Trigonometry 1.TRIGONOMETRIC RATIOS

Σχετικά έγγραφα
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.3 Trigonometric Equations

Matrices and Determinants

MathCity.org Merging man and maths

CRASH COURSE IN PRECALCULUS

TRIGONOMETRIC FUNCTIONS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 7.6 Double and Half Angle Formulas

7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)

Areas and Lengths in Polar Coordinates

Trigonometric Formula Sheet

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homework 8 Model Solution Section

Second Order Partial Differential Equations

Section 8.2 Graphs of Polar Equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Quadratic Expressions

Areas and Lengths in Polar Coordinates

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Example Sheet 3 Solutions

Differentiation exercise show differential equation

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Reminders: linear functions

Solutions to Exercise Sheet 5

Homework 3 Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

2 Composition. Invertible Mappings

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chapter 6 BLM Answers

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Differential equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Math221: HW# 1 solutions

Review Exercises for Chapter 7

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Principles of Mathematics 12 Answer Key, Contents 185

derivation of the Laplacian from rectangular to spherical coordinates

Solution Series 9. i=1 x i and i=1 x i.

EE512: Error Control Coding

Solution to Review Problems for Midterm III

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Spherical Coordinates

ST5224: Advanced Statistical Theory II

IIT JEE (2013) (Trigonomtery 1) Solutions

Concrete Mathematics Exercises from 30 September 2016

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

C.S. 430 Assignment 6, Sample Solutions

Section 9.2 Polar Equations and Graphs

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Srednicki Chapter 55

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Numerical Analysis FMN011

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Finite Field Problems: Solutions

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

DIFFERENTIATION OF TRIGONOMETRIC FUNCTIONS

Derivations of Useful Trigonometric Identities

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Statistical Inference I Locally most powerful tests

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

MATH 150 Pre-Calculus

Lecture 2. Soundness and completeness of propositional logic

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

( y) Partial Differential Equations

Chapter 7 Analytic Trigonometry

Lecture 26: Circular domains

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

( ) 2 and compare to M.

D Alembert s Solution to the Wave Equation

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

A Note on Intuitionistic Fuzzy. Equivalence Relation

Strain gauge and rosettes

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

w o = R 1 p. (1) R = p =. = 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CYLINDRICAL & SPHERICAL COORDINATES

Tridiagonal matrices. Gérard MEURANT. October, 2008

Other Test Constructions: Likelihood Ratio & Bayes Tests

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Exercises to Statistics of Material Fatigue No. 5

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

MATRICES

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Transcript:

Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y 0). Relations : i) sin cosec ii) cos sec iii) tan cot iv) sin + cos v) + tan sec (sec + tan ) (sec tan ). sec + tan sec tan vi) + cot cosec (cosec + cot ) (cosec cot ) cosec + cot cosec cot vii) sec + cosec sec. cosec viii) tan sin tan. sin ; cot cos cot. cos ix) sin + cos 4 sin cos sin 4 + cos x) sin 4 + cos 4 sin cos xi) sin 6 + cos 6 sin cos xii) sin x + cosec x xiii) cos x + sec x xiv) tan x + cot x.. Values of trigonometric ratios of certain angles O r x y x angle ratio sin cos tan cot cosec sec 0 0 undefined undefined o 0 π/6 π/4 π/ π/ / / / / / / / / / / 0 undefined 0 undefined

4. Signs of Trigonometric ratios : If lies in I, II, III, IV quadrants then the signs of trigonometric ratios are as follows. II 90 o < < 80 o sin and cosec are (+)ve I 0 o < < 90 o all the ratios are (+)ve III 80 o < < 70 o tan and cot are (+)ve IV 70 o < < 60 o cos and sec are (+)ve Note : i) 0 o, 90 o, 80 o, 70 o. 60 o, 450 o,.. etc. are called quadrant angles. ii) With ALL SILVER TEA CUPS symbol we can remember the signs of trigonometric ratios. 5. Coterminal angles : If two angles differ by an integral multiples of 60 o then two angles are called coterminal angles. Thus 0 o, 90 o, 750 o, 0 o etc., are coterminal angles. Fn 90 80 70 60 sin cos ± sin cos sin cos ± sin cos sin cos tan ± cot tan ± cot tan cosec sec ± cosec sec cosec sec ± cosec sec cosec sec cot ± tan cot ± tan cot 6. Complementary Angles : Two Angles A, B are said to complementary A + B 90 o 7. Supplementary angles : Two angles A, B are said to be supplementary A + B 80 o.

Convert the following into simplest form :. tan( 4π) Sol. tan(4π ) tan[7 π ] [ tan ] tan PROBLEMS VSAQ S. cosec (5π + ) Sol. cosec (5π + ) cosec ( cos ec(n π+ ) ( ) cos ec ) n 7π. Find the value of cos 7π 7π Sol. cos cos 0 π ( cos(n+ ) 0) 4. Find the value of cot(5 ) Sol. cot(5 ) cot 5 [cot 60 45 ] [ cot 45 ] cot 45 5. Evaluate cos 45 + cos 5 + cos 5 + cos 5 Sol. cos 45, cos5 cos(80 45 )

cos 45 cos 5 cos(80 + 45 ) cos 45 cos5 cos(60 45 ) cos 45 Given expression + + + + + + 6. cos 5 sin 5 + tan 495 cot 495 Sol. cos 5 cos(80 + 45 ) cos 45 sin 5 sin(80 + 45 ) sin 45 tan 495 tan[5(90 + ) 45] cot 45 cot 495 cot[5(90 + ) 45 ] tan 45 G.E. + + + 0 7. If cos t (0 < t < ) and does not lie in the first quadrant, find the value of (a) sin (b) tan. Sol. cos t lies in IV quadrant. x AC BC t x t AB a) sin t AC AB t b) tan BC t

8. If sin and does not lie in third quadrant, find the values of (i) cos (ii) cot Solution: sin does not lie in III Q lies in IV Quadrant cos sin 9 cos cot sin 0 0 0 0 9. Find the value of sin 0. cos0 + cos 0. sin 00 Solution: ( ) sin 0 sin 60 0 sin 0 0 0 0 0 0 cos0 cos 0 ; sin 00 sin ( 60 60 ) 0 0 0 0 sin 0 cos0 + cos 0. sin 00 + 0 0 0 0 0. If cosec + cot, find cos and determine the quadrant in which lies. Sol. cosec cot (cosec + cot ) (cosec cot ) cosec cot () and cosec + cot () From () + () cosec cot cosec + cot 0 cosec + 0 cos ec 6 6 sin 6 From () () cosec cot cosec + cot

8 cot 8 8 cot 6 8 6 4 cos cot sin 6 0 5 Thus sin is +ve and cos is ve Then lies in II quadrant.. If sec + tan 5, find the quadrant in which lies and find the value of sin. Sol. sec + tan 5 () We know, sec tan (sec + tan )(sec tan ) sec tan sec+ tan sec tan...() 5 Adding (),() sec+ tan 5 sec tan 5 sec 5+ 5 5 + sec 5 6 sec 5 sec 5 tan, sin 5 sin sec and tan are positives lies in I quadrant.

. If cos A cos B : A does not lie in second quadrant B does not lie in third quadrant find the value of 4sin B 4tan A tan B+ sin A Solution: cos A cos B ; A does not lie in II Q A lies in III Q sin A cos B B does not lie in III Q B lies in II Q sin B tan A tan B 4 4sinB tan A tan B + sin A π π sin(π A)cos A tan A. 4 cos A π π cos ec + A sec(π+ A) cot A Sol. sin(π A) sin A π π cos A cos A sin A π tan A cot A π cos ec + A sec A sec(π+ A) sec A π π cot A cot A tan A sin A sin A cot A L.H.S. seca seca tana cos A sin A sin A sin A cos A cos A cos A 4 sin A cos A cos A sin A

4. π π 5π 7π 9π cot cot cot cot cot 0 0 0 0 0 π Sol. cot cot 9 0 tan 9 π cot cot 7 0 tan 7 5π cot cot 45 0 7π cot cot 6 cot(90 7 ) tan 7 0 9π cot cot 8 cot(90 9 ) tan 9 0 π π 5π 7π 9π cot cot cot cot cot 0 0 0 0 0 tan7 tan9 tan 9 tan 7 π 5π 7π sin tan sec 6 5. Simplify. 5π 7π 7π cos cos ec cos 4 4 6 π π Sol. sin sin sin 660 sin( 60 60 ) sin 60 5π tan tan050 tan( 60 0 ) tan 0 6 7π sec sec( 40 ) sec 40 sec(60 + 60 ) sec60 5π cos cos(5 ) cos(80 + 45 ) cos 45 4 7π csc 4 csc5 csc(60 45 ) csc 45 7π cos 6 cos 50 cos(60 + 50 ) cos00 cos(80 0 ) cos0

() L.H.S. ( ) R.H.S. tan 60 + tan 700 p 6. If tan 0 p, prove that tan 560 tan 470 + p tan 60 + tan 700 Sol. tan 560 tan 470 tan(60 + 50 ) + tan(60 + 40 ) tan(60 + 00 ) tan(60 + 0 ) tan 50 tan 40 tan 00 tan0 tan(70 0 ) tan(60 0 ) tan(80 + 0 ) + tan(90 + 0 ) cot 0 tan 0 tan 0 + cot 0 tan 0 tan 0 tan 0 + tan 0 p p p p p p + p p p + p + tan 60 + tan 700 p tan 560 tan 470 + p. 7. If α, β are complementary angles such that b sin α a, then find the value of (sin α cos β cos α sin β). Sol. α and β are complementary angles. α + β 90 β 90 α a bsin α a sin α b cos α sin a α b b a b

b a cos α b Since β 90 α sin β sin(90 α ) cos α cos α sin β and α 90 β sin α sin(90 β ) cosβ a cosβ sin α b a cosβ b sin α cosβ cos αsinβ a a b a b a b b b b a (b a ) a b + a a b b b b b 8. If cos + sin cos then prove that cos sin sin Solution: cos + sin cos -------- () squaring and adding () & () Let cos sin x -------() ( ) ( ) ( ) cos + sin + cos sin cos + x cos x x sin cos sin sin 9. If 8 tan A 5 and 5 sin B 7 and neither A nor B is in the fourth quadrant, then show 04 that sin A cos B + cos A sin B. 45 Sol. 8 tan A 5 5 tan A 8 A lies in II quadrant 5 8 sin A,cos A 7 7 5sin B 7 7 sin B 5 B lies in III quadrant 7 4 sin B,cos B 5 5 L.H.S. : sin A cos B + cos A sin B

5 4 8 7 4 8 7 + + 7 5 7 5 7 5 7 5 60 56 04 + 45 45 45 π 4π 6π 9π 0. Prove that sin + sin + sin + sin 0 0 0 0 Solution: π 4π 6π 9π sin + sin + sin + sin 0 0 0 0 π π π π π π sin + sin + sin + + sin π 0 0 0 0 π π π π π π sin + cos + cos + sin sin + cos 0 0 0 0 0 0 π π sin + cos 0 0. If 0 tan 0 λ then show that 0 0 tan 60 tan0 λ + λ 0 0 tan 60 tan 0. If sec + tan find the value of sin and determine the quadrant in which lies Solution: sec + tan sec + tan tan 5 sec + sec / sin sec lies in IV Quadrant. If A, B, C, D are angles of a cyclic quadrilateral then prove that i) sin A sin C sin D sin B ii) cos A + cos B + cos C + cos D 0 Sol. A, B, C, D are the angles of a cyclic quadrilateral. A + C 80 ; B + D 80 A 80 C, B 80 D i) sin A sin C sin D sin B sin A + sin B sin C + sin D we have A 80 C Sin A sin C () B 80 D sin B sin D () Adding () and () Sin A + sin B sin C + sin D ii) cos A cos (80 C) cos C cos A + cos C 0 () cos B cos (80 D) cos D

cos B + cos D 0 () Adding () and () cos A + cos B + cos C + cos D 0. 4. If a cos b sin c, then show that Sol. a cos b sin c () Let a sin + b cos k () Squaring and adding asin+ bcos± a + b c. 5. If sin A + 5 cos A 5, then show that 5 sin A cos A ±. Sol. sin A + 5 cos A 5 Let 5 sin A cos A k Squaring and adding ( sin A + 5 cos A) + (5 sin A cos A) 5 + k 9sin A + 5cos A + 0sin A cos A + 5sin A + 9cos A 0sin A cosa 5+ k 4sin A + 4cos A 5 + k 4(sin A + cos A) 5 + k 4() 5 + k 4 5 + k k 4 6 9 k ± tan + sec + sin 6. Prove that tan sec+ cos. tan + sec Sol. We have tan sec+ (tan + sec ) (sec tan ) tan sec+ (tan + sec ) (sec+ tan )(sec tan ) tan sec+ [tan + sec ][ sec + tan ] tan sec+ tan + sec sin + sin + cos cos cos tan + sec + sin tan sec+ cos

7. Prove that ( + cot csc )( + tan + sec ). Sol. L.H.S. : ( + cot csc )( + tan + sec ) cos sin + + + sin sin cos cos sin + cos cos+ sin + sin cos (sin + cos ) sin + cos + sin cos sin cos sin cos + sincos sincos R.H.S. sin cos sin cos Eliminate from the following equations. 8. x a cos ; y b sin Sol. x a cos ; y b sin x x cos cos a a y y sin sin b b / / We have cos + sin / / x y + a b 9. x a cos 4 b sin 4. 4 4 x Sol. x acos cos a x cos a 4 4 y y bsin sin b y sin b cos + sin / / x y x y + + a b a b 0. x a(sec + tan ) ; y b (sec tan ) Sol. x a(sec + tan ) ; y b (sec tan ) xy ab(sec tan ) ab () ab xy ab.

. Prove that cos π cot cos tan π tan sin ( π A) + A ( A) ( π + A) + A ( π A) cos A SAQ S 4 6 6. Prove that (sin cos ) + 6(sin + cos ) + 4(sin + cos ) Sol. Consider (sin cos ) sin + cos sin cos sin cos (sin cos ) 4 [(sin cos ) ] [ sin cos ] + 4sin cos 4sin cos 4 (sin cos ) + 4sin cos 4sin cos (sin + cos ) sin + cos + sin cos + sin cos (sin + cos ) + sin cos 6 6 sin + cos (sin ) + (cos ) (sin + cos ) sin cos (sin + cos ) sin cos ( sin + cos ) 6 6 sin + cos sin cos 4 6 6 (sin cos ) + 6(sin + cos ) + 4(sin + cos ) [+ 4sin cos 4sincos + ] 6[+ sincos + ] 4[ sin cos ] + sin cos sin cos + 6 + sin cos+ 4 sin + 6+ 4 4 4. Show that cos α+ cos α sin α sec α. 4 Sol. L.H.S. : cos α+ cos α sec 4 cos α+ cos αsin α ( cos α sin α) cos α[cos α+ sin α] 4 ( sin α)[( sin α ) + sin α] ( sin α )(+ sin α) sin α R.H.S. α cos

( + sin cos ) cos 4. Prove that. ( + sin + cos ) + cos Sol. Consider + sin cos ( cos ) + sin sin + sin cos sin sin cos + Again consider + sin + cos ( + cos ) + sin cos + sin cos cos cos sin + sin sin cos + L.H.S.: cos cos + sin sin sin cos R.H.S. cos cos + cos sin cos+ sin 5. If x, find the value of. + cos+ sin + sin sin Sol. x + cos+ sin sin cos x cos + sin cos 4sin cos x cos cos sin + sin x...() cos + sin

sin + sin cos cos+ sin + sin sin + cos + sin cos sin sin cos sin + x ( from()) sin + cos sin + cos