Intuitionistic Supra Gradation of Openness

Σχετικά έγγραφα
ON FUZZY BITOPOLOGICAL SPACES IN ŠOSTAK S SENSE (II)

ON INTUITIONISTIC FUZZY SUBSPACES

Homomorphism in Intuitionistic Fuzzy Automata

1. Introduction and Preliminaries.

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

2 Composition. Invertible Mappings

F A S C I C U L I M A T H E M A T I C I

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

SOME PROPERTIES OF FUZZY REAL NUMBERS

A Note on Intuitionistic Fuzzy. Equivalence Relation

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Reminders: linear functions

Commutative Monoids in Intuitionistic Fuzzy Sets

Intuitionistic Fuzzy Ideals of Near Rings

Every set of first-order formulas is equivalent to an independent set

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

Operation Approaches on α-γ-open Sets in Topological Spaces

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Base and subbase in intuitionistic I-fuzzy topological spaces

Fuzzifying Tritopological Spaces

Example Sheet 3 Solutions

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Homomorphism of Intuitionistic Fuzzy Groups

ST5224: Advanced Statistical Theory II

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Uniform Convergence of Fourier Series Michael Taylor

Fractional Colorings and Zykov Products of graphs

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

5. Choice under Uncertainty

Congruence Classes of Invertible Matrices of Order 3 over F 2

Generating Set of the Complete Semigroups of Binary Relations

Other Test Constructions: Likelihood Ratio & Bayes Tests

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

4.6 Autoregressive Moving Average Model ARMA(1,1)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE512: Error Control Coding

A General Note on δ-quasi Monotone and Increasing Sequence

The Simply Typed Lambda Calculus

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

Lecture 13 - Root Space Decomposition II

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Knaster-Reichbach Theorem for 2 κ

The Properties of Fuzzy Relations

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

C.S. 430 Assignment 6, Sample Solutions

Chapter 3: Ordinal Numbers

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

12. Radon-Nikodym Theorem

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

GAUGES OF BAIRE CLASS ONE FUNCTIONS

Bounding Nonsplitting Enumeration Degrees

Statistical Inference I Locally most powerful tests

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

derivation of the Laplacian from rectangular to spherical coordinates

Finite Field Problems: Solutions

New bounds for spherical two-distance sets and equiangular lines

On a four-dimensional hyperbolic manifold with finite volume

Tridiagonal matrices. Gérard MEURANT. October, 2008

Section 8.3 Trigonometric Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Math221: HW# 1 solutions

The operators over the generalized intuitionistic fuzzy sets

Lecture 15 - Root System Axiomatics

Lecture 2. Soundness and completeness of propositional logic

Matrices and Determinants

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Some Fundamental Properties of Fuzzy Linear Relations between Vector Spaces

On Pseudo δ-open Fuzzy Sets and Pseudo Fuzzy δ-continuous Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Cyclic or elementary abelian Covers of K 4

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

On Annihilator of Fuzzy Subsets of Modules

Abstract Storage Devices

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

Strain gauge and rosettes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 3 Solutions

CHARACTERIZATION OF BIPOLAR FUZZY IDEALS IN ORDERED GAMMA SEMIGROUPS

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

On density of old sets in Prikry type extensions.

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Commutators of cycles in permutation groups

SEMIGROUP ACTIONS ON ORDERED GROUPOIDS. 1. Introduction and prerequisites

Areas and Lengths in Polar Coordinates

Young Bae Jun Madad Khan Florentin Smarandache Saima Anis. Fuzzy and Neutrosophic Sets in Semigroups

A Conception of Inductive Logic: Example

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

CRASH COURSE IN PRECALCULUS

Transcript:

Applied Mathematics & Information Sciences 2(3) (2008), 291-307 An International Journal c 2008 Dixie W Publishing Corporation, U. S. A. Intuitionistic Supra Gradation of Openness A. M. Zahran 1, S. E. Abbas 2 and E. El-Sanousy 2 1 Department of Mathematics, Faculty of Science, Azhar University, Assuit, Eygpt Email Address: amzahran2000@yahoo.com 2 Department of Mathematics, Faculty of Science, Sohag University, Sohag, Eygpt Email Addresses: sabbas73@yahoo.com; elsanowsy@yahoo.com Received August 23, 2007; Revised January 12, 2008 In this paper, we have used the intuitionistic supra gradation of openness that was created from an intuitionistic fuzzy bitopological spaces to introduce and study the concepts of continuity, some kinds of separation axioms and compactness. Keywords: Intuitionistic supra gradation of openness, IF P -continuous mapping, IF P -separation axioms, IF P -compact. 1 Introduction and Preliminaries Kubiak [10] and Šostak [15] introduced the fundamental concept of a fuzzy topological structure, as an extension of both crisp topology and fuzzy topology [3], in the sense that not only the objects are fuzzified, but also the axiomatics. In [16,17] Šostak gave some rules and showed how such an extension can be realized. Chattopadhyay et al. [4] have redefined the same concept under the name gradation of openness. A general approach to the study of topological type structures on fuzzy powersets was developed in [7-11]. As a generalization of fuzzy sets, the notion of intuitionistic fuzzy sets was introduced by Atanassov [2]. By using intuitionistic fuzzy sets, Çoker and his colleague [5,6] defined the topology of intuitionistic fuzzy sets. Recently, Samanta and Mondal [14] introduced the notion of intuitionistic gradation of openness of fuzzy sets, where to each fuzzy subsets there is a definite grade of openness and there is a grade of nonopenness. Thus, the concept of intuitionistic gradation of openness is a generalization of the concept of gradation of openness and the topology of intuitionistic fuzzy sets. In this paper, we have used the intuitionistic supra gradation of openness that was created from an intuitionistic fuzzy bitopological spaces to introduce and study the concepts of continuity, some kinds of separation axioms and compactness.

292 A. M. Zahran et al. Throughout this paper, let X be a nonempty set, I = [0, 1], I 0 = (0, 1], I 1 = [0, 1). For α I, α(x) = α for each x X. The set of all fuzzy subsets of X are denoted by I X. For x X and t I 0 a fuzzy point is defined by x t (y) = { t, if y = x 0, if y x. x t λ iff t λ(x). We denote a fuzzy set λ which is quasi-coincident with a fuzzy set µ by λqµ, if there exists x X such that λ(x) + µ(x) > 1. Otherwise by λqµ. Definition 1.1. [1,14] An intuitionistic supra gradation of openness (ISGO, for short) on X is an ordered pair (τ, τ ) of mappings from I X to I such that (ISGO1) τ(λ) + τ (λ) 1, λ I X. (ISGO2) τ(0) = τ(1) = 1, τ (0) = τ (1) = 0. (ISGO3) τ( i λ i) i τ(λ i) and τ ( i λ i) i τ (λ i ), λ i I X, i. The triplet (X, τ, τ ) is called an intuitionistic supra fuzzy topological space (isfts, for short). An ISGO (τ, τ ) is called an intuitionistic gradation of openness (IGO, for short) on X iff (IT) τ(λ 1 λ 2 ) τ(λ 1 ) τ(λ 2 ) and τ (λ 1 λ 2 ) τ (λ 1 ) τ (λ 2 ), λ 1, λ 2 I X. The triplet (X, τ, τ ) is called an intuitionistic fuzzy topological space (ifts, for short). τ and τ may be interpreted as gradation of opennes and gradation of nonopenness, respectively. The (X, (τ, τ ), (ν, ν )) is called an intuitionistic fuzzy bitopological space (ifbts, for short) where (τ, τ ) and (ν, ν ) are IGO s on X. Definition 1.2. [1] A map C : I X I 0 I 1 I X is called an intuitionistic supra fuzzy closure operator on X if for λ, µ I X and r I 0, s I 1, it satisfies the following conditions: (C1) C(0, r, s) = 0. (C2) λ C(λ, r, s). (C3) C(λ, r, s) C(µ, r, s) C(λ µ, r, s). (C4) C(λ, r 1, s 1 ) C(λ, r 1, s 2 ) if r 1 r 2 and s 1 s 2. (C5) C(C(λ, r, s), r, s) = C(λ, r, s). The pair (X, C) is called an intuitionistic supra fuzzy closure space. The intuitionistic supra fuzzy closure space (X, C) is called the intuitionistic fuzzy closure space iff (C) C(λ, r, s) C(µ, r, s) = C(λ µ, r, s). Theorem 1.1. [1] Let (X, τ, τ ) be an isfts. Then λ I X, r I 0, s I 1 we define an operator C τ,τ : I X I 0 I 1 I X as follows: C τ,τ (λ, r, s) = {µ I X : λ µ, τ(1 µ) r, τ (1 µ) s}.

Intuitionistic Supra Gradation of Openness 293 Then (X, C τ,τ ) is an intuitionistic supra fuzzy closure space. The mapping I τ,τ : I X I 0 I 1 I X defined by I τ,τ (λ, r, s) = {µ I X : µ λ, τ(µ) r, τ (µ) s} is an intuitionistic supra fuzzy interior space. And I τ,τ (1 λ, r, s) = 1 C τ,τ (λ, r, s). Theorem 1.2. [1] Let (X, C) be an intuitionistic (intuitionistic supra) fuzzy closure space. Define the mappings τ c, τ c : I X I on X by τ c (λ) = {r I 0 : C(1 λ, r, s) = 1 λ}, τ c (λ) = {s I 1 : C(1 λ, r, s) = 1 λ}. Then, (1) (τ c, τ c ) is an IGO s (ISGO s) on X, (2) C τc,τ C C. Theorem 1.3. [1] Let (X, (τ 1, τ 1 ), (τ 2, τ 2 )) be an isfbts. We define the mappings C 12, I 12 : I X I 0 I 1 I X as follows: C 12 (λ, r, s) = C τ1,τ1 (λ, r, s) C τ 2,τ2 (λ, r, s), I 12 (λ, r, s) = I τ1,τ1 (λ, r, s) I τ 2,τ2 (λ, r, s), for all λ I X, r I 0, s I 1. Then, (1) (X, C 12 ) is an intuitionistic supra fuzzy closure space, (2) I 12 (1 λ, r, s) = 1 C 12 (λ, r, s). Corollary 1.1. [1] Let (X, C 12 ) be an intuitionistic supra fuzzy closure space. Then, the mappings τ C12, τc 12 : I X I on X defined by τ C12 (λ) = {r I 0 : C 12 (1 λ, r, s) = 1 λ} and τ C 12 (λ) = {s I 1 : C 12 (1 λ, r, s) = 1 λ} is an ISGO s on X. Theorem 1.4. [1] Let (X, (τ 1, τ 1 ), (τ 2, τ 2 )) be an ifbts. Let (X, C 12 ) be an intuitionistic supra fuzzy closure space. Define the mappings τ su, τ su : I X I on X by τ su (λ) = {τ 1 (λ 1 ) τ 2 (λ 2 ) : λ = λ 1 λ 2 }, τ su(λ) = {τ 1 (λ 1 ) τ 2 (λ 2 ) : λ = λ 1 λ 2 }, where and are taken over all families {λ 1, λ 2 : λ = λ 1 λ 2 }. Then, (1) (τ su, τ su) = (τ c12, τ c 12 ) is the coarsest ISGO on X which is finer than both of (τ 1, τ 1 ) and (τ 2, τ 2 ). (2) C 12 = C τsu,τ su = C τ c12,τ c 12.

294 A. M. Zahran et al. Definition 1.3. [13, 14] Let f : (X, (τ 1, τ1 ), (τ 2, τ2 )) (Y, (ν 1, ν1), (ν 2, ν2)) be a mapping. Then f is called (1) IF P -continuous iff τ i (f 1 (µ)) ν i (µ) and τi (f 1 (µ)) νi (µ) µ IY, i = 1, 2; (2) IF P -open iff τ i (λ) ν i (f(λ)) and τi (λ) ν i (f(λ)) λ IX, i = 1, 2; (3) IF P -closed iff τ i (1 λ) ν i (1 f(λ)) and τi (1 λ) ν i (1 f(λ)) λ I X, i = 1, 2; (4) IF P -weakly open iff τ i (λ) r and τi (λ) s = ν i(f(λ)) r and νi (f(λ)) s λ I X, i = 1, 2; (5) IF P -weakly closed iff τ i (1 λ) r and τi (1 λ) s = ν i(1 f(λ)) r and νi (1 f(λ)) s λ IX, i = 1, 2. 2 IF P -Continuous Mapping Definition 2.1. Let f : (X, (τ 1, τ 1 ), (τ 2, τ 2 )) (Y, (ν 1, ν 1), (ν 2, ν 2)) be a mapping. Then f is called IF P -continuous (resp. IF P -open, IF P -closed) iff f : (X, τ su, τ su) (Y, ν su, ν su) is IF -continuous (resp. IF -open, IF -closed). Theorem 2.1. Every IF P -continuous (resp. IF P -open, IF P -closed) is IF P - continuous (resp. IF P -open, IF P -closed). Proof. Let f : (X, (τ 1, τ 1 ), (τ 2, τ 2 )) (Y, (ν 1, ν 1 ), (ν 2, ν 2 )) be an IF P -continuous mapping and (X, τ su, τ su), (Y, ν su, ν su) their associated isfts. Suppose that there exists µ I Y and s 0 I 1 such that τ su(f 1 (µ)) s 0 ν su(µ). There exist µ 1, µ 2 I Y with µ = µ 1 µ 2 such that ν su(µ) = ν 1(µ 1 ) ν 2(µ 2 ) s 0. Then ν 1(µ 1 ) s 0 and ν 2 (µ 2 ) s 0. By IF P -continuity, we have τ 1 (f 1 (µ 1 )) ν 1(µ 1 ) s 0 and τ 2 (f 1 (µ 2 )) ν 2 (µ 2 ) s 0. This implies that τ 1 (f 1 (µ 1 )) τ 2 (f 1 (µ 2 )) s 0, and so τ su(f 1 (µ)) s 0. It is contradiction. Hence τ su(f 1 (µ)) ν su(µ), µ I Y. By the same way, we can prove τ su (f 1 (µ)) ν su (µ), µ I Y. So, f is IF P - continuous. The other parts can be proved in a similar manner. Example 2.1. Let X = {a, b, c}. Define ρ 1, ρ 2, µ 1, µ 2 I X as follows ρ 1 (a) = 0.3, ρ 1 (b) = 0.5, ρ 1 (c) = 0.4, ρ 2 (a) = 0.2, ρ 2 (b) = 0.3, ρ 2 (c) = 0.5, µ 1 (a) = 0.3, µ 1 (b) = 0.5, µ 1 (c) = 0.2, µ 2 (a) = 0.5, µ 2 (b) = 0.4, µ 2 (c) = 0.3.

Intuitionistic Supra Gradation of Openness 295 We define τ 1, τ 1, τ 2, τ 2, ν 1, ν 1, ν 2, ν 2 : I X I as follows τ 1 (ρ) = τ 2 (ρ) = ν 1 (µ) = ν 2 (µ) = 1 if ρ = 0, 1 0.5 if ρ = ρ 1 1 if ρ = 0, 1 0.6 if ρ = ρ 2 1 if µ = 0, 1 0.5 if µ = µ 1 1 if µ = 0, 1 0.4 if µ = µ 2 τ1 (ρ) = τ2 (ρ) = ν1 (ρ) = ν2 (ρ) = 0 if ρ = 0, 1 0.4 if ρ = ρ 1 0 if ρ = 0, 1 0.3 if ρ = ρ 2 0 if µ = 0, 1 0.4 if µ = µ 1 0 if µ = 0, 1 0.5 if µ = µ 2 1 otherwise. The mapping f : (X, (τ 1, τ 1 ), (τ 2, τ 2 )) (X, (ν 1, ν 1), (ν 2, ν 2)) defined by f(a) = c, f(b) = a, f(c) = b, is IF P -continuous but not IF P -continuous. Theorem 2.2. Let f : (X, (τ 1, τ 1 ), (τ 2, τ 2 )) (Y, (ν 1, ν 1), (ν 2, ν 2)) be a mapping. Then the following statements are equivalent: λ I X, µ I Y, r I 0, s I 1 (1) f is IF P -continuous. (2) τ su (1 f 1 (µ)) ν su (1 µ) and τ su(1 f 1 (µ)) ν su(1 µ). (3) f(c 12 (λ, r, s)) C 12 (f(λ), r, s). (4) C 12 (f 1 (µ), r, s) f 1 (C 12 (µ, r, s)). (5) f 1 (I 12 (µ, r, s)) I 12 (f 1 (µ), r, s). Proof. (1) (2) is Obvious. (2) (3): For each λ I X, r I 0, s I 1, we have f 1 (C 12 (f(λ), r, s)) = f 1 (C νsu,νsu (f(λ), r, s)) = f 1 [ {η I Y : f(λ) η, ν su (1 η) r, ν su(1 η) s}] {f 1 (η) I X : λ f 1 (η), τ su (1 f 1 (η)) r, τ su(1 f 1 (η)) s} = C τsu,τ su (λ, r, s) = C 12(λ, r, s). Thus f(c 12 (λ, r, s)) C 12 (f(λ), r, s). (3) (4): For each µ I Y, r I 0, s I 1, put λ = f 1 (µ). From (3), we have f(c 12 (f 1 (µ), r, s)) C 12 (f(f 1 (µ)), r, s) C 12 (µ, r, s),

296 A. M. Zahran et al. which implies that C 12 (f 1 (µ), r, s) f 1 (f(c 12 (f 1 (µ), r, s))) f 1 (C 12 (µ, r, s)). (4) (5): For each µ I Y, r I 0, s I 1, we have C 12 (f 1 (1 µ), r, s)) f 1 (C 12 (1 µ, r, s)), which implies that 1 f 1 (C 12 (1 µ, r, s)) 1 C 12 (f 1 (1 µ), r, s), f 1 [1 C 12 (1 µ, r, s)] 1 C 12 (f 1 (1 µ), r, s). By Theorem 1.3 (2), we have f 1 (I 12 (1 µ, r, s)) I 12 (1 f 1 (1 µ), r, s) = I 12 (f 1 (µ), r, s). (5) (1): Suppose that there exists µ I Y, r I, s I 1 such that τ su(f 1 (µ)) > s ν su(µ) and τ su (f 1 (µ)) < r ν su (µ). Then, there exist µ 1, µ 2 I Y such that ν su(µ) = ν 1(µ 1 ) ν 2(µ 2 ), ν su (µ) = ν 1 (µ 1 ) ν 2 (µ 2 ), and µ = µ 1 µ 2. This implies that ν 1(µ 1 ) s and ν 2 (µ 2 ) s. Also, ν 1 (µ 1 ) r and ν 2 (µ 2 ) r, then, I ν1,ν 1 (µ 1, r, s) = µ 1 and I ν2,ν 2 (µ 2, r, s) = µ 2. From Theorem 1.3, we have I 12 (µ, r, s) = I ν1,ν 1 (µ 1, r, s) I ν2,ν 2 (µ 2, r, s) = µ 1 µ 2 = µ. By (5), we have f 1 (µ) = I 12 (f 1 (µ), r, s) = I τsu,τ su (f 1 (µ), r, s). This implies that τ su(f 1 (µ)) s and τ su (f 1 (µ)) r, which is a contradiction. So, τ su(f 1 (µ)) ν su(µ) and τ su (f 1 (µ)) ν su (µ) µ I Y. Hence, f : (X, (τ 1, τ 1 ), (τ 2, τ 2 )) (Y, (ν 1, ν 1), (ν 2, ν 2)) is IF P -continuous. Theorem 2.3. Let f : (X, (τ 1, τ 1 ), (τ 2, τ 2 )) (Y, (ν 1, ν 1), (ν 2, ν 2)) be a mapping. Then the following statements are equivalent: λ I X, µ I Y, r I 0, s I 1 (1) f is IF P -weakly open. (2) f(i 12 (λ, r, s)) I 12 (f(λ), r, s). (3) I 12 (f 1 (µ), r, s) f 1 (I 12 (µ, r, s)).

Intuitionistic Supra Gradation of Openness 297 Proof. (1) (2): For each λ I X and r I 0, s I 1, Since I 12 (λ, r, s) = I τsu,τsu (λ, r, s) λ, we have f(i τsu,τsu (λ, r, s)) f(λ). Also, τ su (I τsu,τsu (λ, r, s)) r and τ su(i τsu,τsu (λ, r, s) s. By (1), ν su (f(i τsu,τsu (λ, r, s))) r and ν su(f(i τsu,τsu (λ, r, s))) s. Hence f(i 12 (λ, r, s)) I 12 (f(λ), r, s). (2) (3): For each µ I Y, r I 0, s I 1, put λ = f 1 (µ). From (2), we have f(i 12 (f 1 (µ), r, s)) I 12 (f(f 1 (µ)), r, s) I 12 (µ, r, s), which implies that I 12 (f 1 (µ), r, s) f 1 (f(i 12 (f 1 (µ), r, s))) f 1 (I 12 (µ, r, s)). (3) (1): For each λ I X with τ su (λ) r, τ su(λ) s implies I 12 (λ, r, s) = λ. Put µ = f(λ), by (3), we have I 12 (λ, r, s) I 12 (f 1 (f(λ)), r, s) f 1 (I 12 (f(λ), r, s)), which implies that λ f 1 (I 12 (f(λ), r, s)) and so f(λ) I 12 (f(λ), r, s). Then ν su (f(λ)) r and ν su(f(λ)) s. Hence, f : (X, (τ 1, τ 1 ), (τ 2, τ 2 ) (Y, (ν 1, ν 1), (ν 2, ν 2)) is IF P -weakly open. Theorem 2.4. Let f : (X, (τ 1, τ 1 ), (τ 2, τ 2 )) (Y, (ν 1, ν 1), (ν 2, ν 2)) be a mapping. Then the following statements are equivalent: (1) f is IF P -weakly closed. (2) C 12 (f(λ), r, s) f(c 12 (λ, r, s)), λ I X, r I 0, s I 1. Theorem 2.5. Let f : (X, (τ 1, τ 1 ), (τ 2, τ 2 ) (Y, (ν 1, ν 1), (ν 2, ν 2)) be a bijective mapping. Then the following statements are equivalent: (1) f is IF P -weakly closed. (2) f 1 (C 12 (µ, r, s)) C 12 (f 1 (µ), r, s), µ I Y, r I 0, s I 1.

298 A. M. Zahran et al. Proof. (1) (2): Put λ = f 1 (µ), from Theorem 2.4(2) C 12 (f(f 1 (µ)), r, s) C 12 (µ, r, s) f(c 12 (f 1 (µ), r, s)). Also, since f is onto, we have f 1 (C 12 (µ, r, s)) f 1 (f(c 12 (f 1 (µ), r, s))) = C 12 (f 1 (µ), r, s). (2) (1): Put µ = f(λ). Since f is injective, f 1 (C 12 (f(λ), r, s)) C 12 (f 1 (f(λ)), r, s) = C 12 (λ, r, s). Since f is onto, C 12 (f(λ), r, s) f(c 12 (λ, r, s)). 3 Some Types of Separation Axioms Definition 3.1. For i, j {1, 2}, i j, an ifbts (X, (τ 1, τ1 ), (τ 2, τ2 )) is called (1) IF P R 0 iff x t qc τi,τi (y m, r, s) implies that y m qc τj,τj (x t, r, s) for any x t y m. (2) IF P R 1 iff x t qc τi,τi (y m, r, s) implies that there exist λ, µ I X with τ i (λ) r, τi (λ) s and τ j(µ) r, τj (µ) s such that x t λ, y m µ and λ q µ. (3) IF P R 2 iff x t q ρ = C τi,τi (ρ, r, s) implies that there exist λ, µ IX with τ i (λ) r, τi (λ) s and τ j(µ) r, τj (µ) s such that x t λ, ρ µ and λ qµ. (4) IF P R 3 iff η = C τi,τi (η, r, s) qρ = C τ j,τj (ρ, r, s) implies that there exist λ, µ I X with τ i (λ) r, τi (λ) s and τ j(µ) r, τj (µ) s such that η λ, ρ µ and λ q µ. (5) IF P T 0 iff x t q y m implies that there exist λ I X such that τ i (λ) r, τi (λ) s and x t λ, y m q µ or y m λ, x t q µ. (6) IF P T 1 iff x t q y m implies that there exist λ I X such that for i = 1 or 2 τ i (λ) r, τi (λ) s, x t λ and y m q λ. (7) IF P T 2 iff x t q y m implies that there exist λ, µ I X with τ i (λ) r, τi (λ) s and τ j (µ) r, τj (µ) s such that x t λ, y m µ and λ q µ. (8) IF P T 2 1 iff x t q y 2 m implies that there exist λ, µ I X with τ i (λ) r, τi (λ) s and τ j (µ) r, τj (µ) s such that x t λ, y m µ and C τj,τj (λ, r, s) q C τ i,τi (µ, r, s). (9) IF P T 3 iff it is IF P R 2 and IF P T 1. (10) IF P T 4 iff it is IF P R 3 and IF P T 1. (11) IF P R i iff its associated isfts (X, τ su, τsu) is IF R i, i = 0, 1, 2. (12) IF P T i iff its associated isfts (X, τ su, τsu) is IF T i, i = 0, 1, 2, 2 1 2, 3, 4. In this definition if i = j we have the definition of IF R 0, IF R 1, IF R 2, IF R 3, IF T 0, IF T 1, IF T 2, IF T 2 1, IF T 3 and IF T 2 4, respectively.

Intuitionistic Supra Gradation of Openness 299 Theorem 3.1. Let (X, (τ 1, τ 1 ), (τ 2, τ 2 )) be an ifbts. Then we have (1) IF P R i IF P R i, i = 0, 1, 2, 3. (2) IF P T i IF P T i, i = 0, 1, 2, 2 1 2, 3. (3) IF P T i IF P T i, i = 0, 1. (4) IF P R 2 IF P R 1 IF P R 0. (5) IF P T 4 IF P T 3 IF P T 2 1 2 IF P T 2 IF P T 1 IF P T 0. Proof. (1) Let (X, (τ 1, τ1 ), (τ 2, τ2 )) be an IF P R 0 and let x t qc τsu,τsu (y m, r, s). From Theorem 1.4(2), we have x t qc 12 (y m, r, s). Also, by Theorem 1.3, we have x t q[c τ1,τ1 (y m, r, s) C τ2,τ2 (y m, r, s)]. Then, x t 1 [C τ1,τ1 (y m, r, s) C τ2,τ2 (y m, r, s)] = [1 C τ1,τ1 (y m, r, s)] [1 C τ2,τ2 (y m, r, s)], this implies that x t 1 C τ1,τ1 (y m, r, s) or x t 1 C τ2,τ2 (y m, r, s). Therefore, x t qc τ1,τ1 (y m, r, s) or x t qc τ2,τ2 (y m, r, s). Since (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P R 0, we have y m qc τ1,τ1 (x t, r, s) or y m qc τ2,τ2 (x t, r, s) this implies that y m q[c τ1,τ1 (x t, r, s) C τ2,τ2 (x t, r, s)] = C 12 (x t, r, s) = C τsu,τsu (x t, r, s), so, (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P R 0. (2) Let (X, (τ 1, τ1 ), (τ 2, τ2 )) be an IF P T 2 1 and x t q y 2 m. Then there exist λ, µ I X with τ i (λ) r, τi (λ) s and τ j(µ) r, τj (µ) s for i, j {1, 2}, i j such that x t λ, y m µ and C τj,τj (λ, r, s)qc τ i,τi (µ, r, s). Since C τ su,τsu C τ i,τi for i = 1, 2 we have, C τsu,τsu (λ, r, s)q C τ su,τsu (µ, r, s). Then (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P T 2 1. 2 (3) Let (X, (τ 1, τ1 ), (τ 2, τ2 )) be an IF P T 1 and x t qy m. Then there exists λ I X such that x t λ, τ su (λ) r, τsu(λ) s and y m qλ. Since, τ su (λ) r, τsu(λ) s there exist λ 1, λ 2 I X such that τ su (λ) = τ 1 (λ 1 ) τ 2 (λ 2 ), τsu(λ) = τ1 (λ 1 ) τ2 (λ 2 ) and λ = λ 1 λ 2, then τ 1 (λ 1 ) r, τ 2 (λ 2 ) r and τ1 (λ 1 ) s, τ2 (λ 2 ) s. And x t λ implies that x t λ 1 or x t λ 2. Also, y m q λ implies that y m q λ 1 and y m q λ 2. Thus (x t λ 1, τ 1 (λ) r, τ1 (λ) s and y m q λ 1 ) or (x t λ 2, τ 2 (λ) r, τ2 (λ) s and y m q λ 2 ). Hence, (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P T 1. (4) and (5) obvious from the definition. Other parts are similarly proved. Lemma 3.1. Let (X, (τ 1, τ 1 ), (τ 2, τ 2 )) be an ifbts. Then (1) If (X, τ 1, τ 1 ) or (X, τ 2, τ 2 ) is IF T i, then (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P T i, i = 0, 1, 2, 2.5, 3. (2) If (X, τ 1, τ 1 ) or (X, τ 2, τ 2 )) is IF R i, then (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P R i, i = 0, 1, 2. Proof. (2) Let (X, τ 1, τ 1 ) or (X, τ 2, τ 2 ) be an IF R 0. For any two fuzzy points x t y m such that x t q C τsu,τ su (y m, r, s) this implies that x t q [C τ1,τ 1 (y m, r, s) C τ2,τ 2 (y m, r, s)] implies x t q C τ1,τ 1 (y m, r, s) or x t q C τ2,τ 2 (y m, r, s). Then y m q C τ1,τ 1 (x t, r, s) or y m q C τ2,τ 2 (x t, r, s) this implies that y m q [C τ1,τ 1 (x t, r, s) C τ2,τ 2 (x t, r, s)] = C 12 (x t, r, s) = C τsu,τ su (x t, r, s). This implies that (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P R 0.

300 A. M. Zahran et al. Example 3.1. Let X = {a, b}. Define τ i, τ i τ 1 (λ) = : I X I, i {1, 2, 3,..., 12} as follows: 1 if λ = 0, 1 0.5 if λ {a α b 0.5, a 0.5 b α }, α (0, 1) {0.5} 0.5 if λ = α, α (0, 1) τ1 (λ) = 0 if λ = 0, 1 0.5 if λ {a α b 0.5, a 0.5 b α }, α (0, 1) {0.5} 0.5 if λ = α, α (0, 1) 1 if λ = 0, 1 τ 2 (λ) = 0.5 if λ = 0.4 0 if λ = 0, 1 τ2 (λ) = 0.5 if λ = 0.4, 0.5 τ 3 (λ) = 1 if λ = 0, 1 0.5 if 0 λ < 0.5 0.4 if 0.5 < λ 1 τ3 (λ) = 0 if λ = 0, 1 0.5 if 0 λ < 0.5 0.6 if 0.5 < λ 1 0.6 if λ = 0.5 1 if λ = 0, 1 τ 4 (λ) = 0.4 if λ = 0.5 0 if λ = 0, 1 τ4 (λ) = 0.6 if λ = 0.5 τ 5 (λ) = 1 if λ = 0, 1 0.5 if λ {a 1, b 1, a 0.4, b 0.4 } 0.6 if λ {0.4, a 0.4 b 1, a 1 b 0.4 } τ5 (λ) = 0 if λ = 0, 1 0.5 if λ {a 1, b 1, a 0.4, b 0.4, a 0.6, b 0.6, a 0.4 b 0.6, a 0.6 b 0.4 } 0.4 if λ {0.4, 0.6, a 0.4 b 1, a 1 b 0.4, a 0.6 b 1, a 1 b 0.6 }

Intuitionistic Supra Gradation of Openness 301 1 if λ = 0, 1 τ 6 (λ) = 0.6 if λ = 0.7 τ6 (λ) = 0 if λ = 0, 1 0.4 if λ = 0.7 0.6 if λ = 0.3 τ 7 (λ) = τ7 (λ) = 1 if λ = 0, 1 0.5 if λ {a α, b α }, α (0, 1) 0.6 if λ = α, α (0, 1) 0 if λ = 0, 1 0.5 if λ {a α, b α, a α b 1, a 1 b α }, α (0, 1) 0.4 if λ = α, α (0, 1) 1 if λ = 0, 1 τ 8 (λ) = 0.5 if λ = 0.6 1 if λ = 0, 1 τ 9 (λ) = 0.5 if 0 λ < 1 1 if λ = 0, 1 τ 10 (λ) = 0.4 if 0.5 < λ < 1 τ8 (λ) = 0 if λ = 0, 1 0.5 if λ = 0.6 0.6 if λ = 0.4 0 if λ = 0, 1 τ9 (λ) = 0.5 if 0 λ < 1 0 if λ = 0, 1 τ10(λ) = 0.6 if 0.5 < λ < 1 1 if λ = 0, 1 τ 11 (λ) = 0.5 if λ {α, a α b 1, a 1 b α }, α (0, 1) τ11(λ) = 0 if λ = 0, 1 0.5 if λ {α, 1}, {1, α}, α (0, 1) 0.4 if λ = α, α (0, 1)

302 A. M. Zahran et al. 1 if λ = 0, 1 τ 12 (λ) = 0.5 if λ = 0.3 τ12(λ) = 0 if λ = 0, 1 0.5 if λ = 0.3 0.6 if λ = 0.4 1 otherwise. (1) For 0 < r 0.5, 0.5 s < 1, (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P R 1, but it is neither IF P R 1 nor IF P R 0. (2) For 0 < r 0.4, 0.6 s < 1, (X, (τ 3, τ3 ), (τ 4, τ4 )) is IF P R 2, but it is not IF P R 2. (3) For 0 < r 0.4, 0.6 s < 1, (X, (τ 5, τ5 ), (τ 6, τ6 )) is IF P T 2, but it is not IF P T 2. (4) For 0 < r 0.4, 0.6 s < 1, (X, (τ 7, τ7 ), (τ 8, τ8 )) is IF P T 2 1, but it is not 2 IF P T 2 1. 2 (5) For 0 < r 0.4, 0.6 s < 1, (X, (τ 9, τ9 ), (τ 10, τ10)) is IF P T 3, but it is not IF P T 3. (6) For 0 < r 0.4, 0.6 s < 1, (X, (τ 11, τ11), (τ 12, τ12)) is IF P R 0, but it is not IF P R 1. Lemma 3.2. [12] Let (X, (τ 1, τ 1 ), (τ 2, τ 2 )) be an ifbts. For r I 0, s I 1, we have (1) For λ I X with τ su (λ) r, τ su(λ) s, λqµ iff λqc 12 (µ, r, s), µ I X. (2) x t qc 12 (λ, r, s) iff λqµ for all µ I X with τ su (µ) r, τ su(µ) s and x t µ. Theorem 3.2. Let (X, (τ 1, τ1 ), (τ 2, τ2 )) be an ifbts. Then, λ I X, r I 0, s I 1, the following statements are equivalent: (1) (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P R 0. (2) C 12 (x t, r, s) λ with τ su (λ) r, τsu(λ) s, x t λ. (3) If x t q λ = C τsu,τsu (λ, r, s), there exists µ IX with τ su (µ) r, τsu(µ) s such that x t q µ and λ µ. (4) If x t q λ = C τsu,τsu (λ, r, s) then, C τ su,τsu (x t, r, s) q λ = C τsu,τsu (λ, r, s). Proof. (1) (2): Let y m q C 12 (x t, r, s). By Theorem 1.3, we have y m q C τsu,τsu (x t, r, s). Using (1), we obtain x t q C τsu,τsu (y m, r, s), i.e. x t q C 12 (y m, r, s). Using Lemma 3.2(2), we find that y m q µ µ I X with τ su (µ) r, τsu(µ) s and x t µ. Then, we have C 12 (x t, r, s) µ. (2) (1): If y m q C τsu,τsu (x t, r, s), we have y m 1 C τsu,τsu (x t, r, s). By (2) and the fact τ su (1 C τsu,τsu (x t, r, s)) r, τsu(1 C τsu,τsu (x t, r, s)) s, we get C 12 (y m, r, s) 1 C τsu,τ su (x t, r, s) 1 x t. Thus, x t q C 12 (y m, r, s) = C τsu,τ su (y m, r, s). Hence, (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P R 0.

Intuitionistic Supra Gradation of Openness 303 (1) (3): Let x t q λ = C τsu,τsu (λ, r, s). Since C τ su,τsu (y m, r, s) C τsu,τsu (λ, r, s), y m λ, we have x t q C τsu,τsu (y m, r, s). By (1), we have y m q C τsu,τsu (x t, r, s). Using Lemma 3.2(2), y m q C τsu,τsu (x t, r, s), there exists η I X such that x t q η, τ su (η) r, τsu(η) s and y m η. Let µ = y m λ {η : x tqη, y m η}. From the definition of ISGO, we have τ su (µ) r, τsu(µ) s. Then, x t q µ, λ µ, τ su (µ) r, τsu(µ) s. (3) (4): Let x t q λ = C τsu,τ su (λ, r, s). By (3), there exists µ IX such that x t q µ, λ µ with τ su (µ) r, τ su(µ) s. Since x t q µ, it follows that x t 1 µ, which implies that C τsu,τsu (x t, r, s) C τsu,τsu (1 µ, r, s) = 1 µ 1 λ. Hence, C τsu,τsu (x t, r, s) q λ = C τsu,τsu (λ, r, s). (4) (1): Let x t q C τsu,τsu (y m, r, s). By (4), we have C τsu,τsu (x t, r, s) q C τsu,τsu (y m, r, s) and since y m C τsu,τsu (y m, r, s), y m q C τsu,τsu (x t, r, s). Hence (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P R 0. Theorem 3.3. An ifbts (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is an IF P R 1 iff x t q C 12 (y m, r, s), there exist λ i I X for i = 1, 2 such that (1 λ 1 ) q (1 λ 2 ) and C 12 (x t, r, s) λ 2, C 12 (y m, r, s) λ 1, τ su (λ i ) r, τ su(λ i ) s. Proof. ( ) Let x t q C 12 (y m, r, s) = C τsu,τ su (y m, r, s). By IF P R 1, there exist λ i I X for i = 1, 2 with λ 1 q λ 2 such that x t λ 1, y m λ 2 and τ su (λ i ) r, τ su(λ i ) s. Since (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is an IF P R 1 implies that (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is an IF P R 0, by Theorem 3.2(4), x t q (1 λ 1 ) with τ su (λ 1 ) r, τ su(λ 1 ) s implies C 12 (x t, r, s) 1 λ 1 λ 2. Similarly, C 12 (y m, r, s) 1 λ 2 λ 1. ( ) Straightforward. Theorem 3.4. Let (X, (τ 1, τ 1 ), (τ 2, τ 2 )) be an ifbts. Then, r I 0, s I 1, the following statements are equivalent: (1) (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P R 2. (2) If x t λ with τ su (λ) r, τ su(λ) s, there exist µ 1 I X with τ su (µ 1 ) r, τ su(µ 1 ) s such that x t µ 1 C τsu,τ su (µ 1, r, s) λ. (3) If x t q λ with τ su (1 λ) r, τ su(1 λ) s, there exists µ i I X with τ su (µ i ) r, τ su(µ i ) s, i = 1, 2 such that x t µ 1, λ µ 2 and C τsu,τ su (µ 1, r, s) q C τsu,τ su (µ 2, r, s).

304 A. M. Zahran et al. Proof. (1) (2): Let x t λ with τ su (λ) r, τ su(λ) s. Then x t q (1 λ). Since (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P R 2, there exists µ i I X with τ su (µ i ) r, τ su(µ i ) s for i = 1, 2 such that x t µ 1, 1 λ µ 2 and µ 1 q µ 2, which implies x t µ 1 1 µ 2 λ. (2) (3): Let x t q λ with τ su (1 λ) r, τ su(1 λ) s. Then x t 1 λ. By (2), there exists µ I X with τ su (µ) r, τ su(µ) s such that x t µ C τsu,τsu (µ, r, s) 1 λ. Since τ su (µ) r, τ su(µ) s and x t µ. Again by (2), there exists µ 1 I X with τ su (µ 1 ) r, τ su(µ 1 ) s such that which implies that x t µ 1 C τsu,τsu (µ 1, r, s) µ C τsu,τsu (µ, r, s) 1 λ, λ (1 C τsu,τsu (µ, r, s)) = I τ su,τsu (1 µ, r, s) 1 µ. Put µ 2 = I τsu,τsu (1 µ, r, s). Then, C τsu,τ su (µ 2, r, s) 1 µ 1 C τsu,τ su (µ 1, r, s), that is, C τsu,τ su (µ 1, r, s) q C τsu,τ su (µ 2, r, s). (3) (1): It is trivial. 4 IF P Compactness Definition 4.1. Let (X, τ, τ ) be an ifts and µ I X, r I 0, s I 1. Then (1) The family {η j : τ(η j ) r, τ (η j ) s, j J} is called (τ, τ )-cover of µ iff for each x t µ there exists j 0 J such that x t η j0. (2) µ is C-set iff every (τ, τ )-cover of µ have a finite subcover. (3) (X, τ, τ ) is IF -compact iff λ I X such that τ(1 λ) r, τ (1 λ) s is C-set. (4) An ifbts (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is called IF P -compact iff its associated isfts (X, τ su, τ su) is IF -compact. Theorem 4.1. Let (X, (τ 1, τ 1 ), (τ 2, τ 2 )) be an ifbts. If (X, τ 1, τ 1 ) or (X, τ 2, τ 2 ) is IF - compact, then (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P -compact. Proof. Suppose that (X, τ 1, τ1 ) is IF -compact, and λ I X such that τ su (1 λ) r, τsu(1 λ) s, r I 0, s I 1 and {η j : τ su (η j ) r, τsu(η j ) s, j J} be (τ su, τsu)-cover of λ. Since τ su (1 λ) r, τsu(1 λ) s, we can write λ = λ 1 λ 2, τ i (1 λ i ) r, τ i (1 λ i ) s, (i = 1, 2).

Intuitionistic Supra Gradation of Openness 305 Then, for every x t λ, there exists η j0 I X with τ su (η j0 ) r, τsu(η j0 ) s such that x t η j0 = η (1) η (2), for some η (i) I X with τ su (η (i) ) r, τsu(η (i) ) s, (i = 1, 2). Then, x t η (1) or x t η (2). Now, the family {η (1) i : τ 1 (η (1) i ) r, τ1 (η (1) i ) s, i } is (τ 1, τ1 )-cover of λ 1 or {η (2) i : τ 2 (η (2) i ) r, τ2 (η (2) i ) s, i } is (τ 2, τ2 )-cover of λ 2. If (X, τ 1, τ1 ) is IF -compact, then λ 1 is C-set i.e., there exists finite subset 0 of such that λ λ 1 i 0 η (1) i. Hence, λ is C-set. Consequently (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P -compact. Similarly, if (X, τ 2, τ2 ) is IF -compact, then (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P -compact. Theorem 4.2. Let (X, (τ 1, τ1 ), (τ 2, τ2 )) be an IF P T 2, x t P t(x), λ, µ I X, r I 0, s I 1. Then (1) If λ is C-set such that x t qλ, then there exist η i I X with τ su (η i ) r, τsu(η i ) s, (i = 1, 2) such that x t η 1, λ η 2 and η 1 q η 2. (2) If λ, µ are C-sets such that λ q µ, then there exist ρ i I X, τ su (ρ i ) r, τsu(ρ i ) s, (i = 1, 2) such that λ ρ 1, µ ρ 2 and ρ 1 q ρ 2. (3) If λ is C-set, then C τsu,τsu (λ, r, s) = λ. Proof. (1): Since x t q λ, then x t q y m y m λ. By IF P T 2 of (X, (τ 1, τ1 ), (τ 2, τ2 )) there exist η 1, υ I X with τ su (η 1 ) r, τsu(η 1 ) s, τ su (υ) r, τsu(υ) s such that x t η 1, y m υ and η 1 q υ. Then the family {υ i : τ su (υ i ) r, τsu(υ i ) s, i } is (τ su, τsu)-cover of λ. Since λ is C-set, there exists a finite subset 0 of 0 such that λ i 0 υ i. Put η 2 = i 0 υ i. Then τ su (η 2 ) = τ su ( υ i ) τ su (υ i ) r, i 0 i 0 τsu(η 2 ) = τsu( υ i ) τsu(υ i ) s. i 0 i 0 Since η 1 q υ i, i 0, then η 1 1 υ i, which implies that η 1 (1 υ i ) = 1 υ i = 1 η 2. i 0 i 0 Then, η 1 q η 2. (2): Let x t µ and λ q µ, then x t q λ. By (1) there exist σ, ρ 2 I X with τ su (σ) r, τsu(σ) s, τ su (ρ 2 ) r, τsu(ρ 2 ) s such that x t σ, λ ρ 2 and σ q ρ 2. Then the family {σ i : τ su (σ i ) r, τsu(σ i ) s, i } is (τ su, τsu)-cover of µ, so there exists a finite subset 0 of such that µ i 0 σ i. Put ρ 1 = i 0 ρ i, then τ su (ρ 1 ) r and τsu(ρ 1 ) s. Since ρ 2 q σ i, i 0 we have ρ 2 q ρ 1. (3): Let x t 1 λ, then x t q λ. Since λ is C-set, then by (2), there exist η 1, η 2 I X with τ su (η i ) r, τsu(η i ) s (i = 1, 2) such that x t η 1, λ η 2 and η 1 q η 2. This implies that x t η 1 1 η 2 1 λ. Thus, 1 λ = {η 1 : x t 1 λ}. So, τ su (1 λ) r, τsu(1 λ) s. Hence, C τsu,τsu (λ, r, s) = λ.

306 A. M. Zahran et al. Theorem 4.3. Let (X, (τ 1, τ 1 ), (τ 2, τ 2 )) be an IF P -compact. Then IF P T 2 IF P T 4. Proof. ( ): Since (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P T 2 it is clear that it is IF P T 1. We only need to prove that (X, (τ 1, τ1 ), (τ 2, τ2 )) is IF P R 3, Let λ 1 = C τsu,τ su (λ 1, r, s)qλ 2 = C τsu,τ su (λ 2, r, s). Then, τ su (1 λ i ) r, τ su(1 λ i ) s, (i = 1, 2). Since (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P -compact, λ 1 and λ 2 are C-sets. Since λ 1 q λ 2, by Theorem 4.2(2), there exist ρ 1, ρ 2 I X, such that λ 2 ρ 2 and ρ 1 q ρ 2. Thus, (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P R 3. Hence, (X, (τ 1, τ 1 ), (τ 2, τ 2 )) is IF P T 4. ( ): See Theorem 3.1(5). Theorem 4.4. Let f : (X, (τ 1, τ 1 ), (τ 2, τ 2 )) (Y, (ν 1, ν 1), (ν 2, ν 2)) be an IF P - continuous and µ I X is C-set. Then f(µ) is C-set in Y. Proof. Let {η i : i J} be (ν su, ν su)-cover of f(µ). Then, f(µ) i J η i, ν su (η i ) r, ν su(η i ) s. By IF P -continuity of f we have Also, τ su (f 1 (η i )) ν su (η i ) r, τ su(f 1 (η i )) ν su(η i ) s. µ f 1 (f(µ)) f 1 ( i J η i ) = i J f 1 (η i ). Then, the family {f 1 (η i ) : i J} is (τ su, τsu)-cover of µ. But µ is C-set, there exist a finite subset J 0 of J such that µ i J 0 f 1 (η i ), which implies that f(µ) f( f 1 (η i )) = f(f 1 (η i )) η i. i J 0 i J 0 i J 0 Hence, f(µ) is C-set in Y. Corollary 4.1. The IF P -continuous image of an IF P -compact is IF P -compact. References [1] S. E. Abbas, Intuitionistic supra fuzzy topological spaces, Chaos, Solitons and Fractals 21 (2004), 1205 1214. [2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87 96. [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182 190. [4] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 ( 1992), 237 242.

Intuitionistic Supra Gradation of Openness 307 [5] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81 98. [6] D. Çoker and M. Demirsi, An introduction to intuitionistic fuzzy topological spaces in Šostak sense, Busefal 67 (1996), 67 76. [7] U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl. 78 (1980), 659 673. [8] U. Höhle and A. Šostak, General theory of fuzzy topological spaces, Fuzzy Sets and Systems 73 (1995), 131 149. [9] U. Höhle and A. Šostak, Axiomatic foundations of fixed-basis fuzzy topology, In: The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Dordrecht, 1999, 3: Chapter 3. [10] T. Kubiak, On Fuzzy Topologies, Ph. D. Thesis, A. Mickiewicz, Poznan, 1985. [11] T. Kubiak and A. Šostak, Lower set-valued fuzzy topologies, Questions Math. 20 (1997), 423 429. [12] A. A. Ramadan, S. E. Abbas and A. A. Abd El-latif, On fuzzy topological spaces in Šostak s sense, Commun. Korean Math. Soc. 21 (2006), 497 514. [13] A. A. Ramadan, Y. C. Kim and S. E. Abbas, Compactness in intuitionistic gradation of openness, The Journal of Fuzzy Mathematics 13 (2005), 581 600. [14] S. K. Samanta and T. K. Mondal, On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002), 323 336. [15] A. P. Šostak, On fuzzy topological structure, Supp. Rend. Circ. Matem. Palerms Ser. II (1985), 89 103. [16] A. P. Šostak, Two decades of fuzzy topology: basic ideas, notion and results, Russ. Math. Serveys 44 (1989), 125 186. [17] A. P. Šostak, Basic structures of fuzzy topology, J. Math. Sci. 78 (1996), 622 701.