A B C DE E AB CDAEF B F B E C F ADBA D D A E C BA B E D B E D C E D F A E

Σχετικά έγγραφα
ABCDA EF A A D A ABCDA CA D ABCDA EF

Evaluation et application de méthodes de criblage in silico

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

! " #! $ %! & & $ &%!

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby


!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

9 1. /001/2 27 /8? /89 16 < / B? > DEE F

Global excess liquidity and asset prices in emerging countries: a pvar approach

Χίος, 4/2/2019. Ως επιλέξιμοι κρίθηκαν: ΕΠΙΛΕΞΙΜΟΙ ΣΥΝΟΛΙΚΗ ΒΑΘΜΟΛΟΓΙΑ Α/Α ΚΩΔΙΚΟΣ ΑΙΤΗΣΗΣ ΕΠΙΛΕΞΙΜΟΤΗΤΑ. Διαθέτει τα απαιτούμενα προσόντα

AE F F E C F E D ABC D

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

Πίνακας ρυθμίσεων στο χώρο εγκατάστασης

!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*

Parts Manual. Trio Mobile Surgery Platform. Model 1033

! "! #" # $ #% !!*$( & +( $#!,-'( . $ ), ( )* / $ 5- (6 7# 8,6 - - /& 4&! '

!"!# ""$ %%"" %$" &" %" "!'! " #$!

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* #-) ''


J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

,,-# $% &.(#./ %0 ) &, ((# ).!#3 8( # #2!*


"#$%%!&' ( *+,%%- !%!%!*&."$%%/-0! !%!%4!*&."$((,%/ !%!%(!*&."$,1,$,%/,!%!%"!*&."$"%%%%!!%!%$!*&."$"(,/$!!%!%2!*&."$",%%%/%0 !%!%!*&.

Παρατηρήσεις στα ϑέµατα

0 1 D5 # 01 &->(!* " #1(?B G 0 "507> 1 GH// 1 #3 9 1 " ## " 5CJ C " 50

HONDA. Έτος κατασκευής

MICROMASTER Vector MIDIMASTER Vector

{ } { / αρτιος 10} ΣΥΝΟΛΑ. N, σύνολο των φυσικών αριθμών, { 1, 2, 3, }

C F E E E F FF E F B F F A EA C AEC

&,'-- #-" > #'$,"/'3&)##3!0'0#!0#/# 0'0';&'"$8 ''#"&$'!&0-##-""#;-# B

]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1

-! " #!$ %& ' %( #! )! ' 2003

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

. visual basic. int sum(int a, int b){ return a+b;} : : :

!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%

! " #$% & '()()*+.,/0.

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

Space weather influences on atmospheric electricity

!"# '1,2-0- +,$%& &-

! " # " $ #% $ "! #&'() '" ( * / ) ",. #

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

Ε.Ο.Αθηνών Λαµίας 97, Τ.Κ ,Ν.Φιλαδέλφεια Τηλ , Fax Θερµοστάτης PJEZSNH000.

Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός =

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

ΕΒ ΟΜΗ ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α JBMO ( ΓΙΑ ΜΑΘΗΤΕΣ ΚΑΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL Fifth Edition

Πανεπιστήμιο Κύπρου Τμήμα Πληροφορικής (Χειμερινό Εξάμηνο 2014) ΕΠΛ 475: Ασφάλεια Δικτύων Η/Υ & Πληροφοριών. Εργαστήριο 5

Development of Novel Synthetic Methods Utilizing Organometallic Reagents and Total Synthesis of Eupomatilone 2

magnétiques par des courants de surface. Application aux noyaux ferrites 2D

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

! " #$ (!$ )* ' & )* # & # & ' +, #

!! "#$%& ! " # $ &%"+,(-. (# / 0 1%23%(2443

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

TeSys contactors a.c. coils for 3-pole contactors LC1-D

cz+d d (ac + cd )z + bc + dd c z + d


Ammonium, nitrate, and nitrite in the oligotrophic ocean: Detection methods and usefulness as tracers

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών

Chương 2: Đại cương về transistor

Clothes without an Emperor: Analysis of the Preferential Tariffs in ASEAN

AB A C DE B FA D A D DB BA BA D ED A AB A AF BD A A A


Microcredit: an answer to the gender problem in funding?

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

!"#$"%$&'(%$ ) * +!,, #'%(((% -.-)+ /,/ # $'( %.$0. % !!1/3$"$&4.$ /,,. % %% 0 !1,,,'($ ) /) +. %, 03 ) /) +. %, %.$0.

# " $! % $ " & "! # '' '!" ' ' ( &! )!! ' ( *+ & '

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016

Pert ( Gent ( CPM. WBS ( CPM ( FBS (

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

Supplementary Information 1.

Εξωτερικό Γινόμενο Διανυσμάτων. Γιώργος Μπαλόγλου

Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1

( 1) R s S. R o. r D + -

!"## $%"&'%()% &#% * &"(!%+"&,&& *- $&#% * %''%"( *./ $%+"#!#%#"()0'& *1 %2%&%&'%",&3 (%# * %3&4%0+&%"0 %+'56789: ** $%#%';+""'%() */

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Phonetic and Phonological Aspects of Civili Vowel Duration: An experimental approach (titre original)

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

! "#$%&'!()'"" %*+,-.+* "(*/0(/*'1 %+%/&2(#+)" 3#(4 0+)(#)/+/" (*2#("5 3#(4 02"' "(/1#'" +) (4' '6+&/(#+) +. 42%&+71#%&+#1" 2)1 8')'(#0 1#$+*%4#"$"

March 14, ( ) March 14, / 52

x y z d e f g h k = 0 a b c d e f g h k

Φροντιστήριο #5 Λυμένες Ασκήσεις σε Σχέσεις 22/3/2018

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

tel , version 1-7 Feb 2013

Στοιχεία Θεωρίας Γλωσσών. (συνέχεια) (συνέχεια) Πέμπτη 27 Οκτωβρίου 2016 Θεόδωρος Τζουραμάνης Επίκουρος Καθηγητής

Διευθύνοντα Μέλη του mathematica.gr

!" #$%&& ' (*)+!+,-./ * (4(#2.6587%5 0D =E FGD H< # $'& & & IJ587K5 PB =EQ?R<>< >BS;'$L :; :; #!$'&

"#! "!$ "#$%#&&' " %&+'(( " " %&)*! ! &'+"!!./! "&+-"!

!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7

Cable Systems - Postive/Negative Seq Impedance

No No No No No.5. No


AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

#$%&'()*+,#//*)'&'#+%#)*0'+)...

Transcript:

A ABCDEE ABCDAEFBFBEC FADBA D EAE EAACDBFB EAACDEEFE DDAEC ED D BAB EDBE B BAE CB DD CCB BFED AFEA DEBFDAD E DBFA BFB DCEDFAE EEFE DEBEAE

A

A B AAABAFDDA DEDEDABDD DADABDABDA DBDBADAEBAA CDEAAADFADDABEBAEE A CDB D F DA ED EDA DADAAADBEDD A A A F EDA DAA D D AAAEABAAADBAAAEDE EDACAEABB CDEAABAAEDADDCA DDDAEEDBADEBDAEAED DEDCDBBDAAEDDABBD A ADABADAAEDEE DAEADDAADA DBAAAADABDADAA EDDAEADADEAAABADCABBA EDD EDADAABBCEBDDADAADA EDADDCDAEEAADBAEDAAEDBDAAB DAEDBDAAEAEDD AADABADDABBDADBCE DEED A

A AA

BCDEAFACA... i ABCDEFEB...iii ABCDEFE... viii FEBD... 1 AEEEBEBFEFEEFEBEEDDED... 5 FF... 7 F... 7 F... 7 DDAABACADA... 8 DDAA... 9 F... 12 DAEBBDDEBB... 12 DAEF... 14 DBEDEADB... 17 ABDEAEDA DABABDCA... 17 DEBDAEBDCABBBDEDAEDA... 19 DEBDAEBDCABBBCADAEBA... 20 AEAECABBCDABDBEDBAEDC... 22 AAAAEAEDEADB... 23 FD... 24 ABCAEAAEDED... 24 ADEA... 24 ADED... 25 AAEDBACDBBDADEDE... 27 ADEACDBEADDEAD... 28 ADEACDBEADDADD EABA... 34 AAA

BCDEAFACA ADDAEAEDECAEDE... 37 ABAEAAEDEAC... 38 F D... 41... 43 AEEEDDEDEFEDBEBFEBEECBEFEBBE FD... 46 FFF... 48 FFE D... 48 AAEDED... 48 FDEAA... 48 DEDABD... 52 DAEDBDDEEA... 54 DEDAB... 57 BDAEDBDDEBDC... 58 DB... 60 DDCABBEBDBBBCAEBDDE D... 60 CBDAEADEAEDEEDBDE A... 61 FEDEEAAEAEBDE DE... 64 AEBACDEDEBDF AD... 67 BDEBDDBDDDAAEEAE... 69 DBAEDAADB... 71 DAEAAAB... 71 AAAEAAEDE... 72 BDAD... 77 DBEEAAEDED... 84 A

BCDEAFACA BDDAEBDBBBCAEDEDDBD ABB... 88 FFD... 90 CDAEDF... 91 DBADAEDDEABADBAA AADABDBDFA... 91 CDAEDDEDAEDDDAE BAEAD... 91 FF... 93... 95 AEEEDBEFEBDEFEDBEEFEBF... 96 FFFF... 97 FFFC... 97 FFF E... 99 AD... 100 AD... 104 FFF... 107 ADBAEDABDDAE... 107 ADBAEDABFEAD... 109 FFF. 114 FFF... 115... 117 AEEEEBDBEEBDBEFEEEFEBFE B... 118 FF... 119 F... 119 F... 120

BCDEAFACA CDADAEDC... 120 CBCAFDA... 121 CAEDFEDCEDBAADA... 123 CAEDF... 124 CAEDCEDEBDAEDF... 128 CADAEBDEBD... 136 CDDDADAEBDAC... 141 FD... 144 CAA... 144 CADBBDDBA... 147 CAAADABBDEBDBDABDAEDBBCAAB B... 150 FB... 153 CDBDCEAA... 153 CDDDADAEDD... 155 CDDBAEDAADBEEA... 159 F... 163... 164... 166... 168 A

A AA

BCDEAFAA ACDDABAFAEF ACDDAADAEF ACDEFDEDDADDAFDBA ADBEFEDBDDA ACEBFFD BDDAABEBDDAEDCDADCBDCABB ACFDADBABAEAE ADDEDB ACDABAEACAEEDEEB ACFDEDA ACDDABDBEFDA BDDBEBDEAE ACDAEDDDAEE ACFACDBEDEAEDBBDEF ACBAEBDADBDDDBDAEBDCABB ACDDAADAEB ACEFDEDBADAAFCDA EDBAEDC ACFDABAAEAAEDEA ACBCAEDEA ACFDEAAEAAEDED AC D FD E AA E DE D EE E A ACDEDDDAD ACDAEDDAEEDDBAEAE DBADAAB ACFFDBEAFEAD ACABDAEBDDBADABDDED ACAAEAEAAED AAA

BCDEAFAA ACDAAEAEAAEBDDCAA DC ACDAAEDEDDEDDEABA AEDEBDCABBDEADBEDBA ACBCAEDEDEDDEABAD FDEAAEEEA ACCDADAEBD ACAAEDEACBAAD ACAAEDEBAADBD ACFDEBDBBBCAEDED ACEEAEEDAEDDEABADE BAF ACDDAAAEDBEBAF ACEECDBDBADAAEEEDC ACDEDABD ACDADEDAAEFEEDCADADABBDB FDBAADBABAA AC EE E D DCAD E BD A D ADA E DDα DAB ACDDAAEEAEDDBD ACDEDAB ACDFEDEDAAEFEEDCADADABBDB FDBAADBABAA ACFACDBEDEABDADAD ACCBDAEADEAECABB ACDEEEDEDBAEDDCADAE DBA ACEAEEAE ACDEBDDBDDDAAEEAEBDE ABDADBBCAABFABD ACFDEDAEAAEDED A

BCDEAFAA ACEDAEAAEDDEABA ACAAADBEBDDADCAEDDEABA EB ACDDAADAEBDEAE ACDDAADAEBDEAE ACDCEAAEDEEAD ACEEEAAEBDCABB ACBDDEDABDEF ACFACDBEDAEF ACABDCA AC DAA E E AD E AA E DE ADB AC DDA BD D E E BCA E DE BD AD ACAEACDAEDDAEDAEAD ACAECAA ACAEEDEACCA ACBABBEBDAEBDCABBAEBDDBEBD ADEBBEE AC FD E BD BB E DE D B AD ACDEABAD ACFDBAADBEDBDDEEDCADA ACEEEABED ACDEABED ACFDBAADBEDBDDEEDCADA ACEEEABED ACDBAEDAEBDEEEDCADA ACEAABDDBAEDAADBEA D

BCDEAFAA ACAEAAD ACBDDDBDBEF ACEEAD ACEEAD ACAEAAEDEABBACDDA ACFDAEBDAC ACDBADAEDDB ACEBDBCAEBF ACADCEAEDEB ACDAABAAEDED ACFDEBDFADDAABAEDB ACBDEFEACCDDA ACDAFEDFDBDEDEEDA CABB ACFDEDCEDEBDAEDF ACDEAABEBDDAEDF ACAAEAADCEDBAADA ACAAEEADCEDBAADA ACAADAEBDDBEBDAD ACFEEAAEDFDDE ACEBDEBDCBBAE DCEDBAADA ACBDE DCEDBAADAEDF ACBDEBDAC ACFDBAADBDBEBDC EDF ACBDEBDDBDEEDEEBDC ACBDEABDAEEBDCEDBBCAABDE ACDDAEBDACEBDA A A

BCDEAFAA ACDDD ACDDADAEBDEDAEDAAEBDA EDBADADADAEDEAEEAAEBDA EDBADA ACDDAEBDDAEAAEAEAAAC ACDAADCAAAADBEBD AC BDA B D BD A E BD A BDCDA E BD D ACAABAEBDEBBE ACACEDFABDABDBDA ACDBDCEEAACEAA ACBDDDBABAA ACAACBAA ACEBDCAABEDD AC D ED AE AA E DD BDD ADAEAAEDDBDD ACDEBEDEDDAEDDBDDD EDEDDAEDDBDD ACAADAEDAEDD ACFDBAEAAEADBDDBAEDAEEAAC ACEAA ACACABBE ACDEDBAEDAEBDDC ACDCAEBDAC AA

A AAA

FACEA F BAA E CA ADB E A DABA B D D DA D BD DA E CA BDBBAEDBDADBDEABDEDA BDCDADAEDBEAECAAC EAADEDABEAEBAE ADDCAAADBBABBBDA BAADDDBBBEDDDCAEADBEDBBABA CDEEADEDECDEE AAEDEDECDEABDABABEDE BEDADEEDABBDDAE DCDEADDBEDEEBABA BEDDADABDCBDC ACAAABDDEEDBADABDABEBADDA CDBBDDEECEBEADDBDADADDBBBE A BB D AED E A DADB DD EDABEADDBBBBCDBDABAA DEDDDBADABADABBAABAADDDBBB ABDBEDDCABBEA D AB BB F ABADA DA E EA B E AEDAEBAEAD ABADABAEEDEAEADCBD ACDABAEDAEEBAEADDBABADAE BBBBDACDDDEAEADEDDAD DBADADEAEBAAEADABABADC EBBAEBDABAADEDABDBCAEBD BCADAEDEBDDED EABEADEEAACDBAC BADAEAEBE BEBDBDAEBDDEEAEADCABBAB

FACEA DABAEFDBBEAABDDAAEDDEAA EAEAEADDAEAE DDAEEABACDADBDEBDEBCAE DE D DA E E A DAA BBA E BACDABAEADDDBBAAEDEBA D AD EAA ADBA E DECAADBADAEDBEDBADADA DBEADADBBBBBCAEDE D D E DD EABA D EB EDACABBDC D D EDA E DD BB D ED BD AEADAEDEACDBCAAB BD A D E BBB BDA EA B AA E A E BB BCA A E DDB DEA DDDDCDDBAEDAADB A E BD E DE A E BCA E DEAABACDABABDAEDA AADAADBAEBDBCAEDE DEDBDABBABAADBAA DEAEADCAD DABDDAEBDBAAEBCABDAEDE DDEDDEABABDAD BADAEBADACDBEAEBD AB AADA E AA AA E EAA E D DABA B DA E BA E B EDA E BD DAEDAEADDEAAEDE EAEACDAEBDBCAEDEDEDB EADABEADADBDDAEBDEDE AEAACAEDEDBEABCAE A E BCA BAA A E BBB BDA DE DBAAEADAEEACB EA B B EA DBADA BADA D A E EA

FACEA E E DA E BD A BD A E AC BCAFDABDEABDAEDD EABABDDBAAAABADBADAADBE EAACDEABDDBAE

A

CAAACACFAFAAFACAAEEAEA FBF C F AEEEBEBFEFEEFEBEEDDED... 5 FF... 7 F... 7 F... 7 DDAABACADA... 8 DDAA... 9 F... 12 DAEBBDDEBB... 12 DAEF... 14 DBEDEADB... 17 ABDEAEDA DABABDCA... 17 DEBDAEBDCABBBDEDAEDA... 19 DEBDAEBDCABBBCADAEBA... 20 EDBDADBDDD... 20 EEDBDBAAEDEAA... 21 AEAECABBCDABDBEDBAEDC... 22 AAAAEAEDEADB... 23 FD... 24 ABCAEAAEDED... 24 ADEA... 24 ADED... 25 AAEDBACDBBDADEDE... 27 ADEACDBEADDEAD... 28 AEDBACDBABDACDBDA... 28

CAAACACFAFAAFACAAEEAEA AEEBADABDDBADADDBADAD DC... 28 ADEACDBEADDADD EABA... 34 ADDAEAEDECAEDE... 37 ABAEAAEDEAC... 38 F D... 41... 43

CAAACACFAFAAFACAAEEAEA F F AEADBDDADEBABB BCAEBBAEADDADADBB DBA DA AADB B DA E AD CABB AB FDDEDDADBBBD AEADDDAADBBEAAB DDAAEDDEAAEAEAEADDAE AEDBDEADDDBBADEACDB EDEDEDBBDEBDEBDEAAE DE DA E E A EA D D BA EBACDA ED BBAE AD A BACDA E EAEADBACDAEAAEDED ADABADBDDBEBBAEAAEDEAC B DBADA ABB AA E BBA E AD DDDEBADADEAAA DBAEDECAADBADAEDB EDBADADA F FBDAEDCABBABBDABB ABAABAEDBAEADDAB ADABDABDEBDBEE DDAADADABADDBDACDB BBDAEFFDA BEEDACABBEDDEAEAABEDA BD BBA DA B F D AEAAB D D

CAAACACFAFAAFACAAEEAEA EFAEAAECA EDDEDCAECABBE AABDCADBDDAEDDBBECA ν D ACDDABAFAEF DACBDEBDDDAABAEFE EAACAEEDA DBDEBDAEBDCABBAABDAEABF BDDBDABDEEDAB CAABADADEBDAEBDCABBABDAE ABFEAADBBDDB D BD ABDA E D A E AD EAA D A EAEDADAEEAEBED DAEDAFDABDDBEDEDBDDBCABADA DBBDBDA 1 I canal C0.( VGS Vth Vcanal ). V 2 = canal

CAAACACFAFAAFACAAEEAEA C 0 Z. µ L n ε. e SiO. ε 2r 0 = SiO 2 o o o o BDCEDDBBCEDDB BDABAEEDC BDDAEEECABB ε SiO 2 r BDEABABDAEBE o ε 0BDFBEEEEBEBEB o esio 2 BFEBBB DAEDEEDAEDBDBAAEDBAEAEBDA EFDDBDBBEAEDDB DDEDBCAEDDAED CADDABDEDDBEDEA EDBDA C 0 2. 2 I canal =.( VGS Vth ) = C0 Vcanal 2 ACDDAADAEF DEFDEDDADDAB BBBDACD

CAAACACFAFAAFACAAEEAEA FBDDDABDCABBBDABD DBBADAEBDDDAEADBDD DBA F F B DDA BDA E CABB ED BD CAFBDDDAEABAEADBFEBDCA EEBABDBEDABBDADBDAECABB DAEEDABABDDADB DDA EABA DA ACAADA B BD A EDACABBDCEBDA FBDDDAEDABBDADBDAEEDA DDADDADBCABEBBDA EFEDDDABBDACDDAED EBBADAEEEABDBADBEE F F F D DDA CABBEDA BADA BB E BD DDA F AE E ν BB AADB DBEBABBEDBDDAEFDBDA BDCEBDCABBDABDDAF ν AC D E F D E DDA DDA FD BAADBEFEDBDDA DBDDEDDDDAAEBEE EBDBEBBAEADA

CAAACACFAFAAFACAAEEAEA FFFBDDDAE FFFBDDDAEA FFBDDDAEABB DBEADDBEBDAEDAB BDACD DDDADEFBDDCDBDAA BDCABBDABDAEBDCABBEDBEAD BADDABFDDAEADA ADBDAEBDDEDBFDDC DBEADAEBDAFBDDCADADA BDAEBDCABBEDBDDABBBDEABDDC AEDBBDDABBBDEADADABDAEBD CABBBDDBADBDACEBEBDA EBDAEBDCABB

CAAACACFAFAAFACAAEEAEA F D ACEBFFDB DDAABEBDDAEDCDADCBDCABB F CDBBBDABDDEBBEA EADBABDACBAADBE DEBACDAEDBACDBEDECDBAA BCAABECDDBDDDBDE D A D ED BCA BD DA EDA E AEAEBADDABDACDBDA DBADAABCABDDE

CAAACACFAFAAFACAAEEAEA ACFDADBABAEA EADDEDB BFEADBDDADADBDDEA DBADAAABDACDABB BBDCABBBDDEAEEABD DA ECA D BCA EA A B D E BD DA D DA E DC DA BD DDA E E DABDABDCBBDDD BBDAEADEBCABDDBD AEDDADEBEECABBAAEDEA EAEABBDCABBBAEBDA BEDDAEAEADDAEBDBBABDE DAABBDBDEEDBABD BDACDEAABDBADABACDBEDE BACEABDEFACAECDDABD BDADAEBBEECABBDDBBEBDBABAB DBBABAABAED DBDDAADDBBDDBBDDEEFEAD BABAEBADABABDBDDA DBDBBEDAABBDEDAADBBACDBE DE AEDB B D B DD E ACDB E DE DABBDDAEDAEDEADA DBBBDEBDEAAEDEEDA

CAAACACFAFAAFACAAEEAEA ACDABAEACAEEDEEB AEEAABDDBDDAEFEAD ECDBBACDEDEAEBDBBBD EDAABBDEBAABD BDEABDAEDABBDAC AABDBBBEDADDABAEDDDA DA R G I G V GS I DS C Vdd I0 D I D ACFDEDA DDAAEDBABDEFED DABBBDACD DBDCBDAEBDCABBBDAEAB BDEBDCABBDCABDFAAEDE EADAEEDBDAFBDFDCD DBBEDEBDAEBDCABBDDABDAEABB DEDADAEEDADAAEE

CAAACACFAFAAFACAAEEAEA DABCFBDEAEEBAEADA FAAADBBDACAEADED ABFEABBADDAEDBDDA BDACABBDDDDBB BDDABBABDDDAEEFBAAADD EBDCDAEBDDDACABBEDA DBDAEEDAEBBEAAEDE ADBBEDBABDEDBDDA EDEDBEAABEDBDAED DABDAEDADAAEEDDAD DBBDDDDAFFBDAEBDCABBA DCDDBDADBAAAB EDDBDABDAEDADADDBAADBDEAAA EFDAADBDEBDCABBEAADAABADE BDADAEBDEABDDDEDABAA AF FABDEAEEBAABDAEDE BEEEDADBEAABBDAC DEEBDEAEABACAEDABDEEDAA DADBCDEBEAADADEFAD EBEBDDBEBDDBDBBBDEBDEBD EAEADBBEDADAEBDAECABBA ABDDBDAEEADEFBDDBEBDDABDDE EBDEAEABDEEDAABDDA AEDBDEBDEAEAEDBEAEADEBDAFA EADBB DDABEFDAEDBD DAEDBEAEEBDAABB EDBDACDDBEBDAEDEEBDCABBEFD

CAAACACFAFAAFACAAEEAEA V GS max I G max V GS I G V th t ( 1) ( 2) ( 3) (4) I G min I0 Vdd V DS I DS V DSon tfu1 tfu2 t Pon Pcond Poff t tri tfu tru tfi V GS max V GS V th t I0 Vdd I D I rr Qrr V DS I DS t tri I rr Qrr trr1 trr2 trr tfu ACDDABDBEFDA BDDBEBDEAE

CAAACACFAFAAFACAAEEAEA D EDBDABDBABDEB DBDADEBADBBDE EDAADADEDABDAC DFAEBEBDEAEBDCBEE DABDBEDABDB EFDBBDBDAAEEDBBBBD EEDC tri+ tfu tri + tfu PonM = f. VDS ( t). I DS ( t). dt = Pon + PonQrr = f.( Vdd. I0. + 2 0 Qrr. Vdd) P offm tru+ tfi = f. V 0 DS ( t). I DS ( t). dt = E off = tru + tfi f.( Vdd. I0. ) 2 AEDEDBBDBDA 2. Qrr Irr = trr EAEFDBBDBDAE FBDADBDDDEF Ω α DBA 2 P = I. R.α cond 0 DSon DDBDAEABEDAE BAABDBEDAABBAB EEDCEEDABDAEDEADE EFEEFEBADAAECEDA BDCADEDEEAADBDDAB AEDDDAEDBAADBDADAADB AA E DE D E DDA E E A D B EAAEBAABBDACDDBDE EABDEDBDDDADBBDBDB

CAAACACFAFAAFACAAEEAEA ACDAEDDDAEE I C C 1 dv dt DS 1 = EACDEAAADCAACDBE DEDAAEDBADADDBECBBDAEBDDAE DCBDCABBEFBDACBBEBAABD DABDEF ABAAAADBDCDAEBDCABBBDAEAB EAABAACDEDABDADEDE EDADAEABDABDCA DABAAEADCDBBDED DAAB ABAADBBDEDCDAEBDAEBD CABBADADB

CAAACACFAFAAFACAAEEAEA V GS max V th V GS V DS I DS I G 1 2 3 4 ACFACDBEDEAEDBBDEF ABEAABDDAEBDBBA BEAEEABDADBDDDEABBAEE EDEBDBCAEDEDDEADEAEBDCABB ED BD EA B BD A E CABB CDE A BD AD ADEDBDDAADDBBDDBBEDABBADEADE AEBDCABBBDDED F DBDAEFCBDDC EDCEDDAEADBABDCABBBD B DA B AD E A E CABB ED B D E DA EADBDAEDABDDBADEDBB EDADADABDAEADEEEDEF EDBDDADBDA di dt DS g m V. G V C th iss I 2. g. R G DS m BDADBABDCABB CBDDEDAEEEBDEBA ADADBDCABB

CAAACACFAFAAFACAAEEAEA ABDAEDCEBDAEDAEDBD DABBDBBDBDA dv dt DS V V G Miller = CGD. RG V + DS Miller = Vth g m I AADDADABDAEDAEEA BEDADADCBDAEBDCABBBADAE AAEDEAEDEDADABADEBDAE BDCABBAEBDAEDADA FD E DBDADBDDD DB BD AD BD DD E A E AD EEDEBDEABBAABBDEDCEBD BAAEAADDABBDAEBDCE BDAEADDBAABADBDDD EDBDADDADBDDDFEFDA DADABDADEBDAEBDDC R DSon = α 2.6. V BR BDADBDDDEECDBEBDAEBDCABB DBBFDABBDAFEDBDA EABBDADBDDDEDBDAEDEED BABBDBBAEBDEBDACBE DA EDC BD A E BD CABB ED BD D E EA DA E AAAADAEABEEAEDBDAE BDCABBEAAABDAEBDDCEBEECABBA BFBDABDAEBDCABBADD EEBAADAEAAEEDABBDEBEECABBAAB ABDEAAADBBDADABABABEECABB EAAEDEECABBABF

CAAACACFAFAAFACAAEEAEA R DS R DSon Vth 15V V GS V GS max ACBAEBDADBDDDBDAEBDCABB EE DBDBAAEDEAA EADEBABDAECABBBD EDBDDDAEEABDADBDDDEEEA B EA DA BD D ADB DE B FDADBDEAADADBCDED EEDDEAABDAEDADABA CDEDDBDABDDDCAADBBFDDABBD EDBDCADABBDACDEEAB DDBEEDAEEEBDACABBFEBD AEDAFBBDA I c c C =.( V 2 V 0 ) 2 GS th DABDACABBBEDEAD FEFECAADBABDEEABA FBADFEEDDEABECAAAB DDBDAB

CAAACACFAFAAFACAAEEAEA V = GS 2 15V { I c c2 { V GS 10V Ic c1 1 = VDSon2 V DSon 1 ACDDAADAEB AAADEBFDAECABBADB EDBDDEEAEABEEABDDAD EADAEDCDDEEDAD EDDD ABADEBDAEBDCABBEDBDDEB EFAEDAADBBAAEDD AEDAACDBEDECDACDBBBDCED DBBDAEBDDEDABEEAB ED D E CDDA BDBAEDC D A E D BAAE BBDBAACDABDCABBBDE FABDDEAAEDBD Nν EABDDDA EEDAEBDEFEE EAA B BD AC DBB D BAEDCDDDCDDDADDAABEDD BDEAACAEA AAABEDA BDBAAEBDDDAABDACDCBDDEBDDDA FDBDADAEAEDAAEABE DADAEDCDADEBDDDAECABBACBDB

CAAACACFAFAAFACAAEEAEA EEAABEAEBDCABBDADDDBDBAEDC AEDDAAEBDEAEBDEF DADBADAEAEDADBA A E BD CABB E CDDA BDBAEDC D AD A E AD EA E DE DABADADBEDBEDEED BDACABDEDADAEABDAABAE ν ACEFDEDBADAAFCDA EDBAEDC A D EDDB BD DE E F EA D B BDAEAAEDEEBBDEAAAEACDBE DE E BD CABB ADB D BADA E DAA B AEFBABBAB BADADEBF ABDACDBDADADEACDBEDED DBADA AB D BCA DA BD DA ABDAAEADBEDBDEDAACAE AACDBEDEABDAADB

CAAACACFAFAAFACAAEEAEA o AEBDCABBAACDEDADABD DAEDAABDEDABAD BAEDAAEDA o AEBDCABBEDBDDDDADBED EAABADEDEEDADEAAED DDBDADBDDDADDAB o AEBDCABBCDADADAB DAEDBEDBAEDCEFEDBDB ADABDBAE ADDA ABBD ADB DBDAEDADBBDEBDEBDEBCAE DEADDDBDBDBBAA F D A A BCABDBBDABAAEDED BFDDDAEADCEDCDEA DBDBDADECABBDACBD ABAAEAA ACFDABAAEAAEDEA DADEAAEDBAAEDEEDBDADEBDCABB EEEBDEEDCDBBDBDA

CAAACACFAFAAFACAAEEAEA P 2 = V. C f G iss. D E A DB DBA BA BDACDABDACDEA DADADDBADAABDADAACDBEDE ABDAEADBADEDAABDADE FDEABDACABAEADDBADA ABDADAEACDBEDEDABDADAA BDACABAEBEDDDBADAABDAB AABAEDBDEFDEDAACDBE DECDAEBBAADDEDADAE B E EA E DA A CDABBDCEDAEEDBDBAEDCDAEBAA +V cc +V cc +V cc +V cc R G 0V +V cc 0V R G V cc +V cc R G V cc V cc 0V 0V ACBCAEDEA DDEABDADBBBDEABDADBBB DEABDADBEB DDEABDBABBDBDEDABBEA ECBACDBAEBDDABBEBDDDAEEBD EEDCEDADEDABBAEBDA DEDDDBADAD A DDEDADABAEADD EDBDEAAADAACDAD

CAAACACFAFAAFACAAEEAEA ABDDDAECABBDAAAACDADACB DEAAEAAEDE ACFDEAAEAAEDED AEDABDEDCDBDBAD AAEDBBADCDDBDDEDAEBA DABAEEDDABBD EBADBDDEAAABDE DAEBCAEEABDDAEEA DACBEAAEDEDDB EE A D E BAED DC ED BADBBDDDDAADBBABCA DDEAAEDEAAB DED B F A E EA E DAEDBBDACDAEDEE BDCABBDBDBAEDCEDA

CAAACACFAFAAFACAAEEAEA D ACDFDEAAEDEDEEE A DACDBEAAEDEDD EDDBADEDBAADDABEA EADECABBDABEAAAA CDA +Vcc Vcc ACDEDDDAD A DADDDDBDDEEFACAE BBBBEFBAEBBADBADA DEBACABDAEDDABDABDBB BEBAEFACAE

CAAACACFAFAAFACAAEEAEA A DADCAADBACDBEDEBCAE DEDEADDBBEDEDEBA DBACDBEDEBACABBADADBADA BD AE DEACDBABDACDBDA BAAABABDBABDACDBDAEBD DEBACABBDBBBBDBEDBDCE ADBCABBADCBDADBADBDAA ABA DD EABA DD D D BCA DABDDABEEDEBB EDEDBACDBEDEDBDDAADABAE A E BAEA E A A ED B DDC E EBDEADDBDDDA EABDAEDEDBDAEDCDAEACDBEEBE DCDABADEAEABDADAABDAABAEACDA DDAA AA DD EABA B BA EE E DABDE DAB DCDA AD DAE A EABADA AABA EACDA D BAD A D D A DA DA DABA E B D DBADA B A A A D DA B D B DBDDDAABBEEAEEABDAEBDBCAE DE AEE BADABDDBADADDBADA DEDC

CAAACACFAFAAFACAAEEAEA EDAADAEDBADABDBDAAC AEBABAABBEAAAABB DABADEDDBADAEDEAABDBADAAB BDDBADABDBDDCDBBA EBDEAEBADDDABBDA BABDBBDABBAABADBADAAB BDDEDEFBBEDDABBEDBDCCDE EEDCDDBAADAA BDBDEDBADAEBBAEADDBADA DBADEAABADDDDA BADCAADD EDBAEDDDCEEEDBADADABADA EAADEADDAADEAAE DEDDABAEBDBD BCAEADAEDBABDDBADA DDBBBEADDBAEA AACEDBADAEAADCDEDADE AEABDAADDABEDDAB EAAAEEEDBADABDDAEAE DCDADDAEADBDCDAEDEEBD D D BD E DDA E BDC B ADA B EDA E BDBADAABDEDDADDAEAAABABD DADA E A D AD EDA E AA D E E ABEDBADAEEAEDBDDECBDBDB DDADDABDDBBABAE E DE D B EA D AC B DDAEEADEDDBADAABABBE ABDABBBABEBDEDAACAE DA D D D E AA E DE E D E E ADCABEDBDDDAEE

CAAACACFAFAAFACAAEEAEA ECDEEDDADDAAADBAF DDDAEABDAEFBDDADAEBDAEBD FDDBDDAEEEABDAABED BDDDADDAEADBDA I dvs masse 12 2.10 C. = 68.10. 6 dt 10 3 C = = 0.136( A) I C ACDAEDDAEEDD BAEAEDBADAAB BDEDBACDEEDBADAC ACDBEDEABDAABADEDBADAAACDA ACDBEDEADBEDDDACDAEDBD BEBAADBDBAEDCEDBD BAE DDDC E EDBADA ABA B FEDADEDBAAEADBAD ACBADCEAAEDEBBFE DADABADBDBADAAB

CAAACACFAFAAFACAAEEAEA ACFFDBEAFEAD BA E DBADA D AD D AB E E DA E AD BD BCA E AA E AD BB DBA A B AA E DE D AA E AEAAEDDBADABDADBDAC BDBDCBDABADABDCEDEDE CABDAEAAEAD ACABDAEBDDBADABDDE D DBEEDEBDADADEBDEAEEE E BD E A E D BA E BD DA E BD DEDABBAEDBADABD BDDEDBDABAEACAEDEB EDCDCDC DDEDBADAABDA DEABDBABAADB DDAEBDDEEDCEEDBE

CAAACACFAFAAFACAAEEAEA EA E DA E AD AD BD A ED DBADA D E ED EAA DE E BD DB AADEAABDBDDEDDEBDEDCEBA ABDDDDADDDEDADAEBDDAB DBEBDAECABB EDBADA C E A AD ED DAEAA DBADAABDA A EDBA B D DA EDA E AA DAA BD AABAEACDABAABABAAB BADADEAABDDAEADDABBD CDEDBAABACDABAAEAAE BDDBADABADDEDBADAEBDE BA DAEDEDBADABDBAAE DEDEDAACAEDBDCECAEDB DDAACBDBADAEAAEDEEDABAE AAEAEABADBDAC ACAAEAEAAED BA AB D D BB EDE E D EDBBBAADADEA

CAAACACFAFAAFACAAEEAEA ABDBADAEBDDEDADBDEDCE EDBDEEEAEDAACAEEAD BC A EDC AD E BD DAEAAEDEBDEEDCEAD D DEEEAEDABAEEAADBC BEDEDADCDB BAADBADA EDBDDEDCEEDBDEADA ADDEABDDDEDABAE ADADDADDAEEAEBD EAE BAADBADAEABDA ACDA BAA E AA EAAAB E DA BCA ABDABEDBEAE BEBAADBBABADDADBAA DBABAAEDEACBAAD AAEAEBDEDCEDBADAE BDDEDDAEBDAEAAEADBDAA EBDDEBBDACDDACABBB AAEAEAAEBDEDCAEADA EDABADEAAADEDBADA EADAEBDADADAECBACDBE AEADBEAE DDBEBDDDAEEEAEDAEAE BDDCDADCBDCABBEBAEADBBDAE DABBBDDCDADCBDCABBEBA AADBCDEBDDBEBDDDAEADC

CAAACACFAFAAFACAAEEAEA D ACDAAEAEAAEBDDCAA DC BAABACDBEDBEDABED AA BB EDE DBADA BD DC E BD DDABBBADBADAABDABA DBADBDABEADAEBBBABA EDBDBADAEBADAAEDAB A D AABDEADCAAADABDB ACDBEDEBCAEDEDBDDEABA DDBABDACDBDA AABDAEDEDDEDDEABA BDACDDDDBDAEAA EDEEBDADCEBAEDEBDC AADADAEDDDAABDABBD ADADAEDDBDDDACADD EEDDBBDBDAEα BDBAD AC ABB BD A D EDA E DD A BD A DBABDCABBEDAAEDBADBD A EDBADA E D DCD B DBABDAAADBABDCABBEAAEDAD

CAAACACFAFAAFACAAEEAEA BAADABDDDADEADEB DABBAAAABADBBDBADAE D BA B A DD EABAEBDDABBADDBAAEAAD EABAEECDBDEEAEF V α. = c V drv α =10% α = 40% α = 90% D ACDAAEDEDDEDDEABA AEDEBDCABBDEADBEDBA BADBCADEDDEABAABDC ABABDBAAEDBAEEEBB BDACDBEEEBDADEDAEDD EBDABDCABBBDFBDAC

CAAACACFAFAAFACAAEEAEA Vs + E t E V GS + E t E t0 t1 t2 t3 t4 D ACBCAEDEDEDDEABAD FDEAAEEEA E DE A B D ADA E DDCACDBEDEABABAADA DDEABADDBACDBBCAE DEEDAEDDBBABAEFED ADDEDAAAEDA BDAEBDCABBEDAEADDAAEDBD E EA E BDC D BDDDC E EA ACDB E DEABDAEDAEDBADAABDADA EDEDBAA EBDDDEFEADADADADDD ACDADEDAEDDBDAEB DAEAEEDCBDCABBEFEAD BDABDCABBBDEFBAEBDA ABEBDEDABBDABEAAEBDAEABE DAAABDA BDEADEEDABBDEBDEED BDABDA

CAAACACFAFAAFACAAEEAEA DAEDDEABAEDBACDBBCA E DE D E EBDA EA BB DA AD EABDA CDBDA B ED BABADA E DD EABA BD DEDBAA BBEADEEAABEDCDABDA E E BD DDA B ADA B EDA E DD BCA AD D DE DDDEEDDAEDD DA A D E B A B D E BCA BD DEEFDBDDADDABDDEADAE A BA DA B A AA BD ABB BA B DBADAAA BADA D DD AB DBADA DC EABA EDBADA FACDB E A AB A DE ABDA AA E α α α α α DBA ABα EDC E DD D D D D ADABA CDABA A A A DBDDDAEAEDECABDDE DEAACAE

CAAACACFAFAAFACAAEEAEA A DEADBEDEECAEBCA BAEBDBABDBDADAA BADABAEADBEADBACDA EAAEBEDEAEDAEAAEBBAC DAEDEADEAEAEADBAA EAACEDCAEBACDAEAAEDE CDABAABAAEDEACDAED EADDEABBDBCA CDAAEBDEDEACDEBDE ADBBEABCA D B DE E B DE DABA BBA E AA E DE AC A AC CDB BDC E DE DBABDABDDEBACBAEADAB DBDEABEAECA BAEDBABDDADEBADAEBD ADABADADEBDABAAEA AAAEDBADAABEDBADA EDDAACBDBADABDDE DBBBDEDCBDBADAABDA ABBDDBADADACBADCE E DE DBA D A E BD BB AC B AA E BDEBDDEDBBDEDA BDDBADA DA AA A DA BDC E BABDA BD DE BACDBDDEABA

CAAACACFAFAAFACAAEEAEA ACCDADAEBD AAACADABBAEAEAB EBAEDEDEDBBBAEAA EAAEAEDDACBE AAEDEACBAADABABAAD EBDAAED ACAAEDEACBAAD ABDBADAEAAEDEB DAEADBBAEACAEBDEADE EA B B A DA E AA E DE B AABEBDBDBBB BD A DADB AA D DA E AA E DE AC B AADBAAACADBAABA BAEADCABBABFEA

CAAACACFAFAAFACAAEEAEA ADADAAABAEDBADA AEABBBDABBBEBADA EDBBAEADEDEAABCEBB EAEADABBBBBA BAADBDDBDCDAEBDEAEADBD EAEBEDDADAEDCBE DDAEDAADBDCDAE EBDBAEAAEDEDADACBADCE BEAAEDEAADBDE EDDABBBAEABAAAEA BDDCBACDBBAAD DEDE ACAAEDEBAADBD B DB AB A E AA E DE AC B DBADAABBDEDDADADABDDEEA ABCAEDEADAEDCEAE ADDBBEAECABBBD ACAEEBDABDDBADABDA EAACAEDEDADABBAC D EA DBADA E BBA E AD ED B E ABAAADABADADAECDBAEDABDA EEABD

CAAACACFAFAAFACAAEEAEA F D DADADEDEDBBDBCAEDA CABBABFABDDEDEEAD BDEDBBAEADDDADEDADAD DAEADEAADEAEDBDE ADDBAABBEDADEABDADAD ADAADBABDABDE BDEAAEDEBFADAADBD BCAEDEDEDBAADEADBDEACDB E DE BAC D BABDA CDBDA B D E BD AD E DE ABAD EA A EDBADA D DA DE BBAEAAEDEACBEAEBCA DDBBBDDAEDDBEAAEBDEBDAE AEAADDDD FADBDEBAAEAEDDDABEE AAAEDECABBAEADD ABAABCABAEAAEDEDADB ABAABBCAABEAAA EDBDAEDBADABAEBADADAD AEDA D B DA DBB BB E DE DDEDDEABADDEDEDD EABABBDABDBADBDEDED EDBDAEBACDAB AC D BD A DA E DE AC D E BBB BDADDBAEACDBEDEADBBEA DDDD DADBADBADAEDBABD DEBBBCAEDEAEDBDA

CAAACACFAFAAFACAAEEAEA DBBBEADBADAEDEDB ADBBDDBAEDAADB

CAAACACFAFAAFACAAEEAEA ABACDA C CDA ABB D E D D DED D BDBADABDA DAAFAFAAFACAED FDEDEEAEEAD AEBACA AADA CA E F E AD EAC BDBADAEBDCEDE BEDEBAFAEEAFACABAAFFAACAA AFACBFDAA DADAFDABADADDADAA DDBBBEDCABBAB A DE E DA AADDE D A E A DA EDEAAAACEFAACDDAA BADACDEAADAAD F A DAA D DBB DE BA DEDA EAAC AACCDBBEEAAEFAAEAACFA AAAAAAFAAACEB DEDBBEEEDEEAEBAADAAAC EDDBB ADDECBEDAACABA CEAAEFAAEAACFAAAA FDEDEEAEEADAA AEBACA FDBDEDDADEEBACBEFDDAD FDEABCCAAAEBF FAAAEDAEBABAEDE ADADB ADDDDEDABDADEDADB AACDAABDCDEAAEFAAEAACFAA AABACEA B ABADC DC DA A DE F F D A AACFAACFDACDEDCDABCCAA AEBD DDADEAADDEDE FBAEADE ACAECADBADBDDBDDE

CAAACACFAFAAFACAAEEAEA ADABAAAABAACDACBBBAAFDAEFD DF EFDBADEDDABDEACDBDAD DBAECEADEBDBCAAEACFAA AAAABAACCEAABB FDDEDDEAACACABDAAAA EACFAAEAAAAAAACCEB C CDA BAA E A EAD D A E D E ADADB AADEBDAFBADBCBADADCBC FDEFAAEDEAE BACA BDEDBDBDADBCA DADDEFDDABADACDEFDE CDEAABCCAAAEBD FDCFADEFCCBABBA BABDADABCCAAAEB D E A DBADA E AA E DE E E ADF DDFDDDDAAADFDDDE EDAA A ABAD A A CEA A A EACEAAAAAFBB CACDCADCDEDCBAEDCDEACAA AEADCAAAAAACFAA DAADDCADAACDEDAB ADDAACEAAEFAAEAA CFAAAAABB BDCADBADAAEAAACBD AAAA FA BDE FACB DD DD FBA FACDDBDADBAABDE CDEADEABBCDEDAFBA ABCCAAAEBB CDAEBDBADAEBDDEDEAE ADABBD B DE FD A FBA D A BABBACDFBAABACEA AEFAAEAACFAAAA

CAAACACFAFAAFACAAEEAEA DADEDAACACD DDABABBFAAEACFAAEAA AAAAACCEB DAECEADADBAA DBDBCACEBADAAEACFEFDAAA BADAD DADBAABADADBDEDAAE BDCEBDA DEAAACACAEFDEDACBDC ACFAABEAAAEAAAEEA FFDEBDB DDAAEAEAA ECEAAAFAAFCCB DEEACFAEFAADBC ACBBAECEAAB AECDADBAE BDEDBAECAACDEACFAEFBDBCA AEDCFFEBDDEFBBAD BC DADEDEFDDADBD BB D BADA BDE ABCCAAA EBD DAEDEDCAABAEBDEE DDAABCCAAFAECB C DEBADADDBADADDA AAEB

CAAAEEAEAFAECACFACAADCAFACCAFEA FBFF E D F AEEEDDEDEFEDBEBFEBEECBEFEBBE FD... 46 FFF... 48 FFE D... 48 AAEDED... 48 FDEAA... 48 DEDABD... 52 DAEDBDDEEA... 54 DEDAB... 57 BDAEDBDDEBDC... 58 DB... 60 DDCABBEBDBBBCAEBDDE D... 60 CBDAEADEAEDEEDBDE A... 61 FEDEEAAEAEBDE DE... 64 EAEBDAEDBADABDFAE AEABEEAE... 64 EEAAEDDEABAAEDA EDF... 64 AEBACDEDEBDF AD... 67 BDEBDDBDDDAAEEAE... 69 DBAEDAADB... 71 DAEAAAB... 71 AAAEAAEDE... 72 EAEEAE... 72

CAAAEEAEAFAECACFACAADCAFACCAFEA EEADDADAEDDEABAD AEDAEDF... 72 EEEAADAEEAA... 75 BDAD... 77 DBEEAAEDED... 84 EABDCA... 84 EEDDADAADB... 86 BDDAEBDBBBCAEDEDDBD ABB... 88 FFD... 90 CDAEDF... 91 DBADAEDDEABADBAA AADABDBDFA... 91 CDAEDDEDAEDDDAE BAEAD... 91 FF... 93... 95

CAAAEEAEAFAECACFACAADCAFACCAFEA FF F ADADDADDBBEAAEDED EDACABBABADDEAABADAEDA DEADBDADEBDCABBEEAADBABDEBD EEDEDAEEA DDADDBBBAAEEDEADDDA DBBBBBCAEDEDDBDA E DD EABA D BB D ED BD AEADAEDECAADBDAB BDADDADEBAAEBAADAA EAEBBBCADEADBBDADDBBD DEEADAADDDCAEDA EDEACDEBBBCAEDEDA FF E D DEBDBBBCAEDEDBD ACDBBA BDDDADEDBE EFEFBF EACDBABDAAADDADAEDD EABA DD EABA E D DD E A DBACDBBCAEDEBAEAD DBABDACDBDABAAEDEB AAEAD

CAAAEEAEAFAECACFACAADCAFACCAFEA EDAEDDAFBDDAEABD EDCEBDDDAECABBEBAAADBBEBDBADA EABBBDDEABA ADECABBADEBBEEABA ADA ACFDEBDBBBCAEDED EBAFDADAABAB DEABDABADBDCABBEDBDDB BDACBDAAAADDEDB CBDADACDBAA ACDAEBAEADDEDAEADBA EDEEADDAEAABA EDAEEAEBD AC ACDA E DBA A F D DDAAAEDBBDACBDBBABDDBDBE BDAEDDBDABDDBDBEBDEAEAE EAE DA A BD A D E BA F EA ABDDBDB V BRZ 2 + V fz1 BAAEAEAABDAD EAAABDDB V BRZ1 + V fz 2 BAAEADADDDB DDBAFDDAADDEDABBBAE AAEDEDEDABBAAEA CDBDAABEAEDAABAEAADA BD DE E CABB EA DA E DA D D BD AB

CAAAEEAEAFAECACFACAADCAFACCAFEA ACDAEEEAEDAEBAEADDEAD BDE Vp t Sw t ACEEAEEDAEDDEABA DEBAF I Sw V + V BRZ1 fz 2 V + V BRZ 2 fz1 ACDDAAAEDBEBAF B D ED B EAE ABA DABA BD A DBA B EAE EA A E AB A AADEEADBEDEABBA AEBDDCAEADBEDDBD ADEEBBDABABAEA AACDADBADADAEDDDABDDBAE BDEBBAEDCEDCABDDDA

CAAAEEAEAFAECACFACAADCAFACCAFEA E E BA E AD D E B E DCADA EDCADADADEDDEABA AABADEABAACDADBABDCABBEDA EEEADEBDAEDBADAEBEBFDAAEAB EDDBDEEAEABDDCECABBBDBEAEA DBDAAEABCABBEDAEAD EEABAAEACDEDAEEAE BAEADABBBDACE A B A D ADA D EDA E DDDDEEABDE EADEDDDEDDAEη Vs η = Vp ABDADEBDEAEA BDABDADEBDCABBBBECABB EF FBDABDCABBBDEF BDEBDCABBEF α BDBA DEAEBBBCAEDED BAEDABEDBDAADBDEDEED BDEADBDAEDABBDADE AAEBDCABBAD Ut = Vs + V Z V 1 Z 2

CAAAEEAEAFAECACFACAADCAFACCAFEA Vp + E t E V Z1 V BRZ1 V fz1 t V Z 2 V BRZ 2 V fz 2 t Ut V 1 V 2 V GS t V =η E V fz V 1. 1 BRZ 2 V = η E + V BRZ + V 2. 1 fz 2 I G t t0 t1 t2 t3 t4 ACEECDBDBADAAEEEDC AADBBDAEADFBDB DDBAEDAABDADAEDDEDBD DEDABDBDAC

CAAAEEAEAFAECACFACAADCAFACCAFEA ACDEDABD ED BD D E DA BD E DA E AD B DADEEABDE ADAEDDABDAEBDADBFBB ADAEDDEABAABFBDDDA EAEDEBEEBDA DEAEEEDADCABDDCEBD DDAEEFEADDEDAABA EAAAEDBDADAEDDBDAD EDADE + η. EAABDEAEDEDCAEDDBD DEABDEAEBDAEA DAEDEEEAEBDA. E V fz 1 VBRZ 2 Ut =η BAEBDABDCABBBDFAEEEA DBDABBDCDBADBDEDCEBD BDDDAEEF V GS ( t) = Ut R. I ( t) G FABDEEBABAADCDEBDABDCABBBD FDADDBDADBDBBDBDA V GS max 1. fz1 BRZ 2 G = Ut = V = η E V V DCDDABADEADADBBDCABBE DA E AD BD E E BABA E A EA CDB

CAAAEEAEAFAECACFACAADCAFACCAFEA A BD D E E DC E BD DDA E E DA E ADFAEAABDAEDCDDDA DABAADEADDEAEABCABBE DEAD BADDEDDBAAABBD ADAEDDDDAEBEDEBEBAE DEADAEDDEDDABBBDAC DBCAEDCADAEDDAAAED EEBDEDDBDBBABDABDAD EDAEAABDEBDCEBAFBABDBAD BDDBEFEDBAAADBFBDBE FDEDAEABDEDCADAB D BD EAE A E F D E A D ADA B ADACEEAEADBBB BA EA D D E BA ED BDBB BD EDCADADBBEDDDBAAEBDEEBDD E DDAA E DD BD EDCADA E DD DABBBBBADCAADCDDABD EDCADABEDDDABAEDE

CAAAEEAEAFAECACFACAADCAFACCAFEA + E RdsON _ P1 R dson _ P 2 Rp I Lm Lm D ACDADEDAAEFEEDCADADABBDB FDBAADBABAA DACBDBAADBABAAEDBDD EBABAEDDCADEDDBDADE BB ADA E DD E E A B ADBDDDEFBEBDDEDA BDEBEBABAEAAAEDB BDEDBAEDDCADDDADDBADB BBDABDACBDDAEABAADADA BBAEDDCADDADBEDCDEE D E.( t1 t0) I Lm ( t1) = Lm

CAAAEEAEAFAECACFACAADCAFACCAFEA Vp + E Vp(t3) Vp(t1) E I Lm I1 t0 t1 t2 t3 t4 I 2 t t ACEEEDDCADEBDADADA EDDα DAB BDDEBAEBBABAEADB D ABDA E D D ADA AEA A CDA D ADA E DDADBBDBDAAE Vp t1) = I ( t1).( R + R Rp) ( Lm dson _ P1 dson _ P2 + τ = R Lm + R dson _ P1 dson _ P2 + Rp ACDADADAEDDEEEAADB EDEBDAEDBADAEBDEEBABAEDEED DEDBEBAEDDCADEDDEADBD DDEDAABACDAEBD DB η. VpDDDDEDAEDD DADEDEEBDCABBADABDBAD BDDDEFEAADADABDDE τ EBDDEEDCADADBBADBBDBDA DCDEBDEDBAEDDCADEAAAE EDBDDEBAEAAADB I1

CAAAEEAEAFAECACFACAADCAFACCAFEA EDAEDDDADBBDA CBACDBBDAEDABBABBDCEBDEAEDD EDAEDDEAEEAEDAFEBDDB FDDBDDABDEAEDEA AEBDADEBBEABBADDBDEAE BCBDAEA BAEDABDBDA DBDEAEAABAADAEDDBDFAA ADBACEEEABEBDEAEBDEADADEBD CABBEDADDABBBDACDBDEDCEBD DDAEEFDABDAFDABABD ABADEAAADBADAEBDDEBADDAD EDDBDEAEADEDCDABBEBDCABBD DADABDAAD V V Vs < V GS fz 2 BRZ1 EDDBDDCEBDDDAEEFEAD DABBEAABCAEADBAAEBDCABBBEAE BDADEBDCABBDAADBDADEBBEEABD BDAEBDCABBEAABCEDD I Z V BRZ V Z V fz ACDDAAEEAEDDBD D DACBAEDEDBDDEDA BEDAEADAAADBEDEBEB

CAAAEEAEAFAECACFACAADCAFACCAFEA FDADBEADEAB BADAEDDBDABDAEADB FAADBBADAEDDAADBF BDDDAABAEACDADADAE DD D B ABA D E CDB BB E BABAAAABAEDBDDEDABDEDB EDDDAAEABDBACDDABDEDCADAE DDCADBADBDEAEBDAA ACAEDDBDDEABDEAEBDAEA ACDEDAB DABDABDCABBBDDBBA Ut = η + +. E V BRZ 1 V fz 2 V ( t) = Ut R. I ( t) GS + G DAEBDCABBEAAAEEACDADE DECABBCDAABDEDCABAAEBDAEBD DDAEEFEADBDDEEDCAABD AFDADDBAADBACDADBBDBDA GS min 2. BRZ1 fz 2 G V = Ut = V = η E + V + V B DACDABBBAEDBDDEBDCEF EADDDADAEDDABEDBDEAA

CAAAEEAEAFAECACFACAADCAFACCAFEA BBEDBDDEDABEAEB EDBCDAEDBAEDDCADEDDDAB ADBFDBDDBEDBAABFEF DADEEAEDBDDDDA AEDEBADAEABAEBD DEBAADBAEDBDDDDDBAADB BDAC + E RdsON _ P1 R dson _ P 2 Rp I Lm Lm D ACDFEDEDAAEFEEDCADADABBDB FDBAADBABAA ED BD D E E DA B B D ED BAEDDCADAEACDABEBABAEA CDAEDBDDBDDBDBDA EDBDBB I1BDEDDCADEDB CBDEDCADADBBABDAC I Lm E.( t3 t2) ( t3) = I Lm ( t1) I1 Lm AAADDDDDADAEDDD DBDBBDBDA Vp t3) = I ( t3).( R + R Rp) ( Lm dson _ P1 dson _ P2 + DBDDEDAADBDCEFEADBDED BAED DCAD EAA DB DB A E D DEτ CDBBBEDBDDEEABDEAAABDA EDDB I 2

CAAAEEAEAFAECACFACAADCAFACCAFEA EDDBDAEBDCABBDCDABDEAEE BDADAEABDEAEABDABDAEDEBD EDCEBDCABBBDABDDAEDDBDAADB DB BD A D AD E BD CABB E DA E AD EDBDEAAED Vs V V < V fz1 GS BRZ 2 DEAABDEAEAEDBCAEBDADA ADDEAADEBDEAEAAEBDCABBBD AAAEDAEDDBD EAAEBDCABBEDBDBAABDABA EDBDDDBDDDAEEFEADEDCDB AAEBDCABBADBDADBBEEBDAEBDCABBEAADB DBAEBEDADBD D BB BCA E DE D AE B DDDC ADEAEACDAEADBA DBDAEDDEABABDDABBEBAA AAAEEAEBDAEBDEEBABA EDBEBEBDA DE BB EED E BD DABB E DA E AD DEEBDADECABBDBDDEEDCE CABBAAEAAAAEABA ADDEABADAEDABBEADB DE E ACDA BAA A ADC EAC DD EABA EA ABAA ABA DDEABADDDBAADAEDA

CAAAEEAEAFAECACFACAADCAFACCAFEA EDEBDDDAEDB DAE DFEADAEDDDBACDB DB ADC E DA AC A A E BBB BDADFDAEDEBDBADA BADABBBEBADBEA BDBAADDBDAEDEBDEDB DAAA DEEDAEDDEEAEA ABADBDDDABBDA ADCEBACDAEBAEADABAABD AEBDDEBDDDEBBAEDDA EDACDBEDEDBDCCD E D BA D BAA D D BD DDA E DD DADEABDADEDDEABAABAA BDBAAC BB ABA DBADA ABDA ACDB E DE ABDAD A E CABB CDAED BDB D EDBDBAEDCEDEADDE BBDABDEDBADAEEDCB B D A AE BB BCA E DE DDDBEDAACDBEDEABDADAEDBADA ABDADDABBDBBBBACDBEDED DADEAEBDCABBEDDDEAA ABBDBDAC

CAAAEEAEAFAECACFACAADCAFACCAFEA Vp + E V GS max VGS Vp + E V GS max V GS V BRZ1 t V BRZ1 t V GS min V BRZ 2 V BRZ 2 V GS min E E D ACFACDBEDEABDADAD DAEEABDBDADB AADBEBDAEBDCABBEDBDEDABD BEDBDDDBADEAEBDCABBBAADBDA EDDBDEBDEAEDEAEDBDBBAABAA DBDAEDDBDEBDEAEDAD EADDEEAAEEAEDAACDB EDEABDAEADDADEAEADAC DABBBADEDBBBDDBEBDAFDAABD AEDDBDEBDEAEBDDBEBDAFADAAA BDAEDDBDEBDEAEDBDBDAEBDCABBD EEADFDFADACABBBEADD FD GS min BRZ 2 V > V BDAEBDCABBDDADEDD DEAFDCDEDADADAEEDBDDE AAEBDCABBEAEDBDDEDAABD DDEDAEADADDDCDBDEEAB DEAADEEDDDEEDBDA DDADBDAABAEBAABDAA DEDACAAEAADDDBD EEBABAABABEEBBDDBADBEBDA

CAAAEEAEAFAECACFACAADCAFACCAFEA CABBEDAEADAABBDBDACFAC D BDEEEDBDBBBDAEBDCABBDADDB DADB BEEABAEADEDAEDD FFFBEAEBDCABBAEBD EEABA Vp + E V GS max V GS (w1) V GS (w2) V GS (w3) w3 w2 w1 z V BRZ1 t ACCBDAEADEAECABB CDEDBDACDEEBABABDAEBD CABBDADDBDADBDDBDAEBABAEAADBDEE BABAEDBADEAEBDCABBED BDDEDAAEDBDDDADBADA ABBDCAEBCADEDCDADBABDAE DAAADEBDADAEAAAED DEAADA

CAAAEEAEAFAECACFACAADCAFACCAFEA D E A EAA E AA E DE EDA E AEBDAEDBADABDFA EAEABEEAE DADAEAADAEBDDBEBD ADBDAEDDEDFEAEAB EEAEDAADBADEAEBDCABB EDBDEAAEDBADAAAE ADADBAADBEBDCABBEAEDEDDA η EAAEEAEAABDAEDBADAC EDAAEADADDBDB V =η E V V GS max. fz1 BRZ 2 V = η E + V + V GS min. BRZ1 fz 2 EE AAEDDEABAAE DAEDF DDEABADEDABDACDBDA DACDBEDEBDDBDAEADA DDABEBEADAAAD DDDAEAEBAEAEDADDEBDCABBE DAEADBDAABADCBBBEAB ADABEDADEDDAADABEAAABDA BAADBADABEDA D A E DD EABA DDB BB E DDEADBABDDEEDB EAEDBDBD

CAAAEEAEAFAECACFACAADCAFACCAFEA DDBDAEDDEABA A DEDDA EAA AD ADEABDA DEA DBDDDABDAEDDEABA DABDDBAAEDBADABEA AABEAEBDAEBABADBDEE BBADBADDDEABADACBDEE CA D E D ED BAED DCAD A E D BAα ED BABA AA DBA EDB BD EAEBDAEDBEDADAAABA DBBDBDABDDEBADEBA BBEAAEBDEEDCADADBBB DCADEDBDAEEEDBADADAEBD EEDCABDEAADABDDEEDCADA DBBADBCFAABACDADBAED DA CDB A B B BBA D E EDCA BBDADDBDDAABAAABDEAEBDA DAEDBEBBDBACDAAED BAEDBDAEABBDAC EDBDEα < 0. 5α = 0. 5α > 0. 5EDBDE α = 0. 5 DBD ABB ABADA E D A D B A E BD EA EB B A ADA E D D BD A E DD EABA B EAEBADEADEDBDEAEBDADBED ADBDBBEAAADDABDDABB DEAABEDABDDABBEDDEABA

CAAAEEAEAFAECACFACAADCAFACCAFEA Vp + E Vp + E B max db B max B min t t db t E α α < 0.5 Vp + E B min E α α > 0.5 B max db B min E α α = 0.5 ACDEEEDEDBAEDDCADAE DBA DADEBDAAAABDABAAEDA DA CDE DABA DAA BAED DCAD AAA BAED E A E DD A B D A AA ABEADBDBE EADADADEDA DBDEAEBBAEADADBDEAABEDBD DBDAED E. t Np = B max. A noyau ADB A BD DB E BAED DCAD E DDDBDBDABDEAEDEDA

CAAAEEAEAFAECACFACAADCAFACCAFEA Lm A 2 = L * Np B D E A DB E BAED DCAD E DD EABA B AD BD DD E F D DDADBDBEBDADADAEDDDE EDBDDEBABDDEEDCADADBBBD DBADADDABBAAEBDCABBED BDEDAABDDDBDBBDADADA EDDDEEBDDEBAEDBDDEDAABD DDEFEADDBBDBDBAD Vp = I Lm max.( RdsON _ P1 + RdsON _ P2 + Rp) DBAEADADADBBDEAAEA V V η Vp < V GS fz 2. BRZ1 DADADAEDDDEEBDDEBAEDBD DEDAABDBEFEADDBB Vp = I Lm min.( RdsON _ P1 + RdsON _ P2 + Rp) AEADADADBBDEAAEA η. Vp V fz1 VGS < VBRZ 2 DBEDBD I L max I L min EAA EDBDBBAAEABEAEBDADADB DBDBBDDEABAADDABBEDBDC EABDBCDEAB I Lm max E.( t1 t0) = I Lm min = Lm DAEDDBAEBACDBEAAE DEDDBABEBDDEDCEEDCEBDCABBE DAEADABDDAEDCEDBDEAEA

CAAAEEAEAFAECACFACAADCAFACCAFEA EAEAEDBDDEDABDDDA EDCDEDBDEAEACDBEAEA ED BD D E DA B DC DBB EEBABAEADBDADAEDD EAEBDEAEDDADEAAEBDCABBB D E E EDC BD CABB A EA EAA ABBDADADEBDCABBDACDABBB EBDDABDEDAEADBDDAE DC E ED BD EAE A DA BDA EA ED BDBADAEBABADADAEDD V1BDE AEBDCABBDEDE + E Vp VGS V1 V 2 V 2 Vp1 Vp2 DT DT I G I Lm max Qrr Qrr Qrr (a) (b) (c) ACEAEEAE DFDDDABCDBDEEDCE DCADEEDCEDC AEABACDBEDEBF BABFDDBDAEBDDEBAED BFBFBDEABF DDBEDAADBBDADEFDABAA BBDDCADABDBDEDABADCDA

CAAAEEAEAFAECACFACAADCAFACCAFEA ACEBDDB I Lm max ADEDEDCBDDDAEBDCABBD EAEADADDBDEADDBDEAEAEADAD EDCDADEDEAAEDAA EBDADEAD EDDBEBDDCDEDCADD ABDADAEEDEDEBDAEBDEAE DAABADBCBDADAAB BEEDCEDCEDBDEAEDBAAABDEAEBD CABBAADAABBDBDACDEB CDBDDAEBDCDBEADA AABDEDBDACBA EEDCBDDAEDCEBBDCEBDEAE BBAABDAEBDCABBBEDAABBD ADADAEDDBDDCADABDBDADAAD BDEAEAAEFABFDABDDEBADA BDACDADADAEDDBADEDDBB DABDEBDAEBDADEBBADABBDE ADBDEAEAAEBBDEADBDAD BDDDEABCDEDBDD EBAADBADBDDDEFDEAEBD CABBEDBEEAD V 2AAAD V1 B D DA B A E EAE B AA E BDDBD DA CDB E B DDAA E EA AD DBEDDABEDBEDAE AAABAEDDABBBDADEBDBA E BAADA E D D B E EAE F DDBD DADDDCEDDABA B F AE DAD BAD E BD D E A BD DDAAEEAEDADEADAEDDBDD

CAAAEEAEAFAECACFACAADCAFACCAFEA EABAADDAABBAEAA EDED DBADEBDDBDDDAAEEAEB EAEDDAEDDBDEADB BBAAEDCDAEABDAEDDBDEAA DE BD D DC DA B EAE DD A EDDBDDEEEADBDDBDBBAA EDAABDAEDDBDDCEDCDBDD E D E A BAA DC AA A E BD DDDAEABDAEDBBCAABFABDABCAABE ABDA D E EA B DDAA BA B AEDBAEAE AABADEBDDBDDAAEBDEAEEBD EAEADEEDCEEAEDAABBADA A EDDBD DA BD D DAD A D EAA BD DABDCEBDDDAABDEABDA ACADBAD

CAAAEEAEAFAECACFACAADCAFACCAFEA DEDE CDAE DEA CDAEA EDDBD DEDE CDAE DEA AAAEA EDDBD AEDE AEDE D ACDEBDDBDDDAAEEAEBDE ABDADBBCAABFABD DAEAE DABABBEDEDDE FEBABEBDEDDADAC BDBAEAAEADEDEBDDE DABAEDBDBD ACFDEDAEAAEDED

CAAAEEAEAFAECACFACAADCAFACCAFEA DDEAAEAD F C AE EEDC EE Ω DBDDDEAAEAD E AEEAE DBDADDDBBABDDED BBACDBEDEADBBFEDAEABDA D E DB ADB E DA ED A DBAEDA ADBDBBEAABAAEDEDABACDBE DEAABEEAAAEAE EAE B A E ABA D EDA E DDEAEDEDBBDD BDAAABDEAEAEEAE E V =η E V V = 22 1 6 15( V ) GS max. fz1 BRZ 2 = V GS min = η E + V + V = 22 + 16 + 1 = 5( V ). BRZ1 fz 2 EE ADDADAEDDEABAD AEDAEDF ADBAEDAEAEAAEDE DABABDAEDBDEDE DDEABAABDAAA

CAAAEEAEAFAECACFACAADCAFACCAFEA DBB B E A D BD B AA B EAADBDADBEABAEA EDBDDCBDEDCEBDCABBEDAEA ADBDBADAAABEAADDBED AABDEDAADABDDEAE DDAEDDDDDAEBDAEEA EABEAEBADA EDAEDD 9 E. t 15*500*10 Np = = = 6.8 6 B max. 0.25* 4.4*10 A noyau DAAEAEBADABAEEDA EEAAEDEDDAEA DDBEBAEDDCADEDDAA DBDBDBDDBEEEDB ABDDEABADBAABADEB DDADAEAEAADDDBEAEAADA ADBDEEAEDDAEDBA ADBDAAEAABBDCDCA ADEBDDABDAAEDABBEDBD DACBAEDAEAAE DDEABADBEEAEDDD BEAEAADADAEAABEBDCEDAE DDDBADABABBDACD BDADEBBADA BAEDDCAD ηbdebdc BDADEBBEDA BAEDEA

CAAAEEAEAFAECACFACAADCAFACCAFEA 1 10 4 1 10 3 Impédance (module en Ohm) Z0mod Z0 mod Zccmod Z ccmod 100 10 1 0.1 0.01 10 100 1 10 3 1 10 4 1 10 5 1 10 6 1 10 7 1 10 8 f Fréquence (Hz) ACEDAEAAEDDEABA 57 mω η = 1.57 404 nh 113mΩ 107 µh ACAAADBEBDDADCAEDD EABAEB AEDDCADEEADEAADBDB A DBB B D DADB AADB ED BAED DCADBEADEDBADAEABAEADADAE DDDBEDEDDADAE DBADAEDAADEDAEDD EABDDADBAADBEDBAEDDCADB EBDBADAEABAEABDBDED BAEDDCADAAADBADDEDBAABA

CAAAEEAEAFAECACFACAADCAFACCAFEA 9 E.( t1 t0) 14*500*10 I Lm max = = = 0.065( A) 6 Lm 107*10 E.( t1 t0) 14*500*10 = 6 Lm 107*10 I Lm min = 9 = 0.065( A) ABDAEBDABAB E ΩBFBE ΩBF DBDBDDEDBAAEDE DDEAAEDE C E F Ω F Ω Ω kω DBDDDEAAEDE EEE AADAEEAA DDBDDDAAEEAEBDAEED E BCAB BCA A E D BD DDAA E AEADDACBDACAB DDAAEEAEDB EEBDDADEABDBDEAED AEDDBDEAEAEAEDEABD EAEDAEDDBDEAEAE

CAAAEEAEAFAECACFACAADCAFACCAFEA AEDE DEDE AEDE DEDE D ACDDAADAEBDEAE DAEDEDEDEBDEDA AEDE DEDE AEDE DEDE D ACDDAADAEBDEAE DAEDEDEDEBDEDA EDBB ) 15.1( 6.2 0.7 22. 2 1 max V V V E V BRZ fz GS = = =η ) 5.3( 0.7 16 22. 2 1 min V V V E V fz BRZ GS = + + = + + = η DADADAEDDDEEBDDEBAEDBD DEDAABDDDEFEADADBB

CAAAEEAEAFAECACFACAADCAFACCAFEA Vp = I Lm max.( RdsON _ P1 + RdsON _ P2 + Rp) = 0.065*(5 + 5 + 0.057) = 0.65 ( V ) ADADADBBDEAA VGS V fz 2 Vs < VBRZ1 15 0.7 ( 0.65*1.57) < 16 DADADAEDDDEEBDDEBAEDBD DEDAABDBEFEADEDBB Vp = I Lm max.( RdsON _ P1 + RdsON _ P2 + Rp) = 0.65 ( V ) ADADADBBDEAA Vs V fz1 VGS < VBRZ 2 0.65*1.57 0.7 5.3 < 6.2 E B E EAA B AA E DEDDBAEACDBEDE BDCABBEFEADAEAABEAEBDAE BDBADADAABDDEABABDEDF DD AA E DD BD DB E BAED DCAD D EAADADABEAAEAAEDEDA AAAEDBDBDBBDDBADAE DA D DDB B BD AD ABAD B AA E DE B DACBADCEAAAAEBAAE DEDBAAEADAEBAABDEAA DEBDDABFBFEDBDEBEBD DEDDAEABACDEDE EEDDEABABAABCACDDB CBACDEDEBACBDAEDEBEB FAEDDAEBABADAEAADDBCA CBDAEBABAE

CAAAEEAEAFAECACFACAADCAFACCAFEA DDDBAABACDAEBDDEBACDE EDDDBDABAA DD ACDCEAAEDEEAD DACBEEEABDADEDAE DDBAEEAEBDABDCABBBD EFFDAABDEBDCABBDACDB EEAEEDABDACBDAC EDABBBDEEEFEAD CDEDBDACBABDABAE AAAEDBADEDAEDDBDEAE ADDBDDEABDEAEBDAEABDB EDABBDAEBDCABBDCBDEBDCABB DCDAEDAAABDAAEDCBD DDAEEFDEDCAABDAEBDCABB DADDBDADBDBDDBDAAA BBDADEAABDADADBCABB EDEADEABDDBDBBEDBD DAAAA FBDACBDACDDABDDE DABDEFEDAEAB ACDBEDEBBBEAEDBDDA EEDBFDBBDDEBA DABDAADBAAEBDCABBEFB

CAAAEEAEAFAECACFACAADCAFACCAFEA DDCADABDEDAEDDBDAC BDADABEDDAEDDCAD DDDDEDAEEDCBDCABBABEE BDDCADAEDBDEAEEDBDBADAEBABAD EAEBDCABB V 2EDADBBAAA EADBBEAABDDCADABDADABDEAE BBBDACDAABE BDEAEAAEFEAA CDAADDEDAEDDBAABD DEBAABDACDADEDADAD DDBADBDDDEABDAEBD CABBDADEDCDBDEAEBDEAEDBDADBB EDAABDAAEDEADEEAE DEBDADBBEDBBDEAAABEDBD ADBBEAEBDCABBEDBBA I VGS 11 = = 196( µa) 3 Rd 56 *10 Rd = CDEDBDACABEEBDDDAA EBDEAEDAEDEEAEBD DEAEABACBACDBEDBDEA DDBDADBBE DDABDACDBDABDE DABDDDADDEBABAEADADADBBD DEBAEDAEDDB DEEBDEAEDAADABEED ABEDCBDDDAEBDCABBEAAEEDCB ADDADAEDB V1EA ADADBDDEBDCEFABAEA CDAEDBADEDAEDDBBDAC DABDEAECAEDDBDDEABD EAEBDAEADAEBDCABBEAA DAEACDAADBBDBDABDD

CAAAEEAEAFAECACFACAADCAFACCAFEA CDAEDBDCABBEDCBDDDAEEFDAABB ADBBDADCABBABCCDA V = E + V + V = 22 + 16 + 0.7 = 5.3( V ) GS min BRZ1 fz 2 DDAAEAEEDBBB DEDBDBDDABDEAAE DBEDDCADABDDAEDC EDBDEAEEDDADBDDAB DAEBDCABBEADEDDCADABDD EDA E DD A ED BD D E BDC E F E ADBDAEBDCABBDADBCDABBAD EDDBDBBDAEDDBDEBDEAEBB EAADBDBDEBDDEBDCEDBDEDCADBAA EBDCABBADBDADBBEEBDDAEDBDDE DAABDDDEFEADBDEAEAE BAABDEDCEBDCABBDAADBDEA EBABDDBDADBBEEBDAEBDCABB E I VGS 4 = = 71( µa) 3 Rd 56 *10 Rd = DBDDDAADAEBDBDAC ABDEAAAAABEDBDEAE AEDEAEDCBACDBEDBA DDBDADBBE

CAAAEEAEAFAECACFACAADCAFACCAFEA F EA EA EA EA EA D EA EA F EA EA F EA EA EA EA EA

CAAAEEAEAFAECACFACAADCAFACCAFEA EA EA F EA EA EA ACEEEAAEBDCABB DEDAEEFEF EA EA EA EA V1 V 2 F EA F EA EA F EA EA EBD A CDA D ACBDDEDABDEF DFDE BDADAEDEDBDDBA BAAEAEBDBBBCAEDED

CAAAEEAEAFAECACFACAADCAFACCAFEA DACDBEDEEBDCABBDAAAADBE DADADAEBDDAEAEACDAE DA EDB BD DA B D A E BD CABB DAAEDBDDDAABDBE BDBAEDCDBDAABD AC B ACD E DA E F AB DBAE B AEEAFBDDABDE ABBDADADEBDAEBDCABBBBEDAEDDDAE BDCABBDADDEEBDEAEEADBAED EADEDAEDDEABAACDBCDE DABAEDDDAEDBAAEBDCABBEF FEA FEA FEA D

CAAAEEAEAFAECACFACAADCAFACCAFEA FEA FEA FEA ACFACDBEDAEF DDABDDAB E ABDCA FBDACEDABBBDDAAEADDB EABEDBAAEDE P E P CMOS PT P Z1 P Z 2 P RG P Rd ACABDCA ABDEADADBDA

CAAAEEAEAFAECACFACAADCAFACCAFEA P + E = PCMOS + PT + PZ 1 + PZ 2 + PRG PRd P = P + P + P + P CMOS dynamique Lm statique com PE BDDADBEAAEDE PCMOS BBEBBAD o Pdynamique BCA EAA ED B AD BD DD E DAEDFBABDDCBDEDCEBDDDA EEFEAD o PLm BEADEDBDEBAEDBBB BCA ED BAED DCAD EAA ED B FBBDDADA o Pstatique B E AD D E D E A ED B DAEDF o Pcom B E AD DE B F E D FBEADDEDEAAED BDF PT BEDBDD PZ 1BEDBDEAE PZ 2BEDBDEAE PRG BCAEAAEDBDADEBDCABBBADDC EDBDCABBEFEAD PRd BEDBDADBBEE CAABDDCBDEDCEBDDDAEEF E AD EAA AADB ED B AD BD DD E DAEDFEDBDADEBDCABBDADBBEDC EEDCBCAADBBDBDBEBDDC DBEBDCABB VON VOFF ABDBAEEBD

CAAAEEAEAFAECACFACAADCAFACCAFEA A E BD CABB ED B DA BD B BD EEDC 1 1 P = QG. VON. f + QG. VOFF. f 2 2 DADBBBCAEAAEDBDAEDF DBDBEDBDADEBDCABBDBDB P P P dynamique ON OFF = P ON 1 = QG. V 2 + P ON 1 = QG. V 2 OFF OFF R. f. R dson _ P1 dson _ P1 R. f. R dson _ P2 dson _ P2 + R + R dson _ N 2 dson _ N 2 + R + R dson _ N1 dson _ N1 + R G + R G P RG 1 RG 1 RG = QG. VON. f. + QG. VOFF. f ) 2 R + R + R 2 R + R + R dson _ P1 dson _ N 2 G dson _ P2 dson _ N1 G EAD PLm EDBDEBADBBDBDB AE P 2 = Lm. I f Lm Lm. EE DDADAADB DACEDABBBEADDCEB EAAEDEEADDB EDEDBEAEAEDAD BD EAE BD EAE BA B EDDBD E BBA AAEBCAEDEDEADBD ADECABBEAADBABADBDA ABDDBBDADBDAEBDCABBDCE EDBDDABDEEDBDDA BAEBDCABBEBDDCDBEBDCABBEA BBEEDDBAE PRG AEE DEBDDBDABEBDDAE BDDAEDCDA

CAAAEEAEAFAECACFACAADCAFACCAFEA P P RG RG 1 = Q 2 = G. V 1.130.10 2 ON 9. f. R dson _ P1 R + R G dson _ N 2 + R 1 + Q 2. V 3 10 1.(15.1 + 4).40.10. +.130.10 5 + 2 + 10 2 ABEAD PCMOS EAABEADEB PT PZ 1 PZ 2 B PCMOS G G OFF 9 RG. f. ) RdsON _ P2 + RdsON _ N1 + RG 3 10.(11 + 5.3).40.10 ) = 54( mw ) 5 + 2 + 10 EEADBDDADBE DDBBB Pdynamique DBBDBDAE PCMOS DA Pstatique PRG PRd BED PLm B Pcom A EA AD E BD DAEEAAAADBDEBDAE DFDAADABDEAAEDBDF ADDEEAD AEAEBADEDEDFB DDAAAEDDEADABDEBD DAEEAEDDEDAADBB DA B BA BD DCADA E DD AADBBDDDBBEABABECDC AADCAEDADADEDEEBF DBDADBBBAEACDADAEAABD DEBDFEABDDAEAADC BADAEEACDADEDEA DA B D E AA ED BD F DA E EA B E ADEDDEEABEDEACDBEDEDA EABEADDDA

CAAAEEAEAFAECACFACAADCAFACCAFEA E EDA DA ACDAAEEADEAAEDE ADB B AEDBBDDEBCAEDED ABBDAABDEDBDACEDA AABADABDDEABA AEDBDEEDEDD BBBDACEDBDADABABEAAE DEDEBFEADBDDEAAE ADEDBDBDABDBCAE DEEBDACDABABDAF CDBACDBEDEBFDAEAEDB BAB D B A E BD DA ADADCBBDBADAEDFBA

CAAAEEAEAFAECACFACAADCAFACCAFEA AAEAEDEEBDCABBAEBEBCAE DEABACDAEAEDEEBDCABBABE EAEBEAABAEBDEAED BD D AC D B D E E BCA E DE BD DAEEABDDAEAEFE ADBCAEDEBECA BDBCAABBBBDEABD AEAEDCDAEBDDADDAAADB BABDBCAADBADAEDA AEEAEDEEBDCABBDEABDBCAABBBD AEDBADAEABDDABD EFBBDABDEEADBBA BDAEABDCABBEFEADEBAE DA E F DA B D ABBDAAEBBFEADDEA DA E A DEA D E E DA BC B CDE D B D ED A CDAEADBBDAEADDBD BAEDC EA E F AB EA D EDEBBEEDBDEDE ABB

CAAAEEAEAFAECACFACAADCAFACCAFEA BBBCA BCAABB AD DAE E E EEA EA DA DA EF E E F F ACDDABDDEEBCAEDEBD AD EAEDEDEDDDCD DBDABBEDACAD DEEADEDBEAEEDB DDDCEBDABAAEAEBDADABAEBACDABA EEAEDAEBAEADDEBBEEC EBABDAEAEACDAABBA DEAEDA FF D DAAAEDEAE DE AC A BD A CA D D BCA E DE DDEBAEDBAABB EAABABACDAEEBAEBA DAEDEDCADAEDADDDB BAEACDAABEDE

CAAAEEAEAFAECACFACAADCAFACCAFEA F ABDFEDBDEDEDA DEAEDFEDAADCAACED EDFDDBADAACD AADEEEAABADBADA BEABAABDADDAA EACDADEDEBAABEAA BDAEDFDBDCABAADAEACDEDE AEDDEDBABDEDABEEAAE DEDDBDABABCABACDAEBD ABDEDBCAFEDABEADAEBD ABDDDADAEBAABEDADA B D D BD A E A E DE D E DBADABADADAADCADBAEDD EABAEBADCADEABAAAAB D E BA DD EABA D E D A DEDBAEDAAEABDDDDAD EAAAEBDDBADADBBEB DADDBDDDDADDDEADDA DBDDABDCDBDEAEACDA DAEEBEEBBAEDADAEDBDC F D EDAEDDBDABEEAEA EADAEA BAA AEDA A DA ABDA B DDAACDAEDEADDEE

CAAAEEAEAFAECACFACAADCAFACCAFEA BDDAEDBEDBDBDACABB AEACDA F ABB F ν DA ACAEACDAEDDAEDAE AD BADDBDBDADAEBDDEDAABDA DADADABADEAAACDADBA CABBEDEADDADAADCEBC BDBBAADACAEA ACAECAA EBAEAEA E DE EA E A ECA D BADADACBADCEBEDEB DBADAEBADAABDEABBAA ACDBADFABAAD BDEDDEABAAAAAAB AABBBEDEADDEDBEAE ACDAEA

CAAAEEAEAFAECACFACAADCAFACCAFEA ACAEEDEACCA FF DEADADBBBCAEDE D DD BABADA E DD EABA D DBABAAEAEAAEDABBDBDE AADDDBBDDDCEBB DDAEDEEAAEAAEDEBBDA E DC A D B E EAA E AA E DEAEDDAAEACDBEDEADBBEAA ED B DA BDAD DBAE DDB A DDBBDDAEBEEA D DA DDA E DE D BD ABBABADBDDEABABBBCA D EDDDC E DA E BCA DA BB B DDDCEBDADABAEBDABAAEAEBACDABA DDABAEACDADAEBBBCA EDEDDAAAEDEBBACAB

CAAAEEAEAFAECACFACAADCAFACCAFEA BDBADABADADBDAADDBBB DBADAEADBAEDE

CAAAEEAEAFAECACFACAADCAFACCAFEA ABACDA CADEDADABDEDEABABCDEA ACACDAABACEAAEFAAEA ACFAA C CDA BAA E A EAD D A E D E ADADB EFDBADEDDABDEACDBDAD DBAECEADEBDBCAAEACFAA AAAABAACCEAABB FAFCDEFDCBAEAADED FCDEAAAABCCAAAEB D FADEA DE DD B EAADA ADB AEBACA EDDDADBAA BDCADBADAAEAAACBD AAAA BBDEDABDACADB EACCCDADEBACDBA BDCDBDAACDAAAAEDAD DEDCADA BDC A DE C D D AC DE DBADAACBCDEBDEAABCCAAFA ECB CAADDEDEFDBBACDEEA BABDECDDAAAFAACFAAAAA ACCEAA

CAAAECAFACEAFAECAAFACFAA FBFFF F AEEEDBEFEBDEFEDBEEFEBF... 96 FFFF... 97 FFFC... 97 FFF E... 99 AD... 100 AD... 104 FFF... 107 ADBAEDABDDAE... 107 ADBAEDABFEAD... 109 FFF. 114 FFF... 115... 117

CAAAECAFACEAFAECAAFACFAA FFF F D DA DBB A DBA E BD BCA E DE D ED B DA BBA BA ADBA A AA B E AA AA E D E EDCADAEDDEABABDDEAABD EAAEDEADEAEADCA DDDDADBDEDE BABABDDADBBDADBD DBAEDAEAEEA FFF C BEDEDDEDDEABA BBEDBDABBEDBBDAEBD CABBDACBDDCEDBDDDAEAEDAE ADEDBDDDBDBEBAADBDDDAE EDCADBAAEBDCABBADBDADEBDCABBBDADBBEAB DBDAEBDCABBDDEA EDDEAAEBDCABBEEEAEDAEAD BA A E D BA E BD E EDC DB ABADDABBABDAEBDCABBEADABED BDDDABABBDAEADABDAED DBADAEDAAEADBBDDA DAEAEBDEABBDAEBD CABBEAEDAAABDAEABEDAEADA BDBEEDCEBDDDAEAA AADABDAEBDCABBEDABDAEAD DADBDAEDDBEDBAEDCDABD CBDBDAEEBEDABDE BAA A DAA B BAA E A E DE D D E

CAAAECAFACEAFAECAAFACFAA DDEABADAAEDCAAEAD BBEEAEBDCEDAEA BCDDBADEDAEAD AAB D AB ABA EDDC DEA B A DABDAABDAADBDEBBDBAEDC BDADEDBDABDDAAADBE BDEDCEBDCABBAEBDADEBBEBDEAEEAE CBACDBEDBDEAADBDADBBEFBDAC ABBBDEDCEBDCABBDEAEBDAD BBE B DD E D E AA E AD E AA E DEBABAEDBDABDEEDC EDDBAEEDAD EBDADEBBEBDEDCEBDCABBEFEADA BDADEBBEEE kωbdaebdcabbeaa DEEDDBDAEABEF E 16 14 12 Sans Rd Rd 100 kohm Rd 56 kohm Rd 30 kohm 10 8 Tension (V) 6 4 2 0-2 -4-6 0 50 100 150 200 250 300 Temps (µs) ACBABBEBDAEBDCABBAEBD DBEBDADEBBEE AEDAABAAEDEDABD DDABDEDAEADCAACDA CBA BD DDA E E DA D E ABA E D AD

CAAAECAFACEAFAECAAFACFAA BDBADAEDEAAEADADAEDDEBD AEBDCABBDEEADEADADABD DDAEDDDCBEDBDDDC BEADEDBDFDEDDEDBAED DCADAABAEABDEDCADADBBADBF D B D DABB A AEA DA E EDCADABDAEBABAABDEDEBADE BBABAEAAEDEEEAAEBDCABBE DADEDBDADDDBBADEBDA CDA AA DD ED BD D E EDCADA B AD E BDADAEBDCABBEDAEAD DDAEBAAEDDABAD BDEDBDADEDBDA DEAABDDEBDEDCADAEDDEDBADBB EEABAEACEADDBA EEA FFF E DBBEDEBDAC EDEDDBBEABAE AAEADCAEABDDDAEEDAE ADADAEDDEADDAEABAA AAACDAFADDEEDCADAB DDDEDDDADDBDAECADCADB EA ED BDC A D EAA BD E DE ED B DA D E EDCADA DBBADBFABDACEBADBDDD BDADABADEADDABDEDCADA BBCEDBBBDAEBDCABBDAACAADA DADAEAEDBDADBBDDE

CAAAECAFACEAFAECAAFACFAA EDCADAEDDDDADBAEEA FADADDADBDDDBD EDCADAEDBADFAD BDEDCADAEDBADAAE BAAABAEADDBDBBDDE EDCADA D EA E BD D E D BAED DCAD BD E AD E EDCADA D E EDCADA B AD DDC E A B AD ED DDADEADAEDDBDDBABBA DDBABDBDADAEBDCABBEDAE ADEDABEABDAD EDBDAEDA ACFDEBDBBEDEDB AD E DACEDABBBDBAADBBA DEBDADBDDEDCEBDDDAEEDA BD DA BD E BAA BD EA BD D E EDCADAEDDEABDAEDEADAE DDDAAEADBBCAABD

CAAAECAFACEAFAECAAFACFAA BAABAAEDDEBDADEBBADA BAEDDCAD Rp ILm Rp ILm Lm Lm D ACDEABAD DDEDCEBDCABBEDADEEDCADAEDD FBDACBEEDBADAEACDE DEBFEDFDAABEEEBD A DBA D ADA E DD Vp E D ED BAED DCAD I Lm EBDAEBDCABBEDBDAD VGS DEAA D E DA BD AA B DA AAADBBBDAEBDCABBAAADBEBDD BEDCA DEDABDDAAEABB EDBDDAEDADDDAEEFEAD DCBDBADAEABAEADADAEDD DDADAABDAEADBFBFBDD EDBDEDBAEDDCADDCBADA BBDA di Lm E = dt Lm

CAAAECAFACEAFAECAAFACFAA BABAEADBBDDEDCEBDCABBAA BDEDBAEDDCADDADDBDADB ilm maxadbb DBDA DEEDCADA E *( t1 t0) i Lm max = Lm EDDBFDEEADEA BDDABDEADAEDDA EDABADBFAADDA AAEDAEABAEDBDDEBAEBDDE EDCADA DBB ED BD DA D B ABA ED D ADEDBADCDEEABEEDCADAE DDDACBDBAADBEDD RdsON _ P2 RdsON _ P3 ABADBDDDEF + E R dson _ P3 R3 R dson _ P2 Rp I Lm Lm ACFDBAADBEDBDDEEDCADA AAAADDAAADBEDBAED DCAD LmE I Lm maxbddeeaa τ1dbbdbda τ = 1 Lm R equ 1 R 1 = RdsON _ P2 + RdsOn _ P3 + R3 Rp equ +

CAAAECAFACEAFAECAAFACFAA D D E EDCADA A DDD A A CDA Vp' D ADAEDDEBDDBDEEBDDEDBDA Vp' = i Lm R max. equ1 EDBDDEEDCADABDAEBDCABBEFEAD DAAEAADDEDEDBADEBBEEAE AAEDED P1 P2 N1 N 2 P3 P4 Vp + E Vp' I Lm I Lm max V GS V +max V +min t0 t1 t2 t3 t4 ACEEEABED DAEAADBADBDE EBADBBEEABAAADAAA AABDDEEAAτ1BDDEEDCADAA B

CAAAECAFACEAFAECAAFACFAA D EA EAA BD A BD B CDA D ADA E DDDEEBDDEEDCADAEADDBDBDADA EBDCABBEDAEADBDACAAAEADADA BDEAAEEDBDAEDBDBB η.vp' BDADEDA EDDEABDACDAEDCABDD EDA D AD BD EAE A D A DDBDADAEADEBDADAEBDCABBEDA EADDDDBEDBDA V V + η < GS max fz 2. Vp' VBRZ1 AABDEDBABDDEDDDD EABAEAABDAD DAEEAAEAAEDEEDBDADB DD FD FA BD DABB E EAE BD DABB E DD EABA EA BD DC E BD A CDA Vp' ADBADADAEDDDD BDBDADAECABBEFEADADBDA DAEBDDCE Vp' EEABDDCEBDADDBDA EABDABDEDCADAAB 5* τ1d BDA EABAEAEAEDDAEB ADAADBEBDAEBDCABBAABDDABA DC BD CABB ED D ED A E BD D E EDCADAAABDBAEBDDBAEEE DAEDCBDEAEBDCABBEEDEAE BDADBBEE DBBDCEDAEADABBEBDCABBA DADBAEDBDAABDADBEDA AEBDCABBCDACDBBBAADAABBD

CAAAECAFACEAFAECAAFACFAA BAEDCEDBDAEEBEDABDE DAEAD DACEDABBBDBAADBBA DEBDADBEDCBDDDAEEDAE ADBDDABBDEABDDEEDCADA EDDEABDAEDEADAEDD DABC Rp I Lm Rp I Lm Lm Lm ACDEABED DDEEDCEBDCABBEDADEEDCADA F BD AC B EE E ACD ED B ADDEAD D E DA B D E EDCADA D D E DABAEABBEDBDDAEEDA EBDDEEDCADADAAABDABDDE EDCADA B A D DDDD D BD DE τ 2DBBDBDADACBD BAADBEDD τ 2 = Lm R equ 2 R 2 = RdsON _ P1 + RdsOn _ P4 + R4 Rp equ +

CAAAECAFACEAFAECAAFACFAA + E RdsON _ P1 R dson _ P 4 R4 Rp I Lm Lm ACFDBAADBEDBDDEEDCADA D A AA Vp' D ADA E DD D E E BD D E EDCADADBBDBDA Vp ' = i Lm R min. equ 2 BDDABBDADEDBDA AAEDCABDDEDADAD DADBAAEBDCABBBDEAEADA DDBDADEADBDEAADDDBEDB DA. Vp ' V fz1 VGS min < VBRZ 2 η AA BD E DBA BD DE D DA AEABBDBABDDEDDBDABD ADBBE

CAAAECAFACEAFAECAAFACFAA P1 P2 N1 N 2 P3 P4 Vp Vp' E I Lm I Lm min V GS V V min max t0 t1 t2 t3 t4 ACEEEABED FFF A EDEBDBAEEEEDCADADDA DBDEDCADADBBEABDEDCADAADBF DABABF RdsON 5ΩBF EABDBFDADADDABBB DDEABAAEEABDDBAABA EDBDAABAEAAEACBD ADAEDDBBAAABBDBAEE EEBDADBDACB

CAAAECAFACEAFAECAAFACFAA EEEBDAEDDADAEDDD BADAEBDEEEDCADAEDBDDBEDBDEBDBB DEADBEBDADBDAABADCED ADAEDDEDBADBBEABAEAB DAABEDBAEDDCADDBDBDB BDADDDDBAEBDACDA DDDADAEDDDEEBDDEEDCADADAAB EEDCADA ADADA E DD 14 12 10 8 6 4 2 0-2 40 45 50 55 60 65 70 75 80 0 D D D DCADA DBB A ACDBAEDAEBDEEEDCADA 200 180 160 140 120 100 80 60 40 20 DDADA E DD

CAAAECAFACEAFAECAAFACFAA 5τ. 1 ' V p DB DB DB DB A A DCADA DBB Ω Ω DBDDDDDAAEBDDEEDCADAEAAE DECADEADEE EDCADA DDBDDBDEEEDCADA DBB B DD D EDCA B D ADBB DD E ABA E A DAA B D ED BAED DCAD DAA A D D D E EDCADA DBBCADDABADEEEDCADAB EDCADABEAAEBDAD E ΩDBABDBADAEACDA EDADAEDDDEADADE Ω DEABEEDCADAADACDAE DADAEDDBDAD DBDDBBDBBAEBABAE BADDBDEDCADADBBDADBBEE ABAEADDAADDBDBADAEE DAABFEADDE D A AEADAABFEADDA EDEABDDCEBDACDA AA D ADA E DD DA BD EDCADA D D B AEAAEDEBDDBDA

CAAAECAFACEAFAECAAFACFAA DBDDEAAEDEABAEDBDA EA V = GS max 15. 1V V V GS min = 5. 3 FADBAEABAEAE EDBDDBEDDADBEDBAEDDCADE ADBDABEDBDDBEDAADB DEBED BAD V GS max V fz 2 η. Vp' < V + η. Vp' < V BRZ1 V GS max η. Vp' < 16 15.1+ 0.7 η. Vp' < 1.01( V ) BRZ1 + V fz 2 BDDBEBDADEADADA η. Vp' < 1.01( V ) i R Lm max equ1 R3 < 9Ω. Requ 1 < 1.01 < 19Ω BAD η. Vp' V fz1 V η. Vp' < V GS min BRZ 2 + V < V BRZ 2 GS min + V η. Vp' < 6.2 + ( 5.3) + 0.7 η. Vp' < 1.01( V ) fz1 BDDBEBDADEADADA η. Vp' < 1.01( V ) i R Lm min equ2. R < 19Ω R4 < 9Ω equ2 < 1.01 DBBADBADA EDCABBDDE DAD B BD AD ED BD AC BD EDC E BD CABB D BD DBAEDA E E E EDCADAEAABDAEDCDADEBBEE E kωbdaebdcabbeadaaedbdaabd DDBBAEADDDEEBDBBDBDAC

CAAAECAFACEAFAECAAFACFAA BDAEBDCABBDEEDDBA EEABAEADBDDDBAD E ΩADBEAAAE ACEAABDDBAEDAADBE AD DACBBDADDEBFEAD DDABBBDEEDCEBDBAEEBD DDDEBDAEBDCABBDEEABAEA DBADADAEDDDCBDCABBBDAEBDCABB ABBEDEEEBDEAE DDEEDBDAEE BDEAEEDDAAADBDDAEDCABDCABB EDBDDEDBADAEBABAACDEEA ABAAEDCBDCABBBDAEBDCABBEDDBDBADA EBBABBEDDACDDAA EAEDBDAEBDCABBDCEA DDDCBDDBED ABDBBABAEACDACEBD DABABAEAAAEABBBD DBAEBDEBDEADEABAA BDBDACBDACBDAEBDCABB

CAAAECAFACEAFAECAAFACFAA DADEEBBEDBDBDD DEEDC F EA EA F EA ACAEAAD F EA EA EA EA F EA EA D ACBDDDBDBEF DDDDDB

CAAAECAFACEAFAECAAFACFAA FABDADEFEAD DDAABAADDD BADDCEABA BDCBDCABBDACBEEEDEE ADABDAEDAFBDEEDAFBDAEBD CABBBDADADAEDDEDE DBDAEBDCABBDAADABDBDE DBEEBDEAEAADDAEDA BDDDDABDBDBDEEDAEBDACAA ADBDDDEA ΩEFEAD F EA EA F EA F EA ACEEAD DDADBBDBDAC ADABAEEABDAEBDCABBDA AABBEAEADDABABDEDC FEADBBDAEBBDBAEDCD

CAAAECAFACEAFAECAAFACFAA F EA F EA F EA F F F EA ACEEAD EDBAEBAEBABEAD DDABBDEDEAAED DBAEBDBDCEAEBDEDEDD DDDAEDABEDEDEBBDACD EDEDDAEDF FFF BDDABDACBEEAD EBDEAABABDDCEBDCABB DABDAEBDCABBEBDDBABDDBDBDEDCE BDCABBDAEEBDAEBDCABBEBDDBABDDB DDABDDAEDCDAABDCABBEDAEAD DA EA BD BDC EABA E A D E EA D

CAAAECAFACEAFAECAAFACFAA AABABADAEDDEABAADCEE B AA E DE B ABBAC DDA AEAD D EDADCEADEBDAEBDCABBAABBDBDAC DEAEEBADEBDAEBDCABBBBBA EAAADADAEDBDDDBBAEAAAD ADADBDBEDBDBAAEAEB B AA E DE BAC C E ABA DC EDCBDCABB CDBADCDCBAABADAEEA BDDABBEDDEABAEDDABAEDCADAB DAEEEA ACAEAAEDEABBACDDA FFF D DA D BB E DE DAADBAEBDEDBDADAE ADDABBEDBCDEBDCEABBD

CAAAECAFACEAFAECAAFACFAA E D BD AD DE D B DDBADBAED

CAAAECAFACEAFAECAAFACFAA ABACDA DADBAABCECFACAAFAAECAFAEA C DEAAACACAEFDEDACBDC ACFAABEAAAEAAAEEA CADEDAACDEBDEDCADAAA DDAABDCDEAAABA CEAAEFAAEAACFAA

CAAAACECAACECAFAAAFACFACA FBF F AEEEEBDBEEBDBEFEEEFEBFE B... 118 FF... 119 F... 119 F... 120 CDADAEDC... 120 CBCAFDA... 121 CAEDFEDCEDBAADA... 123 CAEDF... 124 CAEDCEDEBDAEDF... 128 CADAEBDEBD... 136 CDDDADAEBDAC... 141 FD... 144 CAA... 144 CADBBDDBA... 147 CAAADABBDEBDBDABDAEDBBCAAB B... 150 FB... 153 CDBDCEAA... 153 CDDDADAEDD... 155 CDDBAEDAADBEEA... 159 F... 163... 164

CAAAACECAACECAFAAAFACFACA F F DEADADBBBDEDEAEAA EEACADEBDBCAEDEDEDB DADABDAEACABADBDBCA DBBAEDEDFBDADEB DDEDEBADAEAD AEDEDBBBEAABDAE DDEABADBAAAABAD ACDAAAABAABAAEDFEBD ADADAEDDDEABEEAC DBDCEDBAEACADAB DBADAEEADEABDBD DA F DBDEEDDABEBDBAAAEDE DAEDCAEAABAE DBADAEAEDDDABEA CAEAABABABDAEAAEDE BDABEAEDCADDBBEA CDBADEEDAACAEDAAEDAB AEBDBCAEDEDDEDDEABA EDBDADADAEEAAAAEA EADEDAEADADEBABAB DBADABABDBDAAEDAB ABAADBDBADAAABDAE ADDEABDDAABEADCEABABAEA ACDCEAEAAEDACF BAAAABDBBDDEABADA DBAAEEAADBDAABDA

CAAAACECAACECAFAAAFACFACA ACDAEDEEBDBDAEABAABDA EEABEDAEAAACEDBDEEAA BDAEDBAABBDEAADCA ADBEDAEDF ACDA E DD EABA AA ED BD EDDBAAEAAABAADAEDBADA DAADAED F C FABDEAAAEBAEAEEACAAE EAABDAEDCBDACAAEDFEBD DAAD D AC EA A D F A DE DAEADDDDADEAED FDADAEDDDACABBBDA ABAAEBDAADFBBCAD DDCBBADEDBDAEACDBBCABDA EDBADAAEDCEDBAADAADBAABACDB EDEBDAEDFCEDAADBBD DA E D D F D DA AD D EDABB B EAABAEA DAEDAEDFBBDBCABA DEBDAEDEECABBDA DFEAAEBAAEDEDEE BDDABDAEBDDA BEDAEADAEDAEDC E DE E D ADB E DA E AD E A ADEAEBDA

CAAAACECAACECAFAAAFACFACA B DBA D E B EADA D EA DBADA DAEDFBDEACBAA ABAAADABABDA ACFDAEBDAC C E A EAA DDDD AB D AA ABA BCADEDDBAAAACABABDCAE EEAECDEEBCA A D B ADAF F A E BCAEBDADBBEDDEAE CDEEDAEABABCA A AABDA BB E BADAF D DBD

CAAAACECAACECAFAAAFACFACA EDDAABDBCAEBADAF BADA DDABABDBCAFADBDDADDADB AABABDEAAABAAEADEBDBCADD ABBDAAEEABEA EDADADBDDBABDDEEAA DABDEADBEBDDEDBADADACABB AEEBFDDADBADABB DBAEEBDBCA BAEBDBCAE ACDBADAEDDB D BCA D E AD E B ABAA D AD E DBBADA E B AD A DA B AD DADABADEDDADADADDAC BDEBCABCADB DADAECDAADBEBABBACA ADABADDEAABCAABDA EAABBDACDDAACBD EEDEBAEBDBAEEBDADEB DADADAEAABABA BAABAEDAFFDBDAE EBBDEBDACEDDA DABDDEBBCEDDBEEDEBDBA

CAAAACECAACECAFAAAFACFACA AEDABADBDDDBDCDBECABB EDD B AD B DBA A CDE BCAABAEDADEAADDAD AEABEAADEDEDBDAEACDBBCA EACDBEAEA D ACEBDBCAEBF DDADEDEFFEDADDA DA C D DDFBDAEDACEF EFDBAAEDEBBDACDD

CAAAACECAACECAFAAAFACFACA BCA F DDDC D AA E AA E DE D BB BABADA E ACDB E DE A B E AADBDEDBDBDAAAE FDDEBABDBBADEABDACDBDA BDBADAEBDDEBDBDACBB ADBDEBADBADAABADBA AEDEBDCABBBDEDABD BDAC EE EE EE EE F EE F F DE D EE F F F D ACADCEAEDEB DFFFFDDBADAABBDDEE DAACAEFFDEDBADAB DE EDBDABFBFEDBDFDEDB ACDBDDEEAADEDA DABDCEDEEAEAAAE AABDDAECAEEA C BDEAAEDBDDAEDADEDAEDCB DFEAAAEAEDEADA DAEBDAEADDAABFB FBFBFABAEAE CABBDADBEBDBAADEBADEAEABADADA EDDEABA

CAAAACECAACECAFAAAFACFACA DAEBAEDEAAEBDEDAEFAEA BDEDAEDDAEDEBDCECABB FEDEBDCECABBFD EBAEDAABDAEDFEEEBDDABBEF DEABAEDCDAEDEDBDFEEE BBEF EAEAABDDABBEBDCECABBBFBFBB W W PMOS NMOS 3 = 360*10 3 = 525*10 6 6 = 8333µm = 5714 µm BDCECABBDADDACBACB AAEDBDEDAEEBAABDE AABDAEEDCEDED EBDACAEFEDFEAD EEDDBAEEA EDDABDBCBEEAADBE DEAAACEDBAABAD EDEAEDBBBBDEAEDFABBD E D DBA D AD E DB EA AD E DBBADA E BDAAAABADBBEDAD ABDADBEBDDDAEFBDDAD ADEABAADEADDADEDBBADAA E EA D DA BD AD E D E D D AC BAAEA

CAAAACECAACECAFAAAFACFACA ACDAABAAEDED DEDECABBCDBEAEDAEABD ADDDAACEDBBEBDDE F E D A F BABBBDA D EA E AD EDCBDAEDAEFEDBDD ABAEADEDBBADABEBABAADBDE CABB BCDBADEDBDADAEDDAAE AEDABDAEDAFBDEEDE DEDAEABABEEABAA DEDBAEEEEDB DEEEDABDABDEDBDED BEDBAEDAD BACAEEBDDBDDCEABA AEDBFABDEAEAAA ABBBDACDABABBBD EDABADA A B F D A ED BD ABA BCACDDAEACDEAC DCBDADAEAADADAEDEDFD BADEDBBADABBDAC

CAAAACECAACECAFAAAFACFACA ACFDEBDFADDAABAEDB EBD F DA EA BF ABB DA ACBDEFEACCDDA DACBDBDEFAABAEDBDF DDBDEDEEDADECABBEAAD E A E F D DAA C E D BBEBDDEFEDDAEDDEADB

CAAAACECAACECAFAAAFACFACA EDE E D ECABB E D ECABB EDEEDA ACDAFEDFDBDEDEEDA CABB C D DABB E F E D F A AC D AD BD DDAEEFEBBEFEDB DDAABDAEDBBCAABDEADEABA ABBDAEBDDEBACEAABCADEBAC ADACBAAEDBDDE DEEAFDDDCEDBAADABDDAE CABBEFDADCBADBADAAEDBB DAADCDABAEBDDEA DADBEAAEBDADAAAAADBE DCBCABBEFEDFDDE DCEDBAADADADEADBBDFE BACDA

CAAAACECAACECAFAAAFACFACA DACBDEBEDEBDAED FDEADCEDEDDAEABBAA DCEDBAADADAADAEEAABAADB DEAAEDF A DC D B DA BD AD DC EDEDDAEABDAADBADBCAEBDDE BACBADEDEECABBBDAEDC EDBAADAAD DABAADCEDBAADADBAABDAE BBADDEBDDDDADCDBCEADED ADEDFEDBDDEBDEADC BAADCEDBAADAADBAABACDBE DEBDAEDF DEDABBEDAEA D D F E EDA E DA E D DC EDBAADAABDDDDDAEEAABABDCEDA EABDDBAED B A DC EDBAADA D F F F ACFDEDCEDEBDAEDF DEAEDBDAEBDACBBACDE EDFDDEAEDEADADA BACDBCAEBDEDAEBB

CAAAACECAACECAFAAAFACFACA ACDBCAEBAABAEDFBDABDAB DEEBDDADBBCABAEAD DA E BAA B BDC BDCA D DA AD D EDABB BDABA EAAEBDDEBDFDAE EAAEBDCBBEDFEABAADC EDBAADAEAAEDCDAE BDAEDBAADCBDDABBEDAE DCEDBAADAEDADAA ABDDABBEDAEDCBDAEDCADD DEDAEBDFDDBDAAD DAEEBDDAAEAAEDBDFD ACBDDAAEDEAAEDBDFDEBD AEDEEFFEAEAB V < Vg < E + V D V gsthn = 2. 93V V gsthp = 1. 65V E F gsthn gsthp EBDDDABDDDAADEAAD ACBDBDABDEAAEDFBD EDDAEDAEAADCEDBAADAABAB DABBBDDBDABDABDAEEBCAABDE DDEBEADEDEDDAEBD EAAEDBDFDABAABAEA AEDAEDFADDBDEA DBEAABAADCEDBAADADAABA DDAEABAAEDEADDEBDF DEACDEAACDBAABDEAA EDEDDABAEAAEDEB BBBDADEBDFEADADEB D E AA EA CDE AD B E E BDCECABBEDAEDBBABB EEBDBCAEF

CAAAACECAACECAFAAAFACFACA W W T1 T 2 180 *10 = 360*10 180 *10 = 525*10 3 6 3 6 = 500 µm = 342 µm Vg E E +V thp V thn t Ic c t ACDEAABEBDDAEDF DE AA DEAAEBD DABD DEAAEBD DAB DEDDAEAADCEDBAADA ACAAEAADCEDBAADA EAAEDAEEADCEDBAADAABD EDBBEAADCDACBDEBAE DEAAEDBDEAADCEDBAADAAEBD

CAAAACECAACECAFAAAFACFACA DABBEDAEEADCEDBAADABDAEE DEDBDEAAEDBDEAADC EDBAADADBDABDDDDEAAEDBD FEAEDDDEBEDEDDADAE EADCBDEAADABADAE BBDCECABBADADBEEBDBCAEF µm W µm W T T 57 525*10 30*10 83 360*10 30*10 6 3 4 6 3 3 = = = = DEDDAEEADCEDBAADA DE AA DEAAEBDDA BD DEAAEBDDA B ACAAEEADCEDBAADA ADCEDBAADAEADBACDBBDAEBB ABEADCABCEADDEBCEADE DEACDBABDEDDADDABDAEDEACDBBD DADADBADDABDDABBEDAE DCEAADCDEDEDAEBAAB ADABDCAABDABEAABDDABBE

CAAAACECAACECAFAAAFACFACA DCAEABBEEADCDDDABBADE AEAABCADDEDAEDCDB AEDDCEDBAAD W W T 5 T 6 = 83µm = 57 µm DCBBAAFBDAEE B E BD DB E BD AD BD EDA E AA DA DA BD DADABDDDBBABDEABDA BDDBEBDADADBEEAADA DDDAECADDDBBADAD AD D A BB D AD CDE A EAA BCA BD DDA E B A DA A D EAADDBDDEFEDFDCEDAE DADACEEBAEE BDDDBDADAEBDDBEADDD DAADE kωddebedbb EADEAADABEBDDE BBDADBEDBDDDBDCEDBAADAE ABDAABEADAAEAE ABEBDCABBDABADEDBACDBBCADEAA EBDAFADEECABBA V GSth = 0.48V ) ADADA EAA DDEBDC BB A EAA W T 7 = µm R = 3027 kω

CAAAACECAACECAFAAAFACFACA EADEBDAD EADEBD AD FDD FDEBDAD AD ACAADAEBDDBEBDAD D AC DA B EAA E D F D DEDDEDAEDCEDFDACBDAC BBDEDCEDBAADAEDAEDF

CAAAACECAACECAFAAAFACFACA ACFEEAAEDFDDE DCBBA DCEDBAADA ACEBDEBDCBBAE DCEDBAADA

CAAAACECAACECAFAAAFACFACA DAF EDF DE E A EDF DB B D E A DAF EDF DCEDBAADA DCEDBAADA ACBDE DCEDBAADAEDF CA DAECDEEDFEDBDACABAEADB EAABDABDEAEDEBDDBDBADA DAABAABAEDFBDDAEDE BAABBDCBDCAABBAEACDEDE BBEDDEBAABBDCBAEACDEDE BAADBDEAEDFDACBD BDEBDEDBDBBEBAADDCB A A BBB BDA E D E BDC BB AB DCEDBAADABEAADABBBBDA

CAAAACECAACECAFAAAFACFACA EDE E DCEDBAADAEDAED DFDDEAAEBBDEAD EBDAE DCEDBAADABE DCEDBAADADA BCBDBBBACBBEADAB ADEBEADEADAD CDEDCEEEBDAEDCDAEBDCAA B DA A EAA A DDBBB D AEA E ADA BDCA CBACDB BBA E BAADEDDCEDADADBBDBDCE AEAAEABEDEED DAABBDEDEEBDDEBDBADAEAD DEAE DE DE AD DADB E A DEB D DE DE BA DC EDBAADAEDF DC EDBAADABD F D DE ACBDEBDAC D EA B BDC BDCA BBB E DE BDAEDBDBBAAEDBBBDEADEAEAA BDBCDEDEBACDBEEDDEABAED

CAAAACECAACECAFAAAFACFACA ABDDDACBDBAADBBB ADADBDDAD CABAEDEABDA EBDD CABADEAEBDD CCABAEDBBBDABD ABDABDDBDABDD ABDDADDAEBDADD BDD DDDAEEAEADDEE F F F C C F F F C C C C D D ACFDBAADBDBEBDC EDF BDAEEBCAABEBDABDADBBBDB EADEAEDEBDDBEDDADDABBCAAB DEEDAEADBDAEBDDBD EBDBAEDBEDDDDA

CAAAACECAACECAFAAAFACFACA DD DB A C C CC DBDDDEAAADBEADD DDAABADABDABDAEDBBCAABDE DDBBADEBDCBDCABDAEDBD DDDADCEAABDAEDDEBDDA ACDBEABDDDACBBDEABDA DDBDEEDEEBDCDBAB DDAAEAEABDAEDBBDAED DEBDDBDDDAABADEBAAADD BADEDEDEEEDBADAD BAEBCABBDACBDD AEABAEEDEEBDCBDAEBDEDBEA ACADBBDACABBDABBBDEBDCABBDABED ABBAAEBDDADBDCBBAB DCEDBAADADDCABADBDEB ABDEABDABDACDBADAD BAEDEEBDCEABDDBEDEE BDBADAEBDDDDBEEDEEBDCEEDE BD EA EBD E A C D B AAEAADDBBBDEEDCADABD DBEEDBBDAABBEABAEEDDA DA ABB D D A DBE B EDEEBDCBDABDA

CAAAACECAACECAFAAAFACFACA DE DE AD DADB E A DE B D DE ADB AB { BCA DE DE DE D DE ACBDEBDDBDEEDEEBDC DEDEEBDC D ED A EEBDC ACBDEABDAEEBDCEDBBCAABDE

CAAAACECAACECAFAAAFACFACA CD DABDBDACA EBBADDBAAEDADACD BDDAEBDDABDACBDE BDAAAADBBCAD BADEDBADADE D ACDDAEBDACEBDA A EDEDBDDAAEBDD DDBAAEEDDABDDCACD B E AA D EABADA D D BDAED EDAEBABBDABDAD E

CAAAACECAACECAFAAAFACFACA FACDBEEA FACDBEEA FACDBEAEA FACDBEAEA D ACDDD ADBDEDBEAAEDCDADE ΩAADEDEABDDDA EEAEADEADDBBF ABDBDACD ACBEDADAABDEAED FAEBDAEBDBADABEEAADB EDBBBDAEDEDDBADBDADBB EEEAADBEDBBBDAEEEE DDBADBDADBEBDDBADAA BEDAEBDADEEDDABA DEEDBABDCEDAACAADAA BAEDEAEDFABDABADADBDAEDBADA EBDBDABDDCEEDBDEDCD DBADAEABDBDBAAABBEAAEDB DAEDCDDAADE ΩBDDC

CAAAACECAACECAFAAAFACFACA E EE DEDCDADB DEEDCDADB D AEDBADA D AEDBADA ACDDADAEBDEDAEDAAEBDA EDBADADADAEDEAEEAAEBDA EDBADA DDABABBDEAAACD BBEAADEAEDBDADABADF EBDACDEBFEADEAAEDBD ACBDDEDEAAEADDBB DDEAAEDEDCDBBBEAEBD ADECABBCBDADBBEEDAABDDDAC DBAAEABAAACEBDDADB ECABEADBABDDEEDAEDF D AA E A B B E AD DA DA DECBACDADEAEBDDA DBEEAAEADABADEAB DAEADADAEEEDBDA FCBAADAEBDDEBDF

CAAAACECAACECAFAAAFACFACA AAEA AAAC AD DAEEA DA ACDDAEBDDAEAAEAEAAAC F D CA A E DA EAA B EAA E DD EABADDABDDAAEAAE DAEDCEAABACDBEDEDA AEDDCADDBBADBDDBEDDCAD ABDEDBDFEDBDDBABBADEBD ADEBBADAEDDDAABCA EAA AAB ED D BD DDB ED B DAEDBBAEDDCADEDADADBBDB CDEABEAEDBDAEADE DADDEADEADBBE ABAEDADDABADAADD AADDBAEDAEDC

CAAAACECAACECAFAAAFACFACA EDEADBBBDDAAADBADBEBDAEE E ACDB D B DD B BB DA DA E AEDDDAEEBDCABBEDAEADDE ABBDADDDADDADEBDCABBEEA AEDEAEAEAAA ADADDEBAD ABEDBDEADBDD EDDBDBAADAEDEAEDFBBAEA DB BAA E DA DADB D AD A E BAEABABAEBDCADEBDD ABADBAEADAADDAAE EAA E AD E B AB EDA D ABDEADBDDDEDAEDF EF ΩEF Ω DDABBEDAAABBDEDD ABAABDAAEBAEDDCADBAB BADEDBDAEDDEABADAD BDAADDDDEDAEDDEDBDDEBA DADEAEEAABBAADDDBE BAEDDCADDAAEDAEDCBDDD AAA DDBDAEDDEDBDA EBDDEEAEDAABDADEDAE DDDBDAAEDEECABBDB AABAEAEEEAEED ADEDAEDDE EAAEBAEDDCADDBDBAAEBD ADDDEDAEDDEDBDDEBA A DEBAEDBDDD

CAAAACECAACECAFAAAFACFACA V GS V fz 2 Vs < V Vs < V BRZ1 V BRZ1 GS + V Vs < 16 15 + 1 = 2 fz 2 DEBAEDBDDD Vs V fz1 Vs < V V GS BRZ 2 < V V BRZ 2 GS Vs < 6 5 1 = 2 V fz1 AE DA BDBADA D ADA E B D E DDAEDDEEEABDBAAEAD ADAEDBDDEBADBDADDABDBB BDAABDACDBAEBDAADBE DCBDDCEAEADABAEAABAAB EABDBAAEBDADADAEDDDE EBDDBADAEDA Vs 2 Vp = = = 1. 36V 1.46 1.46 DBAADADBEDEDBAEDDCADDEEBDD BAEEEADBDABDADBDDDE F ED B D F DB Ω D B E BCA E DAD CBAC ED A B E BD AD E BB ADAEDD I Vp 1.36 = = 0.298( A) R + R 2.28 + 2.28 Lm = dson _ P1 dson _ P2 AEADBAEABAEAEED DADAEDDBDDBEBAEDDCADE DBBDBDA Lm = E * t I Lm 15*500*10 = 0.298 9 = 25( µh) DAD DB BCA ED BAED DCAD BCAEAAAEDBDFEDBEDEBADBD BBDEEDCAE BDEDADDCECABBDBE

CAAAACECAACECAFAAAFACFACA BDAEDEEBCAEDEEBDCABBEAA EDBDFDBBDBDA 2 6 2 3 PLm = L* I Lm * f = 25*10 *0.298 *50*10 = 111( mw ) 9 3 PCMOS = QG * V * f = 100*10 *20*50*10 = 100( mw ) DBBBCAAABEAAEDEDE BABCDEBBDADEBDAEADA DDDBDADEABDCADEEAEEEBBD DBEBAEDDCADBEAAEDDBB ABCAEAAEDBDEBAEAAE DADEADABBADBEAA EDBDAC CA DABABDAEBDEDAD B DBADA E BDD B AA AA DA DB E BAEDDCADBDBCDEABDAADBEA EDAEDADABABDADDDABA DE D B DBADA E DD EABADACDBADCEAADCAEBB DEDCEEAAEDDAB EAEAAEDBDABEBAEDDCAD EEBEBAEBBED DEDDBDEBDDEDEDDDBDE BAEDABDAEBAEBDBE BDBBEEAA

CAAAACECAACECAFAAAFACFACA A e B C G H F E Φ1 + Φ2 D Φ1 Φ2 D ACDAADCAAAADBEBD DACBDADBDBDDAAEB EDBDAAEBDEBEEABD DBEBAEDDCADEDDAEEA EBBADADBDAE R ABCD = R AFED = R AB + R BC + R CD R AGHD = R AG + R GH + R HD 2 Lm = n1 2 2* R + R AGHD FBBDBBDDBADEEDAA BBADADBBDAAEDDCADEA DADAAEAEEDADEDADE DDADABDBDAEDCDBAEA EBAAAABACDCBE AADAAAADDDAEAE BDCDBAEBEDABBAABDAEE A D D D AB EA B AD D BDCDA E BD FABDAABEADADBE BDAEDDEBDDBADAEDDBDDB AAEBDAEBDAAEBEDDE BAA ABCD

CAAAACECAACECAFAAAFACFACA BDADBBBDBDCAADBEAADAABB DDDCBDDDEBDABD ED BB ADA E DD E D ABAB EBA BD CABB E DA E AD E D DCAD D ABABDADBEBDDAABEED EBEEBDAEDEABDEDB ACDEBBEDEDBAEDDCADE DBBEAABDBDCEAEAAEDEDBAED DCADFDDDAEDDCADEBDDADB EDBBADEDBADAABAEEDDE DEABDDBEDABABEABBEAD DDBAEEBDEDACE ADADAEEBDBDCEBDAEAAAEDE BDCDADDDDDBB BDCEAEBAEDBABDCE B A ED B BD DADA B EAA A BABDDDCAAEDB EBDABCAEDBADAEB

CAAAACECAACECAFAAAFACFACA ACBDABDBDAEBDABDCDAEBD D CA D ABDBBDDBADABDBAEB DDBDDBDABDABDAEEBCAABBA DAEAABBDEBDAABBBDC EAEA EDE BD DBADA E A E B B AA EA BEDADBDCAADBEADAADBBA BEEBDDABDDDADBD BBBBABAADBDDEAABEDBDA DDABDABAEABBABBDDA DBEDABAABAEBDEDAAE BBADAEAADAE EDADAEABAABD ADEABDAABBDEBDAEDA BDC DCA D E AABA E BD B BD ACD

CAAAACECAACECAFAAAFACFACA ACAABAEBDEBBE DFFFFBDFF DBDEBDDDAEEEAAE BDCDBDABDAEDBBCAABBDBD EAAAEBDCBCABBDDBDBAED EADBEDDEAACDEDDBBEBD BDAFFDEABDBDBDA EAABDBDDBEBAEDDCADBBD EBBDBDBBDDBAE DBAEEAADBEADACB BACEDABDEDBDA FFF FFF EDDCAD EDEA AAEBDC DBDDDAEE

CAAAACECAACECAFAAAFACFACA ACACEDFABDABDBDA DBDBDDEBBAADAA B AD A D BD ABDA ED B D D BDEBAABDABDDBE ADEBADAEDADADBDDBD ADBDDDEFEDF Ω ΩAD DADDEBDCABBDAABDADADAEDBDDE BADADADAEEAAEAADDBDBDEA BADEBDDCCDD BBABCDCDAEBDADDDA EDEAAEA ADA FEDA EA DCEA ADBA AD mωb AD mωb DBDDDEBBAA

CAAAACECAACECAFAAAFACFACA F B CD DBDCEEACAABDACB AAAABDDEABADBABAEBD DBADAEDDDEABEEAC DBAADBCAABEEACBCAEDAADBA DEADDADADAEABEEDBDCE EEADADDABBEDBBBDBDE BDBDCEBEBDACEDAE DDDAADEDAEADAB BDBADABADABABDACD EFC AD ABCDB DFA DDA DFA D

CAAAACECAACECAFAAAFACFACA E BD EDE EBDC ACDBDCEEAACEAA D DBADA E DD B AA EA E E DADDAEDADABDAEEAEB DABABDDADBDDADA ADAADBBAEEAAAA ADAADBBABEEAAAA ADB DACBDEDDEABADBAB AA

CAAAACECAACECAFAAAFACFACA ACBDDDBABAA ABDACBDEEABADADABBE D BD DA AD DBB BD DDADA E DD BDDABDDBAEDAADBEEACA ACAACBAA CD ABDDEABADBABAAAA BDDDABDAEEEEAED

CAAAACECAACECAFAAAFACFACA DABDDDDDAAEDAEEA AEDDCADDAABDADEADCADAEDBD AC DA DAA E DDA B ADA E DD CDEDBDACBDDBADEAED EAEDEDDEDEEA DEBEBBAEAADDBE DBDBDDBDAAEBDDDB AEAAFDDBEEDBDCCDEBD EAEABDADE BBADABB mωabddbe mωdbdabdadbdadaed BDADEBBADAEDD η ACEBDCAABEDD D A DDA B DD AA B BD E BDACDDBEBAEDEADBE AEBDDBEDBDABDADB DDADBDDBEBAEDEAEAEDD EABADBAEDBDADEADDA BAEDDBDDDDDDDBDA DADAABDDBEBAEDEACDEE EBBDABADEBEDBBDACAADD ABDCEEDBDA EDBEBAEDDCADEBAEDEA

CAAAACECAACECAFAAAFACFACA 8 10 5 Lm (H) Lf (H) 1 10 3 Résistance à vide (Ohm) Résistance en court-circuit (Ohm) 6 10 5 100 4 10 5 Rp_ouvert_compensé Rp_cc_compensé 10 2 10 5 1 10 100 1 10 3 1 10 4 1 10 5 1 10 6 1 10 7 1 10 8 f Fréquence (Hz) D 0.1 10 100 1 10 3 1 10 4 1 10 5 1 10 6 1 10 7 1 10 8 f Fréquence (Hz) ACDEDAEAAEDDBDDAD AEAAEDDBDD DDABBAABBEDEDDAE DDBDDBDBDACB DDDDEDDADBEDBDCBDCE DABEABE DEBAEDDCADDBDDADDADDDDEBE

CAAAACECAACECAFAAAFACFACA 2 1.5 od 1 0.5 DEDDAEB Rapport de transformation (phase) 200 100 narg 0 100 DEDDAD 0 10 100 1 10 3 1 10 4 1 10 5 1 10 6 1 10 7 1 10 8 f Fréquence (Hz) 10 100 1 10 3 1 10 4 1 10 5 1 10 6 1 10 7 1 10 8 f Fréquence (Hz) D ACDEBEDEDDAEDDBDDDE DEDDAEDDBDD ABDDAAEDDBDDDDA AEAADADDBBEBDAEACDBDDBDD ACDB E DE E DBA D ADA E DD B EDAACDBEABAEAAACDA DDDBAEEEEDACBB ADEEEEAADAEDAEDD A D B E DCDA D B DDDACBACDBCDBEABBDAE A D E BD E ACDB D E BAED E A E DDAAEBDBAEEBABAEAEAA DABDEADBDADEBBADADE DDCAD

CAAAACECAACECAFAAAFACFACA 25 20 15 Vp Vs 25 20 Vp Vs 10 A 5 0-5 -10 15 10-15 5-20 -25 2 4 6 8 10 12 14 x 10-6 0 2950 2960 2970 2980 2990 3000 3010 3020 3030 3040 3050 ACAADAEDAEDD BBDDADDADAEDDBDDBDD DBAABDADADDAEDCDD AEDDCADAEDEABDADEBBDAA B D E DDA B DB DA B E DDBDDAEDBDBDCEED DAADDBDDBAEDAADBEEAB CD D A ABA EA AE DE A BDADACDEBCABDF CDAABCACDDBFDDEABAAEBAAB DEAABACAEBBAEEDDDE AADDAEAEBEACD EDEEADEAAEADBDDDA BDACBDACBDEAAEBEAAC DEEEAAEADBEAAEAD EEBDDABAEA

CAAAACECAACECAFAAAFACFACA EEDC α = E Ω E A C ΩE kω ACFDBAEAAEADBDDBAEDAEEAAC A AC ACEAA DACBEEEABDCABBBE DAAEDBE BBDDBAEBDDABDBAE BDDABDACBDEEED ABDEDBAEDDAABDADEBDDC AEABDBDDBAEBAE EABEAEDADA

CAAAACECAACECAFAAAFACFACA BEADDEBDDCEDCEDDAEE BEADEDBDEEDCADADBBEDD BEADDADEDEAEDAED FDACBADCAEBDAC BBADDDBAEAABDBAAE DBADAAAEAEDBDCEEADBDDDAEBD DAEAEBADCEBD BDEAEBDEBDDDDEAABDEAA D BD E A ED BD D DA E AA D B AD EABDEADDBBCDDAEBDDDAEDBDDBE BD ACACABBE

CAAAACECAACECAFAAAFACFACA DC ACDEDBAEDAEBDDC ACDCAEBDAC