategy φ in the spot market satisfies for every t [0,T], on the set {t <τ}, φ 1 t = KN ( d ( F 2 (t, T ),t,t) ), φ 2 t = N ( d + ( F 2 (t, T ),t,t) ). dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 40

Two defaultable assets with total default Hedging Survival claim: PDE approach Assume that σ 1 σ 2. Then the pre-default pricing function v satisfies the PDE ( μ 2 μ 1 t C + y 1 μ 1 + λ σ 1 σ 2 σ 1 + 1 2 ) ( μ 2 μ 1 1 C + y 2 μ 2 + λ σ 2 σ 2 σ 1 ( y 2 1σ 2 1 11 C + y 2 2σ 2 2 22 C +2y 1 y 2 σ 1 σ 2 12 C with the terminal condition C(T,y 1,y 2 )=G(y 1,y 2 ). ) = ) 2 C ( μ 1 + λ σ 1 μ 2 μ 1 σ 2 σ 1 ) C dy i t = Y i t (μ i dt + σ i dw t dm t ),i=1, 2 41