Positive dispersion: 2 n. ω > 0, 2 n. Negative dispersion: ω < 0, 2 n

Σχετικά έγγραφα
6.4 Superposition of Linear Plane Progressive Waves


PARTIAL NOTES for 6.1 Trigonometric Identities

Note: Please use the actual date you accessed this material in your citation.

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

4.4 Superposition of Linear Plane Progressive Waves

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

A. Two Planes Waves, Same Frequency Visible light

Lifting Entry (continued)

Magnetically Coupled Circuits

Section 8.3 Trigonometric Equations

Review of Single-Phase AC Circuits

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Calculating the propagation delay of coaxial cable

Oscillatory Gap Damping

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and Determinants

レーザ結晶. Altechna 社. Laser Crystals. Ti:Sapphire crystals. High damage threshold Strong Kerr effect

Section 7.6 Double and Half Angle Formulas

6.003: Signals and Systems. Modulation


A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Sampling Basics (1B) Young Won Lim 9/21/13

MathCity.org Merging man and maths

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Spectrum Representation (5A) Young Won Lim 11/3/16


Contents 1. Introduction Theoretical Background Theoretical Analysis of Nonlinear Interactions... 35

Second Order Partial Differential Equations

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Trigonometric Formula Sheet

Spherical Coordinates

BandPass (4A) Young Won Lim 1/11/14

ΕΞΙΣΩΣΕΙΣ MAXWELL ΣΕ ΜΕΣΟ

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

レーザ結晶. Altechna 社. Laser Crystals. Ti:Sapphire crystals. High damage threshold Strong Kerr effect

Differential equations

Homework 8 Model Solution Section

= 0.927rad, t = 1.16ms

1 String with massive end-points

ΘΕΜΑ 1. Στο φορέα του σχήματος ζητούνται να χαραχθούν τα διαγράμματα M, Q, N. (3 μονάδες)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

What happens when two or more waves overlap in a certain region of space at the same time?

CRASH COURSE IN PRECALCULUS

TIME SWITCHES AND TWILIGHT SWITCHES

PMD Compensator and PMD Emulator * * * Yu Mimura Kazuhiro Ikeda Tatsuya Hatano * * * Takesi Takagi Sugio Wako Hiroshi Matsuura

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Κλασσική Θεωρία Ελέγχου

Topic 4. Linear Wire and Small Circular Loop Antennas. Tamer Abuelfadl

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

14.5mm 14.5mm

December 18, I T = I 0 e α(ω)x (1) I R = I 0 I T (2) N i = (3) g k

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Fourier Analysis of Waves

Handbook of Electrochemical Impedance Spectroscopy

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Section 9.2 Polar Equations and Graphs

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Handbook of Electrochemical Impedance Spectroscopy

derivation of the Laplacian from rectangular to spherical coordinates

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

If we restrict the domain of y = sin x to [ π 2, π 2

..,..,..,..,..,.. $#'().. #*#'!# !" #$% &'( )*%!"( %+

Chapter 6 BLM Answers

Chapter 7 Transformations of Stress and Strain

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Part 4 RAYLEIGH AND LAMB WAVES

Solar Neutrinos: Fluxes

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CORDIC Background (2A)

Sum of Two Sinusoids by Richard (Rick) Lyons

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Computing the Macdonald function for complex orders

+85 C Screw Terminal Aluminum Electrolytic Capacitors. For filtering applications. Capacitance change Dissipation factor Leakage current

Derivation of Optical-Bloch Equations

Microwave Sintering of Electronic Ceramics

( ) Sine wave travelling to the right side

ITU-R P (2012/02) khz 150

5.0 DESIGN CALCULATIONS

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

10.7 Performance of Second-Order System (Unit Step Response)

Homework#13 Trigonometry Honors Study Guide for Final Test#3

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Advanced operation schemes: two-color, split & delay

Transcript:

Positive dispersion: 2 n ω > 0, 2 n 2 λ > 0 2 Negative dispersion: 2 n ω < 0, 2 n 2 λ < 0 2

φ(z,ω) = k ( n ω )z E( z,t)= 1 2π E ( z = 0,ω )e iωt iφ z,ω e ( ) dω

φ(z,ω) = k ( n ω )z φ( ω )= φ 0 + ω ω 0 ( ) dφω ( ) E( z,t)= 1 2π dω + ω0 E ( z = 0,ω )e iωt iφ z,ω e ( ) dω ( ) 2 d 2 φω ( ) 1 2! ω ω 0 dω 2 +... ω0 ω 0

φ(z,ω) = k ( n ω )z φ( ω )= φ 0 + ω ω 0 ( ) dφω ( ) E( z,t)= 1 2π dω + ω0 E ( z = 0,ω )e iωt iφ z,ω e ( ) dω ( ) 2 d 2 φω ( ) 1 2! ω ω 0 dω 2 +... ω0 ω 0

φ(z,ω) = k ( n ω )z φ( ω )= φ 0 + ω ω 0 ( ) dφω ( ) E( z,t)= 1 2π dω + ω0 E ( z = 0,ω )e iωt iφ z,ω e ( ) dω ( ) 2 d 2 φω ( ) 1 2! ω ω 0 dω 2 +... ω0 ω 0

t p (0) t p (z) t t τ p ( z) τ p ( 0) = 1 + 4ln2 d 2 φ dω 2 τ 2 p ( 0) 2 d 2 φ dω >> τ 2 2 p( 0) τ p () z d 2 φ dω Δω 2 p

p τ τ 2 2 2 2 d 4ln2 d 1 p p ϕ ω τ τ τ = +

n 2 1 = B k λ 2 Positive dispersion: 2 n ω 2 > 0, 2 n λ 2 > 0 k λ 2 C k up-chirped dω dt > 0 B 1 =0.00048673, C 1 =(65 nm) 2, B 2 =0.000058583, and C 2 =(132 nm) 2

τ p () z d 2 φ dω Δω 2 p

n= n() λ

Dispersion of material n() Snellius Law: Refraction is frequency dependent d.h. = ()

t t

J. A. Valdmanis et al., Opt. Lett. 10, 131, 1985

Pump-Laser Ti:Saphir Kristall (2.3 mm, 0.25 wt.%) M 2 M 3 M 4 SESAM M 1 M 7 M 5 M 6 Quartzprismen Auskoppel- Spiegel

θ 1 ( λ 0 )= θ 2 ( λ 0 )= α 2 tanθ B = n 2 = n, and θ B + θ B = 90 o n 1 α = 180 o 2θ B = π 2θ B

n n = sin αδ ( min )+ δ min 2 ( ) sin αδ min 2

θ 1 ( λ 0 )= θ 2 ( λ 0 )= α 2 tanθ B = n 2 = n, and θ B + θ B = 90 o n 1 θ 2 ( λ)= arcsin( nsin θ 2 )= arcsin n( λ)sin π 2θ B arcsin sinθ B n( λ) α = 180 o 2θ B = π 2θ B

C θ 2 G H A β L P = 2 CDE opt = 2 AB = 2Lcosβ β θ 2 D E F s h B φ p = kp ( λ)= 2π λ P ( λ) d 2 φ P dω 2 = λ 3 2π c 2 d 2 P dλ 2 d 2 P dλ 2 = P β 2 n β λ 2 n + 2 β n n 2 λ 2 + β n n 2 d 2 P λ dβ 2 β = 0 d 2 P dλ = 2 θ 2 2 n n λ 2 L 8 dn dλ 2 L < 0

EFG = BH CDE = AB = L cosβ E F G = BH= BH C D E = AB= L cos β dφ P dω = d dω kp(ω ) ( )= 2L c cosβ 2ω L c sinβ dβ dω, dβ dω < 0

400 2000 200 Fused Quartz 0 SF10 d 2 φ/dω 2 [fs 2 ] -200 0 d 2 φ/dω 2 [fs 2 ] -2000-4000 -400-6000 0.0 0.1 0.2 L [m] 0.3 0.4 0.0 0.1 0.2 L [m] 0.3 0.4

d 2 φ dω >> τ 2 2 p( 0) 400 200 Fused Quartz 2000 0 SF10 d 2 φ/dω 2 [fs 2 ] -200 0 d 2 φ/dω 2 [fs 2 ] -2000-4000 -400-6000 d 3 φ 200 0-200 -400 0.0 dω 3 >> τ p d 3 φ/dω 3 [fs 3 ] ( ) 3 0 0.1 0.2 L [m] 0.3 0.4 Fused Quartz d 3 φ/dω 3 [fs 3 ] 0-5 -10 0.0 0.1 0.2 L [m] 0.3 SF10 0.4-600 -15x10 3 0.0 0.1 0.2 L [m] 0.3 0.4 0.0 0.1 0.2 L [m] 0.3 0.4

2000 20 mm Fused Silica Prisms 35 cm apex separation 1000 adjustable negative GDD allows compensation of material dispersion strong higher-order contributions 0 600 4 mm 700 800 900 Wavelength (nm) 1000

λ < λ h λ > λ h Any wavelength < h will not be refracted by the second prism and will be lost during propagation through the prism pair. λ h

1.0 400 Ti:S-gain Prism + Ti:S-Crystal 0.8 GDD, fs 2 200 0 6 x Standard Mirror (measured) Total Dispersion 0.6 0.4 Spektrum -200 6 x Chirped Mirror 0.2 600 700 800 900 1000 0.0 Wavelength, nm Goals: ---> High Reflectivity from 650 nm - 950 nm ---> Constant Total GDD from 650 nm - 950 nm

1.0 400 Ti:S-gain Prism + Ti:S-Crystal 0.8 GDD, fs 2 200 0 6 x Standard Mirror (measured) Total Dispersion 0.6 0.4 Spektrum -200 6 x Chirped Mirror 0.2 600 700 800 Wavelength, nm 900 1000 0.0 λ < λ h λ > λ h λ h

Λ ν x,m = m 1 Λ θ x,m m λ Λ t t t t

sinθ m = m λ Λ + sinθ i where m = 0, ± 1, ± 2,... x φ g ( x)= π m x Λ 2π

z L g x B θ i P' P Q b θ m A x sinθ m = m λ Λ + sinθ i where m = 0, ± 1, ± 2,... Beugungsgitter z.b. Blaze-Gitter φ = ω c L + φ g ( x), with x = L g tan( θ m ) φ g ( x)= π m 2π Λ x ( ) L = PABQ = PA+ b = b 1 + cos θ m + θ i = L g cosθ m ( ) 1+ cos θ m + θ i

sinθ m = m λ Λ + sinθ i L g d 2 φ dω = m2 λ 3 L g 2 2πc 2 Λ 1 m λ 2 Λ sinθ i 2 3/2 d 2 φ dω 2 L g angle of incidence angle of incidence 1200 lines/mm 300 lines/mm Λ 830 nm Λ 3.3 μm

L f stretcher something a Treacy grating pair cannot do! L f compressor like the Treacy grating pair

L f E out ( ω )= h ( ω ) E in ( ω )

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000) f = 300 mm knife-edge f = 300 mm SLM 640 pixels 300 l/mm grating 300 l/mm grating Possible bandwidth through Spatial Light Modulator: 400-1050 nm

R = 100% b AR-Coating R t R R GTI R GTI = 1 and R GTI = exp i2φ GTI ( ) d Glass substrate Air gap (non-absorbing spacer layer) r GTI exp( iφ GTI )= r 12 + r 23 e i2ϕ 1 + r 12 r 23 e = R t e i2ϕ i2ϕ 1 R t e i2ϕ t 0 t 0 = 2nd c ϕ = nkd = n ω c d ωt 0 2 dϕ dω t 0 2 tanφ GTI = Im r GTI Re r GTI ( ) ( ) = 1 R t ( )sin2ϕ 2 R t ( 1 + R t )cos2ϕ and d dω tanφ = ( 1+ tan2 φ) dφ dω ( ) R t sinωt 0 dt g dω = d 2 φ GTI = 2t 2 0 1 R t dω 2 1+ R t 2 R t cosωt 0 ( ) 2

R = 100% b R t AR-Coating R R GTI dt g dω d 2 d Glass substrate Air gap (non-absorbing spacer layer) Bandwidth of dt g dω 1 d Example: d = 2.25 μm, R t = 4% Example: d = 80 μm, R t = 4%

t p (0) t p (z) t t L 1 2 3 4 Substrate

Bragg-Mirror: SiO 2 - Substrate TiO / SiO 2 2 B - Layers 4 AIR 1.0 6 Intensity Reflexion 0.8 0.6 0.4 0.2 Phase 5 4 3 2 1 0.0 0.8 1.0 1.2 Wavelength (μm) 1.4 0 0.8 1.0 1.2 Wavelength (μm) 1.4

R λ/4 stack Substrate T Refr. index n H n S n I n L Physical distance r = ( n H n L ) ( n H + n L ) Δω ω B = 4 π arcsin( r) R 0 ( λ B )= 1 aqpm 1 1 + aqp m 1 2 p = n I n H q = n L n H a = n L n S

μ μ dt g dλ > 0 dt g dω < 0

λ Bragg Substrate 1 2 3 4 Chirp Bragg wavelength wavelength-dependent penetration depth engineerable dispersion compensation of arbitrary material dispersion increased high-reflection bandwidth Group Delay (fs) Szipöcs et al., Opt. Lett. 19, 201 (1994) 40 20 λ 4 λ 3 λ 2 GDD = 30 fs 2 (3.5 μm thick λ 1 mirror stack) 0 600 800 1000 Wavelength (nm)

Substrate Gires-Tournois High Partial R = 5% Interferometer (GTI) Reflector Reflector Group Delay (fs) 60 40 20 0 700 800 900 Wavelength (nm) GTI desired

Substrate Substrate AR Anti-reflection coating matches first-layer impedance to air Kärtner et al., Opt. Lett. 22, 831 (1997) Matuschek et al., IEEE J. Sel. Top. Quantum Electron. 4, 197 (1998)

k B,min = 2π 600 nm k B,max = 2π 900 nm

0 prism pair: tunability, better DCM designs -100-200 100 (GDD= T g / ) 0 20 Double-Chirped Mirrors: trade off: bandwidth vs. GDD oscillations non-normal incidence: smoother average GDD (average of several DCMs) 99 600 700 800 900 1000 1100 ) 2x 20 Wavelength (nm)

(a) Bragg Mirror: SiO 2 Substrate TiO / SiO 2 2 λ /4-Layers B Air (b) Simple-Chirped Mirror: Bragg Wavelength λ Chirped SiO 2 Substrate B λ 1 λ 2 Negative Dispersion: λ λ 2 > 1 GTI (c) Double-Chirped Mirror: Bragg Wavelength and Coupling Chirped SiO 2 Substrate AR Coating Air { Impedance Matching (n d < h h < n d ) l l

10 0 10-1 10-2 10-3 10-4 10-5 Δλ = 230 nm 600 800 Wavelength (nm) 1000 80 60 40 20 0 600 With AR Without AR R AR < 10-4 700 800 900 Wavelength (nm) 1000 cannot make arbitrarily low reflectivity and arbitrarily broad bandwidth at the same time J.A. Dobrowolski et al., Appl. Opt. 35, 644 (1996)

Substrate Perfect impedance matching with double-chirp and n substrate = n first layer Front-reflection from substrate is not interfering with wave from mirror stack (by geometry) AR coating required only for loss reduction

20 0-20 -40-60 -80 BASIC DCM: Target Design 20 0-20 -40-60 -80 conventional DCM: Target Design 100.0 600 800 1000 Wavelength (nm) 1200 600 700 800 900 Wavelength (nm) 1000 99.8 99.6 99.4 99.2 99.0 600 BASIC conventional 800 1000 1200 Wavelength (nm) 1400 R > 99.7% (600-1240 nm) T g variations = 0.3 fs rms GDD var. = 3.8 fs 2 rms 260 THz bandwidth

50 0-50 Error simulations Measured GDD Design Layer deposition error: 0.2 nm rms 600 700 800 900 Wavelength (nm) 1000 future 50 0-50 Error simulations Measured GDD Design Layer deposition error: 0.1 nm rms 600 700 800 900 Wavelength (nm) 1000

N. Matuschek: Theory and design of double-chirped mirrors, Ph.D. Thesis, ETH Zurich (1999) Hartung-Gorre Verlag, ISBN 3-89649-501-1

[ ] n o,k o = kn o, and ω,ω a,ω b ω 0 ± Δω k A,ω A n e, k e = kn e ω o + ω A = ω e, because ω A << ω ω o ω e k o + k A = k e k( n e n o )= k A = ω A υ A

+ S ( Δt)= R E S * ()E t R ( t Δt)dt K. Naganuma, K. Mogi, H. Yamada, Opt. Lett. 15, 393-395 (1990).

+ S( Δt)= R E S ()E t * R ( t Δt)dt K. Naganuma, K. Mogi, H. Yamada, Opt. Lett. 15, 393-395 (1990).

ϕω ( ) + S ( Δt)= R E S * ()E t R ( t Δt)dt K. Naganuma, K. Mogi, H. Yamada, Opt. Lett. 15, 393-395 (1990). GDD = d 2 ϕω ( ) dω 2 ϕω ( )

+ S ( Δt)= R E S * ()E t R ( t Δt)dt K. Naganuma, K. Mogi, H. Yamada, Opt. Lett. 15, 393-395 (1990). GDD = d 2 ϕω ( ) dω 2 ϕω ( )