Electronic Supplementary Material 1

Σχετικά έγγραφα
Divergent synthesis of various iminocyclitols from D-ribose

Aqueous MW eco-friendly protocol for amino group protection.

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Electronic Supplementary Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information. Experimental section

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Electronic Supplementary Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supplementary Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supplementary Information

Supporting information

Supplementary Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

The Free Internet Journal for Organic Chemistry

SUPPORTING INFORMATION

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Supplementary information

Supporting Information

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Supporting Information. Experimental section

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information

SUPPLEMENTARY MATERIAL

Electronic Supplementary Information (ESI)

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Efficient Synthesis of Ureas by Direct Palladium-Catalyzed. Oxidative Carbonylation of Amines

Supporting Information

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Electronic Supplementary Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supplementary Information

Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Supplementary Material. An Efficient One-pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO nanopowder/se 0 or Te 0 /Base

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

difluoroboranyls derived from amides carrying donor group Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

π-face DONOR PROPERTIES OF N-HETEROCYCLIC CARBENES MARCUS SÜßNER AND HERBERT PLENIO

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Electronic Supplementary Information:

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Available online at

multicomponent synthesis of 5-amino-4-

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

SUPPORTING INFORMATION

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Extended dissolution studies of cellulose in imidazolium based ionic liquids

Supplementary Material ON WATER REACTIVITY AND REGIOSELECTIVITY OF QUINONES IN C-N COUPLING WITH AMINES

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

ELECTRONIC SUPPORTING INFORMATION

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supporting Information for

Supporting Information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

of the methanol-dimethylamine complex

DuPont Suva 95 Refrigerant

Table of Contents 1 Supplementary Data MCD

Supporting information

Electronic Supplementary Information

Supporting Information

DuPont Suva 95 Refrigerant

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Selective mono reduction of bisphosphine

Cu-catalyzed stereoselective conjugate addition of arylboronic acids to alkynoates

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Transcript:

Electronic Supplementary Material 1 Molecular clefts of Rebek revisited: potential application as drug carriers for the antiviral acyclovir Fernanda M. F. Roleira a*, Elisiário J. Tavares da Silva a, José A. C. Pereira b, Francesco rtuso c, Stefano Alcaro c, Madalena M. M. Pinto d a CC-IBILI and Grupo de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal b ICBAS Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n º 228, 4050-313 Porto, Portugal REQUIMTE/CEQUP Centro de Química da Universidade do Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal c Laboratorio di Chimica Farmaceutica, Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy d Centro de Química Medicinal da Universidade do Porto (CEQUIMED-UP) and Laboratório de Química rgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira nº 228, 4050-313 Porto, Portugal *Corresponding author: Fernanda M. F. Roleira; e-mail: froleira@ff.uc.pt; Phone: +351 239 488 400; Fax: +351 239 488 503 Contents: Synthetic strategy scheme, experimental conditions for the synthesis, spectroscopic data and equilibrium constants calculation using MR data, 1 MR titration data for protons (a) and (b) Journal of Inclusion Phenomena and Macrocyclic Chemistry 1

C 2 C 2 C 2 C 2 C 2 i ii iii CCl 1 2 3 4 4 + iv 2 5 4 + v vi, vii C 2 C 2 C 2 6 7 viii a b ix C 2 C 2 9 8 Scheme 1 Synthetic strategy followed for the preparation of receptors 5 and 9, according to Rebek procedures. 1,3 i) sublimation at 180 o C (1 cmg); ii) 4 conc., 4-dimethylaminopyridine, 110 o C; iii) SCl 2, reflux; iv) anhydrous pyridine, 4-dimethylaminopyridine, CCl 3, 90 o C, 2; v) anhydrous pyridine, 4-dimethylaminopyridine, anhydrous C 2Cl 2, reflux, 2; vi) LiB 4, anhydrous tetrahydrofuran, 0 o C; vii) trifluoroacetic acid, triethylsilane, anhydrous C 2Cl 2; viii) phenylchloroformate, diisopropylethylamine, anhydrous C 2Cl 2, reflux; ix) guanidine hydrochloride, 60% a, diisopropylethylamine, anhydrous tetrahydrofuran, 90 o C, 2. 2

Experimental conditions for de synthesis and association studies: Compounds 5 and 9 (Scheme 1) were prepared according to previous descriptions. 1,3 Acyclovir 10 was purchased from Wellcome Laboratories. Reagents were purchased from Sigma-Aldrich and solvents were purchased from Merck. 1 MR and 13 C MR spectra of individual compounds were obtained with a Brucker AMX 200 or 300 spectrometer using 5 mm o.d. MR tubes. δ is expressed in ppm, relatively to Me4Si. Coupling constants (J) are expressed in z. Mass spectra (electronic impact) were obtained with a mass spectrometer itachi Perkin-Elmer, RMU-6M. 1 MR and 13 C MR spectra in titrations were obtained with a Brucker AMX 300 spectrometer using 5 mm o.d. MR tubes. Measurements were carried out at 298 K in DMS-d6 relatively to Me4Si; δ is expressed in ppm or z. PLC chromatograms were obtained with a Jasco model liquid chromatographic system, a Jasco 875 variable wavelength UV photometric detector and a Varian 4270 integrator. Standard PLC conditions were 65:35 Me/2 containing 0.1% of Et3 for the association studies of 5 and 10 and 75:25 Me/2 containing 0.1% of Et3 for the association studies of 9 and 10 with a reversed phase RP-8 (Lichrospher) column (Merck) with 10 mm. The UV detector was set at 254 nm. Melting points and spectroscopic data for compounds 2 to 9: Mp, IV and 1 MR data are in accordance with those published in the literature. In addition, new 13 C MR data were acquired. Compound 2: Mp: 251-254 o C (lit. 1 252-254 o C). IR (KBr) νmax cm -1 : 3200-2500, 1795, 1760, 1700, 1460, 1285, 1220, 1185, 1130, 1090, 1000. 1 MR (200 Mz, pyridine-d5) δ: 1.19-1.34 (12, m), 2.02 (1, dt, J=13.3, 2.1, 2.1), 2.92 (2, dd, J=14.2, 1.9). 13 C MR (50.3 Mz, pyridine-d5) δ: 25.4 (two carbons), 30.4, 40.4 (two carbons), 42.0, 42.1, 44.5 (two carbons), 172.4 (two carbons), 177.7. Compound 3: Mp: > 300 o C (lit. 1 > 300 o C). IR (KBr) νmax cm -1 : 3140, 3070, 2970, 1730, 1705, 1455, 1380, 1310, 1220, 1180. 1 MR (300 Mz, DMS-d6) δ: 1.07 (6, s), 1.01 (3, s), 1.18 (2, d, J=13.5), 1.37 (1, d, J=13.2), 1.87 (1, d, J=12.9), 2.35 (2, d, J=13.5), 10.37 (1, s), 12.22 (1, s). 13 C MR (75.47 Mz, DMS-d6) δ: 24.5 (two carbons), 30.7, 39.3 (two carbons), 41.0, 42.8 (two carbons), 43.2, 176.8 (two carbons), 176.7. Compound 4: Mp: 185-187 o C (lit. 1 181.5-183.5 o C). IR (KBr) νmax cm -1 : 3200, 3100, 2980, 1780, 1720, 1690, 1460, 1385, 1205, 925, 895, 830. 1 MR (200 Mz, CDCl3) δ: 1.25-1.45 (12, m), 2.02 (1, dt, J=13.5, 2.2, 2.2), 2.75 (2, dd, J=15.2, 1.9), 7.70 (1, s). 13 C MR (50.3 Mz, CDCl3) δ: 24.1 (two carbons), 30.2, 40.0 (two carbons), 44.1, 44.3 (two carbons), 52.3, 175.3 (two carbons), 178.7. MS: 259.0 ([M+2] +. ), 258.0 ([M+1] +. ), 257.0 ([M] +. ). 3

Compound 5: Mp: 281-283 o C (lit. 1 281-282 o C). IR (KBr) νmax cm -1 : 3380, 3200, 3090, 2960, 1720, 1690, 1545, 1450, 1385, 1360, 1210. 1 MR (300 Mz, DMS-d6) δ: 1.13 (6, s), 1.22 (3, s), 1.26 (2, d, J=14.4), 1.41 (1, d, J=12.9), 1.90 (1, d, J=12.6), 2.72 (2, d, J=13.8), 7.37-8.06 (7, m), 9.40 (1, s), 10.40 (1, s). 13 C MR (75.47 Mz, DMS-d6) δ: 24.6 (two carbons), 30.6, 39.4 (two carbons), 42.4, 43.0 (two carbons), 43.6, 117.8, 122.2, 124.6, 126.1, 127.2, 127.4, 127.5, 130.0, 133.2, 136.5, 173.2, 177.0 (two carbons). MS: 364.0 ([M] +. ). Compound 6: Mp: 192-194 o C (lit. 1 192-194 o C). IR (KBr) νmax cm -1 : 3230, 3095, 2965, 2930,1730, 1685, 1500, 1460, 1380, 1240, 1205, 1175, 1090. 1 MR (300 Mz, CDCl3) δ: 1.07 (3, s), 1.11 (2, d, J=14.3), 1.23 (6, s), 1.31 (1, d, J=13.3), 1.93 (1, d, J=13.3), 2.65 (2, dd, J=14.4, 1.5), 3.05 (2, t, J=7.2), 4.28 (2, t, J=7.2), 7.30-7.80 (8, m, being 1, s at 7.64). 13 C MR (75.47 Mz, CDCl3) δ: 24.3 (two carbons), 30.4, 34.7, 40.1 (two carbons), 42.1, 43.8 (two carbons), 44.4, 65.3, 125.4, 126.0, 127.4 (two carbons), 127.5, 127.6, 128.0, 132.2, 133.5, 135.0, 175.1, 176.3 (two carbons). Compound 7: Mp: 186-187 o C (lit. 3 186-187 o C). IR (KBr) νmax cm -1 : 3200, 2920, 1720, 1660, 1455, 1160, 1110. 1 MR (300 Mz, CDCl3) δ: 0.85 (3, s), 0.99 (2, d, J=13.8), 1.05 (3, s), 1.12 (3, s), 1.17 (1, m), 1.60 (1, d, J=12.8), 2.42 (1, d, J=13.9), 2.59 (1, d, J=13.9), 2.78-2.90 (2, m), 3.09 (2, t, J=6.9), 4.19-4.36 (2, m), 5.34 (1, s), 7.34-7.79 (7, m). 13 C MR (75.47 Mz, CDCl3) δ: 25.0, 28.7, 30.4, 31.1, 34.8, 38.4, 42.3, 45.1, 45.2, 46.0, 52.9, 65.0, 125.4, 126.0, 127.5, 127.6, 128.0, 132.3, 133.5, 135.6, 175.5, 176.0. Compound 8: Mp: 110-112 o C (lit. 3 110.5-112 o C). IR (KBr) νmax cm -1 : 2970, 1785, 1725, 1660, 1490, 1455, 1280, 1200, 1170. 1 MR (300 Mz, CDCl3) δ: 1.02 (3, s), 1.06 (3, s), 1.14 (2, d, J=14.1), 1.23 (3, s), 1.32 (1, dd, J=13.0, 2.5), 1.82 (1, d, J=12.9), 2.57 (1, d, J=14.2), 2.70 (1, d, J=14.0), 3.03 (2, t, J=7.0), 3.39 (1, dd, J=12.3, 1.8), 3.79 (1, dd, J=12.4, 2.5), 4.22-4.32 (2, m), 7.14-7.79 (12, m). 13 C MR (75.47 Mz, CDCl3) δ: 25.8, 28.9, 30.6, 31.4, 34.7, 41.4, 42.1, 44.9, 45.7, 45.8, 58.6, 65.3, 121.6 (two carbons), 125.2, 125.7, 126.0, 127.3, 127.4 (two carbons), 127.5, 127.7, 129.4 (two carbons), 132.2, 133.4, 135.4, 150.7, 152.4, 174.4, 176.0. 4

Compound 9: Mp: 230-232 o C (lit. 3 227-228 o C). IR (KBr) νmax cm -1 : 3400, 3200, 1720, 1615, 1590, 1515, 1460, 1185, 1150. 1 MR (300 Mz, CDCl3) δ: 1.00-1.69 (13, m), 2.42 (1, d, J=14.4), 2.57 (1, d, J=13.9), 3.00 (2, t, J=6.9), 3.15 (1, d, J=14.7), 3.95 (1, d, J=14.5), 4.05-4.18 (2, m), 5.24 (1, s), 5.86 (1, s), 7.29-7.79 (7, m). 1 MR (300 Mz, DMS-d6) δ: 0.95-1.34 (12, m), 1.74 (1, d, J=12.6), 2.24 (1, d, J=14.4), 2.36 (1, d, J=13.5), 3.01 (2, t, J=7.0), 3.05 (1, d, J=14.4), 3.70 (1, d, J=13.8), 3.84-3.91 (1, m), 3.98-4.04 (1, m), 7.13 (1, s), 7.17 (1, s), 7.40-7.90 (7, m). 13 C MR (75.47 Mz, CDCl3) δ: 26.0, 29.1, 30.0, 30.9, 34.9, 38.3, 42.0, 43.2, 46.0, 47.4, 54.7, 65.5, 125.4 125.9, 127.4, 127.5 (two carbons), 127.6, 127.9, 132.2, 133.5, 135.3, 155.6, 165.6, 172.1, 175.1. 13 C MR (75.47 Mz, DMS-d6) δ: 25.8, 28.6, 29.5, 30.3, 34.0, 37.7, 41.5, 41.7, 45.1, 46.3, 54.0, 64.9, 125.4 126.0, 127.1, 127.3, 127.4, 127.5, 127.7, 131.8, 133.0, 135.3, 154.8, 165.4, 170.7, 174.7. MS: 446.0 ([M] +. ). 5

Equilibrium constants calculation using MR data: The equilibrium constant for the complex formed between the antiviral drug (A) and the synthetic receptor (R), described by the chemical equation: A + R AR where K1:1 = [AR]/[A][R] were calculated by least-squares regression of a parametric non-linear function over the experimental fast equilibrium chemical shift data. The chemical shift function describes the variation of the observed chemical shift of R nuclei, δ, as: δ = ([R] δr + [AR] δar)/[r]t (1) where δr and δar are the chemical shifts of species R and AR, respectively and [R]t = [R] + [AR]. With the substitutions Δ = δ - δr, ΔR = δr - δr = 0 and ΔAR = δar - δr, equation (1) can be rewritten as: Δ = [AR] ΔAR/[R]t (2) By doing the convenient substitutions in (2), it is possible to express Δ as a function of two known quantities, [R]t and [A]t = [A] + [AR], and two unknown parameters, K1:1 and ΔAR. A FRTRA program, a straightforward application of subroutine E04FDF from AG Library (umerical Algorithms Group), was used for the minimization of the function: S = Ʃ (Δcalc Δobs) 2 Where Δcalc is the calculated chemical shift (equation (2)) and Δobs is the observed chemical shift, by adjusting the values attributed to K1:1 and ΔAR. 6

Table 1. 1 MR titration data for proton (a) [Acyclovir 10] [Receptor 9] Δobs. 1) Δcalc. 2) Δobs.- Δcalc. 0.000 0.2000x10-1 0.0 0.000 0.000 0.3920x10-2 0.1960x10-1 2.1 1.620-0.480 0.7690x10-2 0.1920x10-1 3.5 3.153-0.347 0.1132x10-1 0.1890x10-1 4.9 4.607-0.293 0.1481x10-1 0.1850x10-1 6.4 5.985-0.415 0.1818x10-1 0.1820x10-1 8.0 7.297-0.703 0.2143x10-1 0.1780x10-1 9.7 8.546-1.154 0.2759x10-1 0.1720x10-1 11.5 10.868-0.632 0.3333x10-1 0.1670x10-1 14.1 12.979-1.121 0.3871x10-1 0.1610x10-1 15.5 14.917-0.583 0.4375x10-1 0.1560x10-1 16.7 16.694-0.006 0.4848x10-1 0.1520x10-1 17.7 18.328 0.6280 0.5294x10-1 0.1470x10-1 18.2 19.844 1.644 0.5714x10-1 0.1430x10-1 21.3 21.246-0.054 0.6667x10-1 0.1330x10-1 23.8 24.348 0.584 0.7500x10-1 0.1250x10-1 26.2 26.963 0.763 0.8235x10-1 0.1180x10-1 28.1 29.203 1.103 0.8889x10-1 0.1110x10-1 31.1 31.148 0.048 0.9474x10-1 0.1050x10-1 33.3 32.847-0.453 0.1000 0.1000x10-1 35.1 34.341-0.759 0.1091 0.9090x10-2 36.6 36.857 0.257 0.1167 0.8330x10-2 38.5 38.893 0.393 0.1231 0.7690x10-2 41.4 40.571-0.829 0.1286 0.7140x10-2 42.1 41.978-0.122 0.1333 0.6670x10-2 43.9 43.175-0.725 0.1429 0.5710x10-2 45.4 45.514 0.114 0.1556 0.4440x10-2 47.3 48.511 1.211 0.1592 0.4080x10-2 50.1 49.341-0.759 Concentrations are in M and chemical shifts in z. 1) bserved chemical shift variation of proton (a) of 9 after addition of several equivalents of 10. 2) Calculated chemical shift variation of proton (a) of 9 after addition of several equivalents of 10. 7

Table 2. 1 MR titration data for proton (b) [Acyclovir 10] [Receptor 9] Δobs. 1) Δcalc. 2) Δobs.- Δcalc. 0.000 0.2000x10-1 0.0 0.000 0.000 0.3920x10-2 0.1960x10-1 3.5 2.573-0.927 0.7690x10-2 0.1920x10-1 5.5 5.015-0.485 0.1132x10-1 0.1890x10-1 8.0 7.335-0.665 0.1481x10-1 0.1850x10-1 10.3 9.539-0.761 0.1818x10-1 0.1820x10-1 12.5 11.640-0.860 0.2143x10-1 0.1780x10-1 14.6 13.646-0.954 0.2759x10-1 0.1720x10-1 17.4 17.383-0.017 0.3333x10-1 0.1670x10-1 21.4 20.792-0.608 0.3871x10-1 0.1610x10-1 24.3 23.932-0.368 0.4375x10-1 0.1560x10-1 27.0 26.819-0.181 0.4848x10-1 0.1520x10-1 29.4 29.480 0.080 0.5294x10-1 0.1470x10-1 31.5 31.957 0.457 0.5714x10-1 0.1430x10-1 33.6 34.252 0.652 0.6667x10-1 0.1330x10-1 38.7 39.346 0.646 0.7500x10-1 0.1250x10-1 42.8 43.664 0.864 0.8235x10-1 0.1180x10-1 46.5 47.377 0.877 0.8889x10-1 0.1110x10-1 50.4 50.611 0.211 0.9474x10-1 0.1050x10-1 54.4 53.444-0.956 0.1000 0.1000x10-1 56.0 55.944-0.056 0.1091 0.9090x10-2 61.1 60.168-0.932 0.1167 0.8330x10-2 62.2 63.599 1.399 0.1333 0.6670x10-2 71.8 70.857-0.943 Concentrations are in M and chemical shifts in z. 1) bserved chemical shift variation of proton (b) of 9 after addition of several equivalents of 10. 2) Calculated chemical shift variation of proton (b) of 9 after addition of several equivalents of 10. 8