# Institute of Chemistry of the Academy of Sciences of Republic of Moldova, Academiei Str. 3,

Σχετικά έγγραφα
Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Supplementary Information

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Table of Contents 1 Supplementary Data MCD

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Supplementary Information for

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Electronic Supplementary Information

Supplementary materials

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Supporting Information

SUPPORTING INFORMATION

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Fused Bis-Benzothiadiazoles as Electron Acceptors

difluoroboranyls derived from amides carrying donor group Supporting Information

Butadiene as a Ligand in Open Sandwich Compounds

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supporting Information

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Supporting Information. for. Single-molecule magnet behavior in 2,2 -bipyrimidinebridged

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Supporting Information

Supplementary Information

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Electronic Supplementary Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

SUPPLEMENTARY MATERIAL

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Electronic Supplementary Information:

ELECTRONIC SUPPORTING INFORMATION

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Electronic Supplementary Information (ESI)

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Supporting Information

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

SUPPORTING INFORMATION

Supporting Information

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

(M = Mn, Fe, Co, Ni, Cu and Zn)----Mimicking the M II - Substituted Quercetin 2,3-Dioxygenase

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Supporting Information

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

SUPPORTING INFORMATION. Recognition of Phosphopeptides by a Dinuclear Copper(II) Macrocyclic Complex in Water:Methanol 50:50 v/v Solution

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

of the methanol-dimethylamine complex

Oxazines: A New Class Of Second-Order Nonlinear Optical Switches Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Supporting Information for: electron ligands: Complex formation, oxidation and

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Electronic Supplementary Information

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Electronic Supplementary Information

Supporting information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information. Experimental section

Supporting Information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Divergent synthesis of various iminocyclitols from D-ribose

Transcript:

Supporting Information for Vanadium(V) complexes with substituted 1,5-bis(2- hydroxybenzaldehyde)carbohydrazones and their use as catalyst precursors in oxidation of cyclohexane Diana Dragancea, # Natalia Talmaci, # Sergiu Shova, Ghenadie Novitchi, ǂ Denisa Darvasiova, Peter Rapta,*, Martin Breza, Markus Galanski, Jozef Kozisek, Nuno M. R. Martins, ǁ Luísa M. D. R. S. Martins,*,ǁ, Armando J. L. Pombeiro,*,ǁ and Vladimir B. Arion*, # Institute of Chemistry of the Academy of Sciences of Republic of Moldova, Academiei Str. 3, MD-2028 Chisinau, Moldova University of Vienna, Faculty of Chemistry, Institute of Inorganic Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria Petru Poni Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania ǂ Laboratoire National des Champs Magnetiques Intenses-CNRS, Universite Joseph Fourier, 25 Avenue des Martyrs, 38042 Grenoble Cedex 9, France Slovak University of Technology, Institute of Physical Chemistry and Chemical Physics, Radlinského 9, 81237 Bratislava, Slovakia ǁ Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal Chemical Engineering Department, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal S1

Table of contents: Figure S1. 3D supramolecular network in the crystal structure of NH 4 [1]. Figure S2. 2D supramolecular network in the crystal structure of 4. Figure S3. stacking in octanuclear cluster in 6. Figure S4. Infinite column-like structure showing the stacking interactions in 6. Figure S5. View of the parallel packing of the infinite columns along axis c in 6. Figure S6. 1 H, 13 C HMBC NMR spectrum of NH 4 [1] in DMSO-d 6. Figure S7. Experimental (black) and theoretical (green) 1 H NMR spectra of NH 4 [1] in DMSO-d 6. Figure S8. 1 H, 1 H COSY NMR spectrum of NH 4 [1] in DMSO-d 6. Figure S9. Fragment of 1 H NMR (500 MHz) spectra a) of NH 4 [1] in DMSO-d 6 and b) of 4 in CD 3 OD at room temperature. Figure S10. Fragment of 1 H NMR (500 MHz) spectra a) of NH 4 [2] in DMSO-d 6 and b) of 5 in CD 3 OD at room temperature. Figure S11. a) COSY 1 H NMR spectra of 5 in DMSO showing correlation between CH 3 and CH 2 protons for coordinated and outer sphere ethanol b) Experimental and simulated 1 H NMR spectra of coordinated EtO. The inequivalence of CH 2 protons is obvious. Figure S12. Time dependence of 1 H NMR spectra of 5 for CH 3 regions for coordinated and outer sphere ethanol (500 MHz c=3.5 mm in DMSO-d 6 at room temperature). Figure S13. Evolution of relative population rates for A and B and their derivatives (solid lines) as a function of reaction time for 5 (500 MHz c = 3.5 mm) in DMSO-d 6 at room temperature. Figure S14. Cyclic voltammogram of 0.25 mm NH 4 [2] + 0.25 mm ferrocene in DMSO/nBu 4 N[PF 6 ] at Pt working electrode at scan rate of 100 mv s 1. Figure S15. Optical spectra of NH 4 [2] in 0.2 M nbu 4 N[PF 6 ]/DMSO before (green line) and after bulk electrolysis at 1.8 V vs Fc/Fc + (blue line). Figure S16. Room temperature EPR spectra measured after bulk electrolysis of NH 4 [2] in 0.2 M nbu 4 N[PF 6 ]/DMSO (blue line) and of 5 in 0.2 M LiClO 4 /EtOH (purple line) at the first reduction peak. Figure S17. Cyclic voltammograms of 5 in EtOH/LiClO 4 at glassy-carbon working electrode at scan rate of 100 mv s 1. Figure S18. In situ UV vis spectroelectrochemistry for the sample 5 in EtOH/LiClO 4 (scan rate 10 mv s 1, Pt-micro-structured honeycomb working electrode) during the second (a) and immediately afterward, the third (b) voltammetric scan. Figure S19. (a) UV vis spectra measured simultaneously during the in situ reduction of 5 in the region of the first cathodic peak; (b) UV vis spectra recorded upon reoxidation. Figure S20. (a) Calculated electronic transitions (in DMSO) for 1 [1] (green lines) and 3 [1] 3 (blue lines). (b) Calculated electronic transitions (in DMSO) for 1 [4] 0 (green lines), 2 [4] (violet lines) and 1 [4] 2 (blue lines). S2

Figure S21. (a) HOMO and (b) LUMO of 1 [1] in vacuum; (c) β-homo and (d) spin density of 2 [1] 2 in vacuum; (e) α-homo 1 and (f) α-lumo of 1 [1] 3 in vacuum. Orbitals are depicted at 0.05 a.u. level and spin density at 0.02 a.u. level. Figure S22. (a) HOMO and (b) LUMO of 1 [1] in DMSO; (c) β-homo and (d) spin density of 2 [1] 2 in DMSO. Orbitals are depicted at 0.05 a.u. level and spin density at 0.02 a.u. level. Figure S23. (a) HOMO and (b) LUMO of 1 [4] 0 in DMSO at 0.05 au level; (c) spin density of 2 [4] 2 in DMSO at 0.02 au level; (d) β-homo of 2 [4] in DMSO at 0.05 au level. Figure S24. B3LYP orbitals contributing dominantly to TD-B3LYP electronic transitions for 2 [4] and 1 [4] 2 in vacuum. Figure S25. Laplacian distribution L(r) 2 ρ(r) in the V1, O1, O2 plane (top left), V2, O4, O6 plane (top right), V3, O9 O8 plane (bottom left) and V4, O11, O2 plane (bottom right) in 4. Contours are drawn at 1.0 10 3, ±2.0 10 n, ±4.0 10 n, ±8.0 10 n (n = 3, 2 1, 0, +1, +2 +3) e Å 5, with positive contours drawn with a full blue line and negative contours with a broken red line. Table S1. Selected bond lengths (Å) and angles ( ). Table S2. Experimental 51 V NMR resonances for 2 and 5. Table S3. Calculated spin squares (<S 2 >), relative DFT (ΔE DFT ) and free energies at 298 K (ΔG 298 ) related to the most stable non-reduced system, HOMO (E HOMO ) and LUMO (E LUMO ) energies for the optimized geometries of [1] q and [4] q structures in various charge (q) and spin states in vacuum. Table S4. Calculated spin squares (<S 2 >), relative DFT (ΔE DFT ) and free energies at 298 K (ΔG 298 ) related to the most stable non-reduced system, HOMO (E HOMO ) and LUMO (E LUMO ) energies for the optimized geometries of [1] q and [4] q structures in various charge (q) and spin states in DMSO. Table S5. NBO atomic charges and d-electron populations (d x ) of vanadium atoms in the systems under study in DMSO (see Figs. 1 and 3 for atom labeling). Table S6. Charges in atomic basin for vanadium atoms in [4] 2. Table S7. Selected electron-density properties and bond critical points for [4] 2 3CH 3 OH. Table S8. Selected data for the oxidation of cyclohexane using NH 4 [1], NH 4 [2] and 4 6 as catalysts. a S3

Figure S1. 3D supramolecular network in the crystal of NH 4 [1]. Figure S2. 2D supramolecular network in the crystal of 4. S4

Figure S3. stacking in octanuclear cluster in 6. Figure S4. Infinite column-like structure showing the stacking interactions in 6. S5

Figure S5. View of the parallel packing of the infinite columns along axis c in 6. CH=N C H=N C D H D =N C D H D =N C H =N CH=N C=O Figure S6. 1 H, 13 C HMBC NMR spectrum of NH 4 [1] in DMSO-d 6. S6

theoretical experimental A A C C B 7.70 7.60 7.50 7.40 7.30 7.20 7.10 7.00 6.90 6.80 (ppm) Figure S7. Experimental (black) and theoretical (green) 1 H NMR spectra of NH 4 [1] in DMSO-d 6. B,D,D Figure S8. 1 H, 1 H COSY NMR spectrum of 1 in DMSO-d 6. S7

b) a) Figure S9. Fragment of 1 H NMR (500 MHz) spectra a) of NH 4 [1] in DMSO-d 6 and b) of 4 in CD 3 OD at room temperature. b) a) Figure S10. Fragment of 1 H NMR (500 MHz) spectra a) of NH 4 [2] in DMSO-d 6 and b) of 5 in CD 3 OD at room temperature. S8

theoretical experimental 1.52 ppm J=7.0Hz 5.72 ppm J=7.0Hz J=11.4Hz 5.78 ppm a) b) 5.84 5.82 5.80 5.78 5.76 5.74 5.72 5.70 5.68 5.66 1.56 1.54 1.52 1.50 (ppm) Figure S11. a) COSY 1 H NMR spectra of 5 in DMSO showing correlation between CH 3 and CH 2 protons for coordinated and outer sphere ethanol b) Experimental and simulated 1 H NMR spectra of coordinated EtO. The inequivalence of CH 2 protons is obvious. S9

outer sphere CH 3 CH 2 OH coordinated CH 3 CH 2 O τ Figure S12. Time dependence of 1 H NMR spectra of 5 for CH 3 protons of coordinated and outer sphere ethanol (500 MHz c = 3.5 mm in DMSO-d 6 at room temperature). S10

d(c i /C tot ) dt d(c i /C tot ) dt d(c i /C tot ) dt 1 0.00015 0.9 0.8 0.7 0.6 CH=N (A) CH=N (B) Série6 Série2 0.0001 0.00005 C i /C C i /C tot tot C i /C tot C i /C C i /C tot a) C i /C tot b) c) 0.5 0 0.4-0.00005 0.3 0.2-0.0001 0.1 0-0.00015 0 10000 20000 30000 40000 50000 2 0.00015 t(s) 1.8 0.0001 1.6 1.4 0.00005 1.2 1 0 0.8-0.00005 0.6 EtO (coord) 0.4 EtOH (free) Série6-0.0001 0.2 Série2 0-0.00015 0 10000 20000 30000 40000 50000 1 t(s) 0.00015 0.9 0.0001 0.8 0.7 0.00005 0.6 0.5 0 0.4-0.00005 0.3 NH (A) NH (B) 0.2 Série6 Série2-0.0001 0.1 0-0.00015 0 10000 20000 30000 40000 50000 Figure S13. Evolution of relative population rates for A and B and their derivatives (solid lines) as a function of reaction time for 5 (500 MHz c = 3.5 mm) in DMSO-d 6 at room temperature. Relative population rates obtained from analysis of signals: a) CH=N(A) and CH=N(B) b) EtO(coord) and EtOH free; c) NH(A) and NH(B). t(s) S11

Fc/Fc + 2 0 I / A -2-4 -2.0-1.5-1.0-0.5 0.0 0.5 E vs Fc/Fc + / V Figure S14. Cyclic voltammogram of 0.25 mm NH 4 [2] + 0.25 mm ferrocene in DMSO/nBu 4 N[PF 6 ] at Pt working electrode at scan rate of 100 mv s 1. S12

0.8 0.6 A 0.4 0.2 0.0 300 400 500 600 700 800 / nm Figure S15. Optical spectra of NH 4 [2] in 0.2 M nbu 4 N[PF 6 ]/DMSO before (green line) and after bulk electrolysis at 1.8 V vs Fc/Fc + (blue line). 4.0x10 4 2.0x10 4 I EPR 0.0-2.0x10 4 2500 3000 3500 4000 4500 B / G Figure S16. Room temperature EPR spectra measured after bulk electrolysis of NH 4 [2] in 0.2 M nbu 4 N[PF 6 ]/DMSO (blue line) and of 5 in 0.2 M LiClO 4 /EtOH (purple line) at the first reduction peak. S13

40 20 I / A 0-20 -40-2.0-1.5-1.0-0.5 0.0 0.5 E vs Fc/Fc + / V Figure S17. Cyclic voltammograms of 5 in EtOH/LiClO 4 at glassy-carbon working electrode at scan rate of 100 mv s 1 (black line: fist scan, red line: second scan). S14

(a) 300 400 500 600 700 800 / nm (b) 2.5 2.0 1.5 1.0 0.5 0.0 0.1 0.6 0.1-0.4-0.9-1.4-0.9-0.4 0.1 E vs Fc/Fc + / V 2.5 2.0 1.5 1.0 A A 300 400 500 600 700 800 / nm 0.5 0.0 0.1 0.6 0.1-0.4-0.9-1.4-0.9-0.4 0.1 E vs Fc/Fc + / V Figure S18. In situ UV vis spectroelectrochemistry for the sample 5 in EtOH/LiClO 4 (scan rate 10 mv s 1, Pt-micro-structured honeycomb working electrode) during the second (a) and immediately afterward, the third (b) voltammetric scan. S15

(a) 2.0 1.5 A 1.0 0.5 (b) 0.0 300 400 500 600 700 800 / nm 2.0 1.5 A 1.0 0.5 0.0 300 400 500 600 700 800 / nm Figure S19. (a) UV vis spectra measured simultaneously during the in situ reduction of 5 in the region of the first cathodic peak; (b) UV vis spectra recorded upon reoxidation. S16

(a) 0.48 0.40 0.32 HOMO - LUMO f 0.24 0.16 0.08 300 400 500 600 700 800 / nm (b) 0.32 0.24 f 0.16 0.08 300 400 500 600 700 800 / nm Figure S20. (a) Calculated electronic transitions (in DMSO) for 1 [1] (green lines) and 3 [1] 3 (blue lines). (b) Calculated electronic transitions (in DMSO) for 1 [4] 0 (green lines), 2 [4] (violet lines) and 1 [4] 2 (blue lines). S17

(a) (b) (c) (d) (e) (f) Figure S21. (a) HOMO and (b) LUMO of 1 [1] in vacuum; (c) β-homo and (d) spin density of 2 [1] 2 in vacuum; (e) α-homo 1 and (f) α-lumo of 1 [1] 3 in vacuum. Orbitals are depicted at 0.05 a.u. level and spin density at 0.02 a.u. level. S18

(a) (b) (c) (d) Figure S22. (a) HOMO and (b) LUMO of 1 [1] in DMSO; (c) β-homo and (d) spin density of 2 [1] 2 in DMSO. Orbitals are depicted at 0.05 a.u. level and spin density at 0.02 a.u. level. (a) (b) (c) (d) Figure S23. (a) HOMO and (b) LUMO of 1 [4] 0 in DMSO at 0.05 au level; (c) spin density of 2 [4] 2 in DMSO at 0.02 au level; (d) β-homo of 2 [4] in DMSO at 0.05 au level. S19

β-homo β-lumo transition at 467 nm (f = 0.05) for 2 [4] α-homo-2 α-lumo and β-homo-2 β-lumo transitions at 376 nm (f = 0.09) for 2 [4] β-homo 1 β-lumo transition at 413 nm (f = 0.14) for 1 [4] 2 S20

β-homo 2 β-lumo and α-homo-2 α-lumo transitions at 359 nm (f = 0.16) for 1 [4] 2 Figure S24. B3LYP orbitals contributing dominantly to TD-B3LYP electronic transitions for 2 [4] and 1 [4] 2 in vacuum. S21

Figure S25. Laplacian distribution L(r) 2 ρ(r) in the V1, O1, O2 plane (top left), V2, O4, O6 plane (top right), V3, O9 O8 plane (bottom left) and V4, O11, O2 plane (bottom right). Contours are drawn at 1.0 10 3, ±2.0 10 n, ±4.0 10 n, ±8.0 10 n (n = 3, 2 1, 0, +1, +2 +3) e Å 5, with positive contours drawn with a full blue line and negative contours with a broken red line. S22

Table S1. Selected bond lengths (Å) and angles ( ). 1 4 5 6 V1-O1 1.909(3) 1.626(3) 1.870(2) 1.893(3) V1-O2 1.629(2) 1.609(3) 1.610(2) V1-O3 1.626(3) 1.886(3) 1.656(2) V1-O7 1.595(4) V1-O8 1.671(3) V1-N1 2.167(3) 2.149(3) 2.170(2) 2.156(4) V1-N3 2.046(3) 2.063(3) 2.058(2) 2.048(4) V2-O3 2.332(2) 1 1.849(4) V2-O2 1.987(4) V2-O4 1.877(3) 1.585(3) 1.828(2) 1.573(4) V2-O5 2.011(2) 1.838(3) 1.989(2) 2.340(4) V2-O6 1.616(3) 1.764(3) 1.584(2) 1.755(4) V2-O7 1.646(2) 1.993(3) 1.768(2) V2-O8 2.348(3) V2-N4 2.172(3) 2.160(3) 2.152(2) 2.157(4) V3-O8 1.624(3) 2.292(4) V3-O9 1.632(3) 1.902(4) V3-O10 1.881(3) V3-O12 1.637(4) V3-O13 1.638(4) V3-N5 2.167(4) 2.213(5) V3-N7 2.047(3) 2.093(4) V4-O2 2.307(3) V4-O10 1.989(4) V4-O11 1.584(3) 1.856(4) V4-O12 1.792(3) 2.231(4) 1 V4-O13 1.992(3) V4-O14 1.859(3) 1.583(4) V4-O15 1.768(4) V4-N8 2.132(3) 2.140(5) Cl1-C4 1.772(14) Cl2-C2 1.732(6) Cl3-C14 1.736(8) Cl4-C12 1.734(7) Cl5-C17 1.738(6) Cl6-C19 1.744(6) Cl7-C29 1.737(7) Cl8-C27 1.741(7) O1-C1 1.334(4) 1.326(3) 1.310(6) O2-C8 1.269(6) O3-C1 1.351(5) O3-C15 1.336(9) O4-C15 1.346(4) 1.336(3) O5-C8 1.272(4) 1.271(3) O5-C38 1.492(6) O5-C15 1.327(5) O6-C16 1.409(5) S23

O6-C31 1.435(7) O7-C8 1.272(5) O7-C32 1.428(3) O8-C16 1.417(5) O8-C34 1.426(4) O9-C16 1.317(6) O9-C36 1.441(3) O10-C17 1.334(5) O10-C23 1.281(6) O10-C38 1.430(10) O11-C30 1.363(5) O12-C32 1.412(5) O13-C24 1.271(5) O14-C31 1.322(5) O15-C33 1.446(5) 1.416(8) O16-C34 1.418(5) O16-C36 1.427(9) O17-C35 1.411(5) O17-C39 1.435(6) O18-C35 1.440(9) O19-C40 1.426(9) O20-C37 1.38(3) O21-C34 1.440(6) N1-N2 1.393(4) 1.394(4) 1.383(3) 1.391(6) N1-C7 1.297(4) 1.316(5) 1.299(3) 1.291(7) N2-C8 1.343(4) 1.335(5) 1.344(3) 1.337(7) N3-N4 1.397(4) 1.402(4) 1.397(3) 1.384(6) N3-C8 1.339(5) 1.338(5) 1.336(3) 1.329(7) N4-C9 1.290(5) 1.285(5) 1.291(3) 1.283(7) N5-N6 1.386(4) 1.374(6) N5-C22 1.285(7) N5-C23 1.304(5) N6-C23 1.341(7) N6-C24 1.328(5) N7-N8 1.404(4) 1.393(6) N7-C23 1.333(7) N7-C24 1.343(5) N8-C24 1.284(7) N8-C25 1.301(5) C1-C2 1.386(5) 1.405(6) 1.422(3) 1.415(8) C1-C6 1.416(5) 1.403(6) 1.402(4) 1.409(8) C2-C3 1.384(5) 1.360(6) 1.386(3) 1.381(8) C3-C4 1.393(5) 1.396(6) 1.406(4) 1.391(9) C4-C5 1.372(5) 1.372(6) 1.378(4) 1.365(9) C4-C16 1.539(3) C5-C6 1.402(5) 1.383(6) 1.421(3) 1.405(8) C6-C7 1.431(5) 1.434(6) 1.426(3) 1.435(8) C9-C10 1.433(5) 1.435(5) 1.446(3) 1.438(6) C10-C11 1.406(5) 1.411(6) 1.408(4) 1.390 S24

C10-C15 1.400(5) 1.417(6) 1.399(3) 1.439(14) C11-C12 1.377(5) 1.360(6) 1.385(3) 1.369(14) C12-C13 1.392(5) 1.394(6) 1.410(4) 1.407(16) C12-C24 1.528(4) C13-C14 1.386(5) 1.379(6) 1.387(4) 1.345(16) C14-C15 1.394(5) 1.379(6) 1.416(3) 1.448(16) C14-C28 1.534(3) C16-C17 1.533(3) 1.405(8) C16-C18 1.535(4) C16-C19 1.528(4) C16-C21 1.430(8) C17-C18 1.400(6) 1.391(9) C17-C22 1.392(6) C18-C19 1.385(6) 1.389(10) C19-C20 1.390(6) 1.353(9) C20-C21 1.375(6) 1.532(3) 1.403(8) C20-C22 1.546(3) C20-C23 1.533(4) C21-C22 1.399(6) 1.446(8) C22-C23 1.432(6) C24-C25 1.523(4) 1.427(6) C24-C26 1.538(4) C24-C27 1.527(4) C25-C26 1.438(6) 1.409(14) C25-C30 1.390 C26-C27 1.403(6) 1.402(16) C26-C31 1.414(6) C27-C28 1.368(6) 1.350(16) C28-C29 1.408(6) 1.533(3) 1.347(16) C28-C30 1.532(3) C28-C31 1.540(4) C29-C30 1.385(6) 1.395(13) C30-C31 1.388(6) C32-C33 1.487(4) C34-C35 1.486(7) C36-C37 1.499(4) C38-C39 1.462(11) 1 4 5 6 O1-V1-N1 82.2(1) 140.2(1) 80.26(7) 81.9(2) O1-V1-N3 154.3(1) 93.0(1) 151.99(8) 151.8(2) O2-V1-O1 98.8(1) 107.9(2) 98.94(8) O2-V1-N1 131.1(1) 111.1(1) 128.91(9) O2-V1-N3 93.6(1) 99.8(1) 92.20(8) O3-V1-O1 100.4(1) 96.4(1) 103.01(8) O3-V1-O2 107.4(1) 103.7(1) 107.55(9) O3-V1-N1 120.6(1) 82.1(1) 122.53(8) O3-V1-N3 97.2(1) 150.6(1) 97.89(8) O7-V1-O1 103.7(2) S25

O7-V1-O8 105.9(2) O7-V1-N1 108.8(2) O7-V1-N3 96.8(2) O8-V1-O1 100.8(2) O8-V1-N1 143.5(2) O8-V1-N3 91.9(2) N3-V1-N1 72.8(1) 73.0(1) 72.80(7) 73.1(2) O2-V2-O5 79.3(2) O2-V2-N4 74.4(2) O3-V2-O2 151.0(2) O3-V2-N4 82.4(2) O4-V2-O2 99.2(2) O4-V2-O3 99.5(2) O4-V2-O5 150.3(1) 102.8(2) 155.14(8) 173.4(2) O4-V2-N4 83.6(1) 94.3(1) 82.82(7) 94.0(2) O5-V2-N4 74.2(1) 85.0(1) 75.44(7) 79.4(2) O6-V2-O4 103.1(1) 102.3(2) 99.89(9) 102.1(2) O6-V2-O5 99.6(1) 102.8(14) 94.78(8) 84.4(2) O6-V2-O7 107.8(1) 91.33(1) 101.85(9) O6-V2-N4 98.4(1) 159.3(1) 97.35(8) 161.9(2) O6-V2-O2 94.6(2) O6-V2-O3 102.9(2) O7-V2-O4 98.4(1) 95.1(1) 101.47(8) O7-V2-O5 92.6(1) 154.1(1) 94.96(7) O7-V2-N4 152.4(1) 74.9(1) 159.21(8) O4-V2-O3 84.97(7) 1 O5-V2-O3 78.57(6) 1 79.6(2) O6-V2-O3 172.09(8) 1 O7-V2-O3 83.15(7) 1 N4-V2-O3 76.94(7) 1 O4-V2-O8 172.0(1) O5-V2-O8 81.1(1) O6-V2-O8 83.5(1) O7-V2-O8 79.1(1) N4-V2-O8 78.9(1) O8-V3-O9 108.1(2) 80.4(2) O8-V3-O10 105.0(1) O8-V3-N5 113.3(1) O8-V3-N7 97.9(2) O9-V3-O10 98.7(1) O9-V3-N5 136.9(1) 83.3(2) O9-V3-N7 90.9(1) 152.1(2) O10-V3-N5 82.2(1) O10-V3-N7 150.9(1) O12-V3-O8 164.3(2) O12-V3-O9 100.2(2) O12-V3-O13 105.5(2) O12-V3-N5 91.8(2) O12-V3-N7 95.6(2) S26

O13-V3-O8 89.7(2) O13-V3-O9 100.1(2) O13-V3-N5 161.3(2) O13-V3-N7 97.5(2) N5-V3-O8 72.6(1) N7-V3-O8 78.2(2) N7-V3-N5 72.2(1) 73.4(2) O10-V4-O12 79.6(2) 1 O10-V4-N8 75.1(2) O11-V4-O2 171.7(1) O11-V4-O12 101.8(2) O11-V4-O13 95.3(1) O11-V4-O14 102.5(2) O11-V4-N8 95.7(2) O11-V4-O10 155.5(2) O11-V4-O12 82.5(2) 1 O11-V4-N8 84.7(2) O12-V4-O2 84.9(1) O12-V4-O13 92.3(1) O12-V4-O14 100.8(14) O12-V4-N8 159.5(2) O13-V4-O2 79.6(1) O13-V4-N8 75.4(1) O14-V4-O2 80.7(1) O14-V4-O13 155.2(1) O14-V4-N8 85.5(1) O14-V4-O10 94.1(2) O14-V4-O11 101.2(2) O14-V4-O12 170.5(2) 1 O14-V4-O15 101.3(2) O14-V4-N8 94.2(2) O15-V4-O10 96.5(2) O15-V4-O11 99.1(2) O15-V4-O12 86.6(2) 1 O15-V4-N8 163.0(2) N8-V4-O2 76.9(1) N8-V4-O12 77.4(2) 1 N2-N1-V1 115.0(2) 115.5(3) 115.4(1) 115.5(3) C7-N1-V1 129.5(3) 129.7(3) 129.1(2) 129.1(4) C7-N1-N2 115.5(3) 114.8(4) 115.4(2) 115.4(4) C8-N2-N1 115.0(3) 115.1(4) 114.8(2) 113.8(4) N4-N3-V1 127.9(2) 130.7(3) 129.2(2) 129.2(3) C8-N3-V1 121.8(3) 120.8(3) 120.8(2) 120.2(3) C8-N3-N4 109.7(3) 108.5(3) 109.3(2) 109.1(4) N3-N4-V2 113.0(2) 114.2(2) 113.6(1) 114.2(3) C9-N4-V2 129.0(3) 126.3(3) 128.7(2) 125.7(4) C9-N4-N3 117.9(3) 119.5(4) 117.7(2) 119.9(4) N6-N5-V3 115.4(3) 113.9(3) C22-N5-V3 128.3(4) S27

C22-N5-N6 117.8(5) C23-N5-V3 128.4(3) C23-N5-N6 116.1(4) C23-N6-N5 115.8(4) C24-N6-N5 115.5(4) N8-N7-V3 129.2(3) 131.7(3) C24-N7-V3 122.2(3) C24-N7-N8 108.7(4) C23-N7-V3 118.4(3) C23-N7-N8 109.8(4) N7-N8-V4 113.9(3) 113.4(3) C25-N8-V4 128.2(3) C25-N8-N7 117.9(4) C24-N8-V4 128.0(4) Symmetry code: 1) x, y, 1 z Table S2. Experimental 51 V NMR resonances for NH 4 [2] and 5. Compound Solvent, ppm 2 DMSO-d 6 527.97, 575.65 2 CD 3 OD 538.79, 574.91 5 DMSO-d 6 525.39, 540.40, 575.67 5 CD 3 OD 533.29, 591.05 Table S3. Calculated spin squares (<S 2 >), relative DFT (ΔE DFT ) and free energies at 298 K (ΔG 298 ) related to the most stable system, HOMO (E HOMO ) and LUMO (E LUMO ) energies for the optimized geometries of [1] q and [4] q structures in various charge (q) and spin states in vacuum. Charge q Spin <S 2 > ΔE DFT [ev] ΔG 298 [ev] E HOMO [ev] E LUMO [ev] multiplicity [1] q 1 1 0.000 0.000 0.000 2.943 +0.276 1 3 2.015 : 1.427 : +0.906 2.207 2.049 2 2 0.765 : +2.516 s) : +3.736 1.435 1.306 3 1 1.020 : +5.875 : +6.895 6.174 5.937 3 3 2.026 : +5.872 : +7.482 6.252 5.989 [4] q 0 1 0.000 2.665 2.762 5.948 3.308 0 3 2.037 : 5.473 : 2.681 3.993 3.972 : 6.212 1 2 0.759 : 1.949 s) : +0.276 0.000 0.000 2 1 1.023 : +2.496 : +3.737 1.348 1.261 2 3 2.024 1.429 1.313 : +2.500 : +3.741 Remarks: s) SOMO S28

Table S4. Calculated spin squares (<S 2 >), relative DFT (ΔE DFT ) and free energies at 298 K (ΔG 298 ) related to the most stable non-reduced system, HOMO (E HOMO ) and LUMO (E LUMO ) energies for the optimized geometries of [1] q and [4] q structures in various charge (q) and spin states in DMSO. Charge q Spin multiplicity <S 2 > ΔE DFT [ev] ΔG 298 [ev] E HOMO [ev] E LUMO [ev] [1] q 1 1 0.000 0.000 0.000 6.057 2.340 1 3 2.017 2.264 2.127 : 4.088 : 2.152 2 2 0.765 2.771 2.765 : 3.231 s) : 1.829 3 1 1.020 3.685 3.696 : 3.901 : 1.395 3 3 2.021 3.684 3.752 : 3.076 : 1.393 [4] q 0 1 0.000 0.000 0.000 6.342 3.513 0 3 2.037 0.935 0.872 : 6.296 : 2.810 : 6.458 1 2 0.759 4.678 4.712 : 5.610 s) : 2.307 2 1 1.023 7.269 7.248 : 3.226 : 1.728 2 3 2.024 7.367 7.502 : 3.224 : 1.742 Remarks: s) SOMO Table S5. NBO atomic charges and d-electron populations (d x ) of vanadium atoms in the systems under study in DMSO solutions (see Figs. 1 and 3 for atom labeling). Compound q M s V1 V2 charge d x charge d x [1] q 1 1 0.804 3.47 0.864 3.44 1 3 0.777 3.48 0.868 3.43 2 2 0.756 3.48 0.858 3.44 3 1 0.767 3.48 0.877 3.45 3 3 0.751 3.47 0.878 3.44 [4] q 0 1 0.810 3.46 0.993 3.33 0 3 0.805 3.47 1.045 3.32 1 2 0.801 3.47 1.018 3.33 2 1 0.755 3.48 1.015 3.32 2 3 0.755 3.48 1.015 3.32 S29

Table S6. Charges in atomic basin for vanadium atoms in [4] 2. Atom V1 O1 O2 O3 N1 N3 Charge +1.56 0.48 0.89 0.96 0.74 1.21 Atom V2 O4 O5 O6 O7 O8 N4 Charge +1.61 0.56 1.03 0.71 1.02 0.77 1.12 Atom V3 O8 O9 O10 N5 N7 charge +1.60 0.77 0.64 0.86 0.54 0.98 atom V4 O2 O11 O12 O13 O14 N8 charge +1.64 0.89 0.64 0.85 1.39 1.03 1.29 Table S7. Selected electron-density ( ) properties at bond critical points (BCP) for [4] 2 3CH 3 OH. Atom A Atom B BCP [e Å 3 ] 2 BCP [e Å 5 ] d AB [Å] d A-BCP [Å] d B-BCP [Å] a BCP V1 O1 1.832(162) 28.184(342) 1.6581 0.8165 0.8416 0.29 V1 O2 1.236(197) 17.431(528) 1.6832 0.8987 0.7845 0.82 V1 O3 0.770(96) 10.339(207) 1.9200 0.9933 0.9268 1.01 V1 N1 0.599(44) 7.223(76) 2.1763 1.1140 1.0624 0.08 V1 N3 0.512(52) 9.709(99) 2.0501 0.9915 1.0585 0.22 V2 O4 1.509(267) 48.308(542) 1.6267 0.7239 0.9028 0.81 V2 O5 1.227(102) 10.251(269) 1.8758 0.9467 0.9291 0.14 V2 O6 1.085(115) 18.031(236) 1.7950 0.8892 0.9058 0.90 V2 O7 0.927(83) 9.690(179) 2.0206 1.0509 0.9697 0.03 V2 O8 i 0.257(33) 3.645(54) 2.3108 1.1660 1.1448 0.65 V2 N4 0.494(46) 6.201(78) 2.1448 1.1167 1.0281 0.13 V3 O8 1.384(206) 19.681(595) 1.6349 0.8687 0.7662 0.21 V3 O9 1.671(173) 34.502(297) 1.6759 0.8085 0.8674 0.51 V3 O10 0.871( 92) 5.268(228) 1.9014 0.9916 0.9098 0.26 V3 N5 0.626( 46) 6.636( 71) 2.1980 1.1565 1.0415 0.18 V3 N7 0.564(52) 7.668( 81) 2.0817 1.0833 0.9984 0.38 V4 O11 1.531(242) 45.555(502) 1.6287 0.7309 0.8978 0.74 V4 O12 0.812(127) 9.180(329) 1.8518 0.9905 0.8614 0.44 V4 O13 0.692(78) 14.572(143) 1.9989 0.9644 1.0345 1.45 V4 O2 i 0.253(30) 3.250(50) 2.3554 1.1993 1.1560 0.13 V4 N8 0.599(39) 7.157(72) 2.1526 1.0921 1.0606 0.32 V4 O14 1.427(152) 10.973(363) 1.8382 0.9737 0.8645 0.33 a denotes bond ellipticity; symmetry code: i) x, ½ y, ½ + z. S30

Table S8. Selected data for the oxidation of cyclohexane using NH 4 [1], NH 4 [2] and 4 6 as catalysts. a Entry 1 Catalyst amount/ mol Temperature /ºC Reaction time /h Yield (%) b TON (TOF (h -1 )) c CyOH CyO Total 0.5 5.0 2.4 4.4 22 (44) 2 1.0 4.9 2.7 7.6 38 (38) 3 1.5 8.0 5.3 13.3 67 (45) 1 100 5 2.0 7.5 6.4 13.9 70 (35) 6 2.5 7.3 3.9 11.2 56 (23) 7 3.0 5.2 3.7 8.9 45 (15) 9 0.5 0.1 0.1 0.2 1 (2) 10 1.0 0.3 0.3 0.6 3 (3) 11 1.5 0.9 0.8 1.7 9 (6) 5 60 12 2.0 1.0 1.2 2.2 11 (6) 13 2.5 0.5 2.0 2.5 13 (5) 14 NH 4 [1] 3.0 0.8 1.9 2.7 14 (5) 15 0.5 5.0 2.9 7.9 39 (78) 16 1.0 7.0 6.1 13.1 66 (66) 17 1.5 6.2 9.0 15.2 75 (50) 5 100 18 2.0 5.3 9.4 14.7 73 (37) 19 2.5 6.3 7.3 13.6 67 (45) 20 3.0 3.3 8.9 12.2 62 (21) 21 0.5 2.7 1.3 4.0 20 (40) 22 1.0 2.5 2.1 4.6 9 (18) 23 1.5 2.8 3.2 6.0 30 (20) 10 100 24 2.0 4.7 5.6 10.3 21 (41) 25 2.5 4.2 4.2 8.4 42 (17) 26 3.0 4.2 4.0 8.2 41 (14) 27 0.5 3.4 2.7 6.1 31 (61) 28 1.0 6.3 4.7 11.0 55 (55) 29 1.5 6.5 11.2 17.7 89 (59) NH 4 [2] 5 100 30 2.0 6.9 9.5 16.4 82 (41) 31 2.5 6.9 7.8 14.7 74 (29) 32 3.0 6.5 5.5 12.0 60 (20) 33 0.5 2.7 5.2 7.9 40 (79) 4 1 100 34 1.0 7.2 5.3 12.5 63 (63) S31

35 1.5 9.6 6.7 16.3 82 (54) 36 2.0 7.8 9.5 17.3 87 (43) 37 2.5 4.6 10.5 15.1 76 (30) 38 3.0 6.3 7.3 13.6 68 (23) 39 0.5 0.1 0.0 0.1 1 (2) 40 1.0 0.2 0.0 0.2 1 (1) 41 1.5 0.4 0.3 0.7 4 (2) 5 60 42 2.0 1.1 0.4 1.5 8 (4) 43 2.5 1.3 0.5 1.8 9 (4) 44 3.0 1.8 0.7 2.5 13 (4) 45 0.5 5.8 4.9 10.7 54 (107) 46 1.0 8.4 6.5 14.9 75 (75) 47 1.5 9.5 9.0 18.5 93 (62) 5 100 48 2.0 9.7 7.0 16.4 82 (41) 49 2.5 7.2 5.7 12.9 65 (26) 50 3.0 6.2 4.6 10.8 54 (18) 51 0.5 2.6 2.1 4.7 24 (47) 52 1.0 2.1 2.9 5.0 25 (25) 53 1.5 3.5 6.3 10.2 51 (26) 1 100 54 2.0 4.5 3.3 8.8 44 (22) 55 2.5 4.8 3.0 7.8 39 (16) 56 3.0 3.9 2.7 6.6 33 (11) 5 57 0.5 5.2 3.4 8.6 43 (86) 58 1.0 6.5 5.1 11.6 58 (58) 59 1.5 6.6 5.4 12.0 60 (40) 5 100 60 2.0 5.7 5.8 11.5 58 (29) 61 2.5 4.8 6.0 10.8 54 (22) 62 3.0 3.6 6.2 9.8 49 (16) 63 0.5 4.9 2.7 7.6 38 (76) 64 1.0 5.3 3.7 9.0 45 (45) 65 1.5 5.5 4.1 9.6 48 (32) 1 100 66 2.0 7.3 3.6 10.9 55 (28) 67 2.5 7.8 7.6 15.4 77 (31) 68 3.0 4.4 5.9 10.3 52 (17) 69 0.5 0.9 0.7 1.6 8 (16) 70 5 60 1.0 1.4 1.6 3.0 15 (15) 71 1.5 0.7 3.1 3.8 19 (13) S32

72 6 2.0 2.8 1.6 4.4 22 (11) 73 2.5 3.6 2.2 5.8 29 (12) 74 3.0 4.0 2.6 6.6 33 (11) 75 0.5 7.7 4.8 12.5 63 (125) 76 1.0 8.7 7.1 15.8 79 (79) 77 1.5 7.8 8.5 16.3 82 (54) 5 100 78 2.0 7.4 8.0 15.4 77 (39) 79 2.5 7.1 7.7 14.8 74 (30) 80 3.0 6.5 7.0 13.5 68 (23) 81-1.5 0.0 0.0 0.0-82 - 1.5 0.0 0.0 0.0-83 NH 4 VO 3 5 100 1.5 1.9 3.3 5.2 26 (17) 84 VO(acac) 2 5 100 1.5 2.8 3.5 6.3 32 (21) 85 d 4 0.0 0.0 0.0 0 5 100 1.5 86 e 0.0 0.0 0.0 0 a Reaction conditions: cyclohexane (2.5 mmol), V-catalyst (1-10 mol), t-buooh (70% in H 2 O, 5 mmol), MW, 0.5 3 h at 60-100 ºC. b Moles of products [cyclohexanol (CyOH) + cyclohexanone (CyO)] per 100 mol of cyclohexane, as determined by GC after treatment with PPh 3. c Turnover number = moles of products per mol of catalyst; TOF = TON per hour (values in brackets). d In the presence of Ph 2 NH (2.5 mmol). e In the presence of CBrCl 3 (2.5 mmol). S33