On optimal FEM and impedance conditions for thin electromagnetic shielding sheets

Σχετικά έγγραφα
High order transmission conditions for conductive thin sheets Asymptotic Expansions versus Thin Sheet Bases

Example Sheet 3 Solutions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

EE512: Error Control Coding

Second Order Partial Differential Equations

Discretization of Generalized Convection-Diffusion

Every set of first-order formulas is equivalent to an independent set

D Alembert s Solution to the Wave Equation

Finite difference method for 2-D heat equation

Institut de Recherche MAthématique de Rennes

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Reminders: linear functions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Statistical Inference I Locally most powerful tests

Wavelet based matrix compression for boundary integral equations on complex geometries

Approximation of distance between locations on earth given by latitude and longitude

Local Approximation with Kernels

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Finite Field Problems: Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

The Simply Typed Lambda Calculus

2 Composition. Invertible Mappings

ST5224: Advanced Statistical Theory II

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Homework 8 Model Solution Section

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

( y) Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Numerical Analysis FMN011

Concrete Mathematics Exercises from 30 September 2016

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Matrices and Determinants

Forced Pendulum Numerical approach

Areas and Lengths in Polar Coordinates

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Homework 3 Solutions


Graded Refractive-Index

Lecture 34 Bootstrap confidence intervals

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fractional Colorings and Zykov Products of graphs

Iterated trilinear fourier integrals with arbitrary symbols

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Solutions to Exercise Sheet 5

Answer sheet: Third Midterm for Math 2339

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Inverse trigonometric functions & General Solution of Trigonometric Equations

A generalized Holland model for wave diffraction by thin wires

Areas and Lengths in Polar Coordinates

[1] P Q. Fig. 3.1

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Pohozaev identity for the fractional Laplacian

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 9.2 Polar Equations and Graphs

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Parametrized Surfaces

Second Order RLC Filters

Lecture 2. Soundness and completeness of propositional logic

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Congruence Classes of Invertible Matrices of Order 3 over F 2

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Spherical Coordinates

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Differential equations

Uniform Convergence of Fourier Series Michael Taylor

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Heisenberg Uniqueness pairs

Elements of Information Theory

Section 8.3 Trigonometric Equations

Mean-Variance Analysis

derivation of the Laplacian from rectangular to spherical coordinates

Solution Series 9. i=1 x i and i=1 x i.

Lecture 21: Properties and robustness of LSE

Lecture 26: Circular domains

The Spiral of Theodorus, Numerical Analysis, and Special Functions

A General Note on δ-quasi Monotone and Increasing Sequence

Abstract Storage Devices

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

5. Choice under Uncertainty

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

On the k-bessel Functions

C.S. 430 Assignment 6, Sample Solutions

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Strain gauge and rosettes

Lifting Entry (continued)

Transcript:

On optimal FEM and impedance conditions for thin electromagnetic shielding sheets Kersten Schmidt Research Center Matheon, Berlin, Germany, Institut für Mathematik, Technische Universität Berlin, Germany Institut für Mathematik, BTU Cottbus-Senftenberg, Germany Research Center MATHEON Mathematics for key technologies RICAM SpecSem Workshop on Analysis and Numerics of Acoustic and Electromagnetic Problems 2016, Linz, Oct 18th 2016

Thin conducting shielding sheets Maxwell equations in eddy current approximation curl curl E +iµσω E = iωµ 0 J Thin conducting sheets shields electric and magnetic fields Challenges: high gradients in thickness directions high aspect ratio of the sheets K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 2 / 29

Thin conducting shielding sheets Maxwell equations in eddy current approximation curl curl E +iµσω E = iωµ 0 J Remedies thin sheet basis approximate transmission conditions boundary integral formulation K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 2 / 29

Thin conducting shielding sheets Maxwell equations in eddy current approximation curl curl E = J [E n] Γ = 0 [curl E n] Γ = Z(ω, σ, d) E T Remedies thin sheet basis approximate transmission conditions boundary integral formulation K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 2 / 29

Thin conducting shielding sheets Maxwell equations in eddy current approximation curl curl E = J [E n] Γ = 0 [curl E n] Γ = Z(ω, σ, d) E T Remedies thin sheet basis approximate transmission conditions boundary integral formulation K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 2 / 29

Thin conducting shielding sheets Eddy current model curl curl E +iµσω E = iωµ 0 J ε b a f = iωµ0j0 Ω ε int Ω ε ext K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 3 / 29

Thin conducting shielding sheets Eddy current model ε curl curl E +iµσω E = iωµ 0 J b a Two important effects of the thin sheet (of thickness ε) Shielding effect in conductors induced currents diminish electromagnetic fields (behind the conductor) Skin effect major current flow in a boundary layer (skins of the conductor) Skin depth in solid body δ = 2 µ 0 σω Copper at 50 Hz δ 8mm f = iωµ0j0 Ω ε int Ω ε ext K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 3 / 29

Thin conducting shielding sheets Eddy current model curl curl E +iµσω E = iωµ 0 J Two important effects of the thin sheet (of thickness ε) Shielding effect in conductors induced currents diminish electromagnetic fields (behind the conductor) Skin effect major current flow in a boundary layer (skins of the conductor) Skin depth in solid body δ = 2 µ 0 σω Copper at 50 Hz δ 8mm ε δ ε δ ε δ K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 3 / 29

Outline 1 Optimal basis inside the sheet 2 Impedance transmission conditions (ITCs) 3 Boundary integral equations for impedance transmission conditions K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 4 / 29

Optimal basis inside the sheet Eddy current model in 2D (TM polarisation) u ε (x) + iωµ 0σ(x) u ε (x) = iωµ 0j 0(x) Approximation of higher order without reduction to an interface Ansatz for the solution inside the sheet uint(t, ε s) uint,n(t, ε s) = N 1 i=0 φε i (s, t) uint,i(t). ε inspired by: Vogelius, M. and Babuška, I., Math. Comp. 37, 1981. with N 2 linear independent basis functions φ ε i spanning V ε N, and u ε int,i H 1 ( Γ). ε ext ε int n ε ext ε s t 0 Basis functions φ ε 0, φ ε 1 in the kernel of 2 s κ 1+sκ s + iωµ 0σ + κ2 4(1+sκ) 2, φ ε 0(s, κ) = φ ε 1(s, κ) = 1 cosh( iωµ 0σs) 1 + sκ cosh( iωµ 0σ ε ), {φε,0} κ = 1, [φ ε,0] κ = 0, 2 1 sinh( iωµ 0σs) 1 + sκ 2 sinh( iωµ 0σ ε ), {φε,1} κ = 0, [φ ε,1] κ = 1, 2 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 5 / 29

Optimal basis inside the sheet Eddy current model in 2D (TM polarisation) u ε (x) + iωµ 0σ(x) u ε (x) = iωµ 0j 0(x) Approximation of higher order without reduction to an interface Ansatz for the solution inside the sheet uint(t, ε s) uint,n(t, ε s) = N 1 i=0 φε i (s, t) uint,i(t). ε inspired by: Vogelius, M. and Babuška, I., Math. Comp. 37, 1981. with N 2 linear independent basis functions φ ε i spanning V ε N, and u ε int,i H 1 ( Γ). ε ext ε int n ε ext ε s t 0 Basis functions φ ε 2j, φ ε 2j+1,j N 0 in the kernel of ( s 2 κ 1+sκ s + iωµ 0σ + κ2 4(1+sκ) 2 ) j+1, φ ε 2j(s, κ) = φ ε 2j+1(s, κ) = P j(s) 1 + sκ cosh( iωµ 0σs), {φ ε,2j} κ = δ j,0, [φ ε,2j] κ = 0 P j(s) 1 + sκ sinh( iωµ 0σs), {φ ε,2j+1} κ = 0, [φ ε,2j+1] κ = δ j,0 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 5 / 29

Optimal basis inside the sheet Basis functions φ ε i, i N 0 such that ( 2 s φ ε 2j(s, κ) = φ ε 2j+1(s, κ) = κ s + iωµ0σ + κ2 1+sκ 4(1+sκ) 2 )φ ε i = ε 2 φ ε i 2 P j(s) 1 + sκ cosh( iωµ 0σs), {φ ε,2j} κ = δ j,0, [φ ε,2j] κ = 0 P j(s) 1 + sκ sinh( iωµ 0σs), {φ ε,2j+1} κ = 0, [φ ε,2j+1] κ = δ j,0 1 0.5 0 φ ε int,0 κ = +8 κ = 8 φ ε int,1-0.5 - ε 0 ε 2 s 2 1 0.5 0 φ ε int,2 φ ε int,3-0.5 - ε 0 ε 2 s 2 iωµ 0σ = 1000, ε = 0.1 1 0.5 0 φ ε int,4 φ ε int,5-0.5 - ε 0 ε 2 s 2 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 6 / 29

Optimal basis inside the sheet Basis functions φ ε i, i N 0 such that ( 2 s φ ε 2j(s, κ) = φ ε 2j+1(s, κ) = κ s + iωµ0σ + κ2 1+sκ 4(1+sκ) 2 )φ ε i = ε 2 φ ε i 2 P j(s) 1 + sκ cosh( iωµ 0σs), {φ ε,2j} κ = δ j,0, [φ ε,2j] κ = 0 P j(s) 1 + sκ sinh( iωµ 0σs), {φ ε,2j+1} κ = 0, [φ ε,2j+1] κ = δ j,0 ( Decomposition + iωµ 0σ = s 2 κ 1 + sκ s + iωµ0σ + κ 2 ) + A(s, κ) 4(1 + sκ) }{{ 2 } scales with ε, depends on σ with regular pertubation, independent of σ A(s, κ) = 1 ( ) 1 κ 2 1 + sκ t 1 + sκ t 4(1 + sκ) 2 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 6 / 29

Optimal basis inside the sheet Basis functions φ ε i, i N 0 such that ( 2 s φ ε 2j(s, κ) = φ ε 2j+1(s, κ) = κ s + iωµ0σ + κ2 1+sκ 4(1+sκ) 2 )φ ε i = ε 2 φ ε i 2 P j(s) 1 + sκ cosh( iωµ 0σs), {φ ε,2j} κ = δ j,0, [φ ε,2j] κ = 0 P j(s) 1 + sκ sinh( iωµ 0σs), {φ ε,2j+1} κ = 0, [φ ε,2j+1] κ = δ j,0 ( Decomposition + iωµ 0σ = s 2 κ 1 + sκ s + iωµ0σ + κ 2 ) + A(s, κ) 4(1 + sκ) }{{ 2 } scales with ε, depends on σ with regular pertubation, independent of σ A(s, κ) = 1 ( ) 1 κ 2 1 + sκ t 1 + sκ t 4(1 + sκ) 2 Interpolation I ε Nu ε for u ε smooth enough N 2 j=0 N 1 2 INu ε ε (s, t) = ε 2j φ ε 2j(s, κ)a N,j (s, κ){u ε } κ + ε 2j φ ε 2j+1(s, κ)a N,j (s, κ)[u ε ] κ j=0 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 6 / 29

Lemma (Best-approximation error) Optimal basis inside the sheet For any even N (curved sheet) any N (straight sheet or curved sheet N 4) and u ε smooth enough there exists a constant C independent of σ such that inf w w N ε V N ε N ε u ε H 1 (Ω ε H1 int ( Γ) ) Cε N 2 1, inf w w N ε V N ε N ε u ε L 2 (Ω ε H1 int ( Γ) ) Cε N+ 2 1. Interpolation I ε Nu ε for u ε smooth enough I ε Nu ε (s, t) = N 2 j=0 ε2j φ ε 2j(s)A N,j (s, κ){u ε } κ + N 1 2 j=0 ε 2j φ ε 2j+1(s)A N,j (s, κ)[u ε ] κ K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 7 / 29

Optimal basis inside the sheet Eddy current model in 2D (TM polarisation) u ε (x) + iωµ 0σ(x) u ε (x) = iωµ 0j 0(x) } Semi-discretization WN {u ε := H 1 (Ω) : u Ω ε ext H 1 (Ω ε ext ), u Ω ε V ε int N H1 ( Γ) Seek un ε WN ε such that un ε v N dx + Ω Ω ε int iωµ 0σuNv ε N dx = iωµ 0j 0v N dx Ω v N W ε N Lemma (Semi-discretization error) For any even N (curved sheet) any N (straight sheet or curved sheet N 4) and u ε smooth enough it holds for u ε N W ε N u ε N u ε H 1 (Ω ε int ) Cε N 1 2, u ε N u ε L 2 (Ω ε int ) Cε N+ 1 2, u ε N u ε H 1 (Ω ε ext ) Cε 2N 1. K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 8 / 29

Semianalytical study for circular arc with κ = 1 2, iωµ0σ = 1 ε. Optimal basis inside the sheet Error in the H 1 -seminorm inside the sheet. u ε N u ε H 1 (Ω ε int ) Cε N 1 2, Error in H 1 -seminorm outside the sheet. u ε N u ε H 1 (Ω ε ext ) Cε 2N 1. e.g., four functions sixth-order scheme O(ε 7 ) (outside the sheet) easily increasing order by enrichment with higher optimal basis functions pre-computation of integrals in s surface variables K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 9 / 29

Content 1 Optimal basis inside the sheet 2 Impedance transmission conditions (ITCs) 3 Boundary integral equations for impedance transmission conditions K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 10 / 29

y Original problem Impedance transmission conditions (ITCs) Ω ε ext ε 2 0 ε 2 Ω ε int Γ curl curl E = iωµ 0 J in Ω ε ext curl curl E +iωµ 0σ E = 0 in Ω ε int (1) Ω ε ext x Reduced problem with ITC-1-0 (Levi-Civita 1902) y ε 2 0 Ω 0 ext Γ curl curl E 0 = iωµ 0 J [curl E 0 n] iωµ 0σε{E 0,T } = 0 in Ω 0 ext [E 0 n] = 0 on Γ on Γ (2) ε 2 Ω 0 ext E 0 defined Ω 0 ext approximates E in Ω ε ext layer correction inside Ω ε int can be computed a-posteriori x limit for ε 0 for σ = σ(ε) ε 1 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 11 / 29

y Impedance transmission conditions (ITCs) Original problem (TM mode) Ω ε ext ε 2 0 ε 2 Ω ε int Γ u = f in Ω ε ext u + α δ 2 u = 0 in Ωε int (1) Ω ε ext Skin depth δ serves as a parameter x Reduced problem with ITC-1-0 (Levi-Civita 1902) y ε 2 0 ε 2 Ω 0 ext Γ u 0 = f in Ω 0 ext [u 0] = 0 on Γ [ nu 0] αε {u0} δ2 = 0 on Γ (2) Ω 0 ext x u 0 defined in Ω 0 ext approximates u in Ω ε ext layer correction inside Ω ε int can be computed a-posteriori limit for ε 0 for δ(ε) ε K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 11 / 29

y Impedance transmission conditions (ITCs) Asymptotic problem (TM mode) Ω ε ext ε 2 0 ε 2 Ω ε int Ω ε ext Γ x u ε = f in Ω ε ext u ε + α δ 2 (ε) uε = 0 in Ω ε int Skin depth δ serves as a parameter Reduced problem with ITC-1-0 (Levi-Civita 1902) (1) y ε 2 0 ε 2 Ω 0 ext Γ u 0 = f in Ω 0 ext [u 0] = 0 on Γ [ nu 0] αε {u0} δ2 = 0 on Γ (2) Ω 0 ext x u 0 defined in Ω 0 ext approximates u in Ω ε ext layer correction inside Ω ε int can be computed a-posteriori family ITC-1-N of transmission conditions derived by asymptotic expansion with δ δ(ε) ε, and K.S. and S. Tordeux, ESAIM: M2AN, 45(6): 1115 1140, 2011. K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 11 / 29

Impedance transmission conditions (ITCs) Reduced problem with transmission conditions ITC-1-0 (Levi-Cevita 1902) u 0 = f in Ω 0 ext [u 0] = 0 on Γ [ nu 0] αε {u0} δ2 = 0 on Γ O(ε) : error in exterior decreases linearly with ε along δ(ε) ε (proven) surprise : even if ε δ 0 extra accuracy for ε δ 10 mm u u 0 H 1 (Ω ε ext ) Skin depth δ 1 mm 0.1 mm 0.1 mm 1 mm 10 mm Sheet thickness ε K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 12 / 29

Reduced problem with transmission conditions ITC-1-1 Impedance transmission conditions (ITCs) u ε,1 = f in Ω 0 ext [u ε,1 ] = 0 on Γ [ nu ε,1 ] αε ( 2 ) 1 αε δ 2 6δ {u ε,1 } 2 = 0 on Γ O(ε 2 ) : error in exterior decreases like ε 2 along δ(ε) ε (proven) but only O(ε) in case of ε δ 0, no improvement when increasing order N from 0 to 1 10 mm ITC-1-0 10 mm ITC-1-1 Skin depth δ 1 mm Skin depth δ 1 mm 0.1 mm 0.1 mm 0.1 mm 1 mm 10 mm Sheet thickness ε 0.1 mm 1 mm 10 mm Sheet thickness ε K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 13 / 29

Reduced problem with transmission conditions ITC-1-2 Impedance transmission conditions (ITCs) [ nu ε,2 ] αε ( 2 1 αε δ 2 6δ 2 + ε2 12 u ε,2 = f in Ω 0 ext [u ε,2 ] + αε3 { 12δ nu ε,2 } = 0 on Γ ( 2 7α 2 ε 2 + 20δ Γ)) 2 {u ε,2 } = 0 on Γ 4 O(ε 3 ) : error in exterior decreases like ε 3 along δ(ε) ε (proven) but convergence to wrong solution in case of ε δ 0, not robust in δ anymore, worse than for low orders N = 0, 1 ITC-1-0 ITC-1-1 ITC-1-2 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 14 / 29

Reduced problem with transmission conditions ITC-1-2 Impedance transmission conditions (ITCs) [ nu ε,2 ] αε ( 2 1 αε δ 2 6δ 2 + ε2 12 u ε,2 = f in Ω 0 ext [u ε,2 ] + αε3 { 12δ nu ε,2 } = 0 on Γ ( 2 7α 2 ε 2 + 20δ Γ)) 2 {u ε,2 } = 0 on Γ 4 O(ε 3 ) : error in exterior decreases like ε 3 along δ(ε) ε (proven) but convergence to wrong solution in case of ε δ 0, not robust in δ anymore, worse than for low orders N = 0, 1 10 mm Let ε fixed and δ : [u ε,2 ] 0, [ nu ε,2 ] 0 on Γ no shielding δ 0 : { nu ε,2 } 0, {u ε,2 } 0 on Γ perfect electric b.c. (PEC) only valid results for large enough skin depth δ Skin depth δ 1 mm 0.1 mm 0.1 mm 1 mm 10 mm Sheet thickness ε K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 14 / 29

Impedance transmission conditions (ITCs) Reduced problem with transmission conditions ITC-2-1 (derived for δ(ε) ε) K.S. and A. Chernov, SIAM J. Appl. Math., 73(6): 1980 2003, 2013. [u ε,1 ] + ε ( 1 2δ u ε,1 = f in Ω 0 ext αε tanh( αε 2δ ) { nu ε,1 } = 0 on Γ [ nu ε,1 ] 2 α tanh( αε ) 2δ δ 1 2 αε tanh( αε ) {uε,1 } = 0 on Γ 2δ O(ε 2 ) : error in exterior decreases like ε 2 along δ(ε) ε (proven) we observe (numerically) O(ε 2 ) independent of δ(ε) Let ε fixed and δ : [u ε,1 ] 0, [ nu ε,1 ] 0 on Γ no shielding δ 0 : [u ε,1 ] + ε{ nu ε,1 } 0 {u ε,1 } + ε 4 [ nuε,1 ] 0 on Γ perfect electric b.c. (PEC) at Γ ε robust results w.r.t. skin depth δ / conductivity σ 10 mm 1 mm 0.1 mm 0.1 mm 1 mm 10 mm Sheet thickness ε K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 15 / 29 Skin depth δ

Electromagnetic scattering by thin shielding sheet of thickness ε Impedance transmission conditions (ITCs) curl curl E ε (k ε ) 2 E ε = 0 + Silver-Müller b.c. ( ) k ext = ω 2 µ ext ɛ ext + i σ ext(ε), in Ω ε with complex wave-number k ε ω ext, = ( ) kint ε = ω 2 µ int ɛ int + i σ int(ε), in Ω ε int. Reduced problem with transmission conditions ITC-2-1 (derived for σ int(ε) ε 2 ) V. Péron, K.S. and M. Durufle, SIAM J. Appl. Math., 76(3): 1031 1052, 2016. ω curl curl E ε,1 kext 2 E ε,1 = 0 in Ω 0 ext ( [ E ε,1 n ] ) ( ) Γ { E ε,1 n } L1 L 3 = ε L 3 L 2 Γ + Silver-Müller b.c. { 1 [ µ ext (curl E ε,1 ) T }Γ ( 1 µ ext curl E ε,1 ) T ]Γ with the operators L i = A i curl Γ curl Γ B i Id and constants A i, B i decoupling of ITCs if material parameters are the same on both sides of Γ L 3 = 0 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 16 / 29

Electromagnetic scattering by thin shielding sheet of thickness ε Impedance transmission conditions (ITCs) Variational formulation for reduced problem with transmission conditions ITC-2-1 where { } V = v H(curl, Ω 0 ext), v n L 2 t ( Ω), W = {v L 2 t (Γ), curl Γ v L 2 (Γ)}. Find (E ε,1, λ ε, µ ε ) V W W such that for all (E, λ, µ ) V W W Γ 1 curl E ε,1 curl E κ2 ext E ε,1 E iκ ext dx E ε,1 n E n ds Ω + Ω µ ext µ ext Ω µ ext ( ) ( ) n λ ε [E n µ ε T ] {E ds = r.h.s., T } ( ) ( [n E ε,1 ] {n E ε,1 } λ µ ( ) ( ) A1 A 3 B1 B 3 with A =, B = A 3 A 2 B 3 B 2 Γ ) ( ) ( ) ( ) ( curlγ λ ε curl Γ λ λ ε + ε A curl Γ µ ε ε B curl Γ µ µ ε λ µ ) ds = 0. K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 17 / 29

Electromagnetic scattering by thin shielding sheet of thickness ε Impedance transmission conditions ITC-2-1 for spherical sheet Impedance transmission conditions (ITCs) Discretization with Nédélec s elements of the first kind on hexahedral curved elements and its tangential traces 10 0 1.05 x3 = 0 x2 = 0 x1 = 0 Relative L 2 error 10 1 2.02 10 2 2.01 10 3 PEC, ε = 0.02 PEC, ε = 0.01 10 4 ITC-2-1, ε = 0.02 ITC-2-1, ε = 0.01 4.07 10 6 10 4 10 2 10 0 10 2 σε 2 Impedance transmission conditions are robust w.r.t. skin depth δ / conductivity σ K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 18 / 29

Content 1 Optimal basis inside the sheet 2 Impedance transmission conditions (ITCs) 3 Boundary integral equations for impedance transmission conditions K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 19 / 29

Boundary integral equations for impedance transmission conditions Reduced problem with transmission conditions on a closed Lipschitz curve/surface Γ U = F in R d \Γ [γ 1U] β {γ 0U} = 0 on Γ [γ 0U] = 0 on Γ (3) γ 0, γ 1... Dirichlet, Neumann traces on Γ, β... impedance parameter BVP is singularly perturbed for large β (homogeneous Dirichlet b.c. in the limit β ) Γ supp(f ) Mathematical model for thin conducting sheets in electromagnetics (d = 2) K.S. and S. Tordeux, ESAIM: M2AN, 2011 K.S. and A. Chernov, SIAM J. Appl. Math., 2013 and references therein. K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 20 / 29

Boundary integral equations for impedance transmission conditions Reduced problem with transmission conditions on a closed Lipschitz curve/surface Γ U = F in R d \Γ [γ 1U] β {γ 0U} = 0 on Γ [γ 0U] = 0 on Γ (3) γ 0, γ 1... Dirichlet, Neumann traces on Γ, β... impedance parameter BVP is singularly perturbed for large β (homogeneous Dirichlet b.c. in the limit β ) Mathematical model for thin conducting sheets in electromagnetics (d = 2) K.S. and S. Tordeux, ESAIM: M2AN, 2011 K.S. and A. Chernov, SIAM J. Appl. Math., 2013 and references therein. Boundary integral equations and BEM for impedance boundary conditions A. Bendali and L. Vernhet, CRAS, 1995, L. Vernhet, M2AS, 1999, A. Bendali, 2000. Boundary integral equations and BEM for several kind of transmission conditions K.S. and R. Hiptmair, Discrete Contin. Dyn. Syst. Ser. S, 2015 and references therein. Aim: Numerical analysis of BEM on uniform meshes in dependence of large parameter β, or small parameter ε := β 1, and the smoothness of Γ When is BEM on uniform meshes ε-robust? K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 20 / 29

Boundary integral equations for impedance transmission conditions 2nd order elliptic BVP with transmission conditions on a closed Lipschitz curve/surface Γ Representation formula U = F in R d \Γ (3a) [γ 0U] = 0 on Γ (3c) U = S [γ 1U] + D [γ 0U] +N F }{{} =0 with single layer potential S and Newton potential NF (S φ)(x) := G(x y)φ(y)dy (N F )(x) := G(x y)f (y)dy Γ R { 2 1 log( x y ), d = 2, 2π G(x y) = 1, d = 3. 4π x y Mean of Dirichlet traces gives the single layer operator Taking mean traces on Γ V := {γ 0S } : H 1/2+s (Γ) H 1/2+s (Γ), {γ 0U} = V [γ 1U] + γ 0NF (5) K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 21 / 29

Boundary integral equations for impedance transmission conditions 2nd order elliptic BVP with transmission conditions on a closed Lipschitz curve/surface Γ Representation formula U = F in R d \Γ (3a) [γ 0U] = 0 on Γ (3c) U = S [γ 1U] + D [γ 0U] +N F }{{} =0 with single layer potential S and Newton potential NF (S φ)(x) := G(x y)φ(y)dy (N F )(x) := G(x y)f (y)dy Γ R { 2 1 log( x y ), d = 2, 2π G(x y) = 1, d = 3. 4π x y Mean of Dirichlet traces gives the single layer operator Taking mean traces on Γ V := {γ 0S } : H 1/2+s (Γ) H 1/2+s (Γ), {γ 0U} = V [γ 1U] + γ 0NF (5) First transmission condition {γ 0U} = ε [γ 1U] (3b) K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 21 / 29

Boundary integral equations for impedance transmission conditions 2nd order elliptic BVP with transmission conditions on a closed Lipschitz curve/surface Γ U = F in R d \Γ (3a) ε [γ 1U] {γ 0U} = 0 on Γ (3b) [γ 0U] = 0 on Γ (3c) Single layer operator V := {γ 0S } : H 1/2+s (Γ) H 1/2+s (Γ). Mean Dirichlet trace of representation formulation {γ 0U} = V [γ 1U] + γ 0NF (5) Boundary integral equations for φ = [γ 1U] (insert (3b) in (5)) (εid + V )φ = γ 0NF Singularly perturbed for ε 0 ( β ) expect internal layers at corners of Γ (or points of lower smoothness) K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 22 / 29

Boundary integral equations for impedance transmission conditions Singularly perturbed boundary integral equations for φ = [γ 1U] (ε Id + V )φ = γ 0NF Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ Bilinear form b ε is L 2 (Γ)-elliptic b ε(φ, φ) ε φ 2 L 2 (Γ) and H 1/2 (Γ)-elliptic since φ L 2 (Γ) ε 1 γ 0NF L 2 (Γ) V φ, φ φ 2 H 1/2 (Γ) (with a constant indep. of ε) φ 2 H 1/2 (Γ) bε(φ, φ) = γ0nf, φ γ0nf H 1/2 (Γ) φ H 1/2 (Γ) φ H 1/2 (Γ) γ0nf H 1/2 (Γ). K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 23 / 29

Boundary integral equations for impedance transmission conditions Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ (??) BEM discretization: Seek φ V h such that for all φ V h b ε(φ h, φ h) := ε φ h, φ h + V φh, φ h = γ0nf, φ h (7) where V h is defined on mesh T h of (curved) panels K as S 1 0 (Γ h ) := S 0 1 (Γ h) := {v h L 2 (Γ) : v h P 0 (K) K T h }, l = 0 {v h L 2 (Γ) C(Γ) : v h P 1 (K) K T h }, l = 1 Γ h n K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 24 / 29

Boundary integral equations for impedance transmission conditions Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ (??) BEM discretization: Seek φ V h such that for all φ V h b ε(φ h, φ h) := ε φ h, φ h + V φh, φ h = γ0nf, φ h where V h is defined on mesh T h of (curved) panels K as S 1 0 (Γ h ) := S 0 1 (Γ h) := {v h L 2 (Γ) : v h P 0 (K) K T h }, l = 0 {v h L 2 (Γ) C(Γ) : v h P 1 (K) K T h }, l = 1 (7) Theorem (Stability and a-priori error estimates) Let T h be a mesh of Γ with mesh width h. Then, φ h V h L 2 (Γ) solution of (7) satisfies φ h L 2 (Γ) ε 1 γ 0NF L 2 (Γ) φ h H 1/2 (Γ) γ0nf H 1/2 (Γ). For V h = S 1 0 (Γ h ) (l = 0) or V h = S 0 1 (Γ h ) (l = 1) and Γ C l+1,1 it holds φ φ h L 2 (Γ) ε l 5/2 h l+1 γ 0NF H l+1/2 (Γ). K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 24 / 29

Boundary integral equations for impedance transmission conditions Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ (??) BEM discretization: Seek φ V h such that for all φ V h b ε(φ h, φ h) := ε φ h, φ h + V φh, φ h = γ0nf, φ h (7) Theorem (Stability and a-priori error estimates) [...] For V h = S 1 0 (Γ h ) (l = 0) or V h = S 0 1 (Γ h ) (l = 1) and Γ C l+1,1 it holds φ φ h L 2 (Γ) ε l 5/2 h l+1 γ 0NF H l+1 (Γ). Theorem (Higher order regularity estimates) For Γ C s+j+1,1 with 0 j s it holds φ H s+1/2 (Γ) εj s γ 0NF H s+j+3/2 (Γ). K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 25 / 29

Boundary integral equations for impedance transmission conditions Variational formulation: Seek φ L 2 (Γ) such that for all φ L 2 (Γ) b ε(φ, φ ) := ε φ, φ + V φ, φ = γ 0NF, φ (??) BEM discretization: Seek φ V h such that for all φ V h b ε(φ h, φ h) := ε φ h, φ h + V φh, φ h = γ0nf, φ h (7) Theorem (Higher order regularity estimates) For Γ C s+j+1,1 with 0 j s it holds φ H s+1/2 (Γ) εj s γ 0NF H s+j+3/2 (Γ). Theorem (Improved a-priori error estimates) For V h = S 1 0 (Γ h ) (l = 0) or V h = S 0 1 (Γ h ) (l = 1) and Γ C 2l+3,1 it holds φ φ h L 2 (Γ) h l+1 γ 0NF H 2l+7/2 (Γ). Proof: Asymptotic expansion of BEM solution φ h = φ 0,h + δφ 0,h. Theorem (ε-robust stability estimates) For Γ C 2,1 it holds φ h L 2 (Γ) γ 0NF H 5/2 (Γ). K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 25 / 29

Boundary integral equations for impedance transmission conditions Stadium interface Γ C 1,1 R R Γ h 10 1 l = 0 10 1 l = 1 10 2 10 2 10 3 1.0 10 3 φh φ L 2 (Γ) 10 4 10 5 φh φ L 2 (Γ) 10 4 10 5 1.5 10 6 10 6 2.0 10 7 10 8 10 5 10 4 10 3 10 2 10 1 mesh-width h β = 70i β = 5600i β = 448000i 10 7 10 8 10 5 10 4 10 3 10 2 10 1 mesh-width h β = 70i β = 5600i β = 448000i Solution φ computed w. hp-adaptive FEM using the C++ library Concepts (www.tu-berlin.de/?concepts) K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 26 / 29

Boundary integral equations for impedance transmission conditions b R m Rectangular interface Γ C 0,1 m a Γ h 10 1 l = 0 10 1 l = 1 10 2 10 2 0.5 φh φ L 2 (Γ) 10 3 10 4 1.0 φh φ L 2 (Γ) 10 3 10 4 1.47 1.52 10 5 10 5 β = 70i β = 70i 10 6 β = 5600i β = 448000i 10 6 β = 5600i β = 448000i 10 5 10 4 10 3 10 2 10 1 mesh-width h 10 5 10 4 10 3 10 2 10 1 mesh-width h Solution φ computed w. hp-adaptive FEM using the C++ library Concepts (www.tu-berlin.de/?concepts) K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 27 / 29

Boundary integral equations for impedance transmission conditions Transmission conditions of Type II have form (e. g., shielding element by Nakata et.al.) [γ 1U] (β 1 β 2 2 Γ) {γ 0U} = 0 on Γ, [γ 0U] = 0 on Γ Boundary integral equation as mixed formulation (1st kind) for φ := [γ 1U] H 1/2 (Γ), u := {γ 0U} H 1 (Γ) Variational formulation ( V Id Id β 1Id β 2 2 Γ ) ( ) φ = u ( ) γ0n f 0 V φ, φ + u, φ = γ Γ Γ 0N f, φ Γ φ, u + Γ β1 u, u + Γ β2 Γ u, Γ u = 0 Γ singularly pertubed BIE for β 1 1 (high frequency) or β 2 1 (always) K.S. and R. Hiptmair, Discrete Contin. Dyn. Syst. Ser. S, 2015 K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 28 / 29

Summary Impedance conditions for thin electromagnetic shielding sheets FEM with optimal basis inside the sheet σ-robust convergence of high order in thickness ε Impedance transmission conditions families ITC-1-N and ITC-2-N of transmission conditions derived by asymptotic expansion with δ(ε) ε or δ(ε) ε σ-robust convergence for ITC-1-0 (Levi-Civita), ITC-1-1, ITC-2-1 (also in 3D for Maxwell scattering, NtD operators mixed formulation) Singularly perturbed boundary integral equation (second kind) (β 1 Id + V )U = γ 0NF β-robust stability and a-priori error estimates for Γ smooth enough Outlook convolution quadrature for impedance transmission conditions in time-domain Impedance transmission conditions for eddy current model in 3D thin electromagnetic sheets with corners (boundary layer + singularities) K.Schmidt RICAM SpecSem W1, 18.10.2016 FEM + impedance conditions for thin electromagnetic shielding sheets 29 / 29